Joint project Spree Matter transformation in the Spreewald wetland region.

12

Transcript of Joint project Spree Matter transformation in the Spreewald wetland region.

Page 1: Joint project Spree Matter transformation in the Spreewald wetland region.
Page 2: Joint project Spree Matter transformation in the Spreewald wetland region.

Joint project Spree

Matter transformation in the Spreewald wetland region

Page 3: Joint project Spree Matter transformation in the Spreewald wetland region.

Study siteStudy site

   channel network with high density

high groundwater table, 30% fens

water consumptive area in summer time

groundwater-table control (13 cascades)

different flooding regimes during winter and summer seasons with partly flooding

low flow velocities in channels

vm = 0,01 m/s for MQ in the Upper Spreewald

vm = 0,1 m/s for MQ in the Lower Spreewald

 

Page 4: Joint project Spree Matter transformation in the Spreewald wetland region.

Water quality processesWater quality processes

Q, c input (e.g. Spree, Malxe)

t, v Hydraulic structures

c

c

pore water concentrations

water column

± Q, c

c

?

area water exchange, loads

matter concentrations of sediment

Page 5: Joint project Spree Matter transformation in the Spreewald wetland region.

Conceptual modelConceptual model

Page 6: Joint project Spree Matter transformation in the Spreewald wetland region.

Reduction o

f the n

etwork 4630000 4632500 4635000 4637500 4640000 4642500 4645000 4647500

5745000

5747500

5750000

5752500

5755000

Modelled structureModelled structure

Scheme

Complex model DUFLOW

Page 7: Joint project Spree Matter transformation in the Spreewald wetland region.

Data acquisition, monitoring networks

Hydrology, Hydraulics Water quality

Discharges (1991-2000, monthly mean)

Surface water quality (1991-2000, monthly, appointed date)

Channel network, profiles Ground water quality (near to surface)

Water levels at weirs (1991-2000, monthly mean)

Rate data (reaction kinetics)

Ground water levels Sediment chemistry

Distribution of substrates

Pore water profiles

Chemical composition of substrates

Page 8: Joint project Spree Matter transformation in the Spreewald wetland region.

Simulation Simulation accuracyaccuracy of transfer functions of transfer functions

o-PO4-P ganzjährig

0

0,04

0,08

0,12

0 0,02 0,04 0,06 0,08 0,1 0,12 0,14

o-PO4-P gemessen (mg/l)

o-P

O4-P

ber

ech

net

(mg

/l)

K (Transferfunktion) 1:1 +25% -25%

NO3-N Sommerhalbjahr

0

1

2

3

4

0 1 2 3 4

NO3-N gemessen (mg/l)

NO

3-N

be

rec

hn

et

(mg

/l)

K (Transferfunktion) 1:1 +25% -25%

NO3-N Winterhalbjahr

0

1

2

3

4

0 1 2 3 4

NO3-N gemessen (mg/l)

NO

3-N

ber

ech

net

(mg

/l)

K (Transferfunktion) 1:1 +25% -25%

Chlorid ganzjährig

0

20

40

60

0 10 20 30 40 50 60

Chlorid gemessen (mg/l)

Ch

lori

d b

erec

hn

et

(mg

/l)

K (Transferfunktion) +25% 1:1 -25%

Sulfat-Sommerhalbjahr

0

100

200

300

400

500

600

0 100 200 300 400 500

Sulfat gemessen

Sul

fat b

erec

hnet

Sulfat-Winterhalbjahr

0

100

200

300

400

0 100 200 300 400

Sulfat gemessen

Su

lfa

t b

ere

ch

ne

t

Page 9: Joint project Spree Matter transformation in the Spreewald wetland region.

Sink and source function for sulphateSink and source function for sulphate

Hydraulic calculations for different discharge scenarios:

Summer- half year (SH) NW, MW, MHW, Winter- half year (WH) MW, HW

Area loads: simulated by „ArcGRM Spreewald“ in dependence on time (month) and input discharge

Algorithm for sulphate:

4600000 4620000 4640000 4660000 4680000

5730000

5740000

5750000

5760000

5770000

Sulfat

1000.00

775.00

550.00

325.00

100.00

4SOW4SO4SO CTk

x

Cu

CSpree = 1000 mg/l

CLeibsch = 381 mg/l

Page 10: Joint project Spree Matter transformation in the Spreewald wetland region.

010203040506070

SH_NW SH_MW SH_MHW WH_MW WH_HW

ZuflußszenarienS

ulf

atf

rac

ht

in k

g/s

0

200

400

600

800

1000

Su

lfa

tko

nze

ntr

ati

on

in

mg

/l

Input Output C out Spree C in Spree

SH_NW SH_MW SH_MHW WH_MW WH_HW

Portion on sulphate load reduction by running water system (sink)

% of input

21 18 12 21 10

Load reduction by water consumption and flooding (infiltration, sink)

% of input

15 2 2 0 0

Load addition by ground water (exfiltration, source)

% of output

0 0,1 3 4,5 0

Sulphate reduction

by the

Spreewald wetland region

Page 11: Joint project Spree Matter transformation in the Spreewald wetland region.

• Water quality modelling of the Spreewald wetland region at catchment scale needs model reductions

• Reduced model has to consider the main quality processes

• Special effect of wetlands is the load exchange with adjacent areas (in both directions)

• Governmental monitoring systems are not sufficient for data supply

SummarySummary

Page 12: Joint project Spree Matter transformation in the Spreewald wetland region.

Confluence of Große Fließ and Mittelkanal

Thank you