Jeff Newman:

download Jeff Newman:

If you can't read please download the document

Transcript of Jeff Newman:

  • 1.Integrating Genomics Throughout the Curriculum, with an Emphasis on Prokaryotes Jeffrey D. Newman Lycoming College May 20, 2002

2. The Context for Change

  • Lycoming College Very Traditional Small National Liberal Arts College 1500 students
  • Our Biology Major highly proscriptive
    • 2 semester intro bio series
    • Genetics
    • Microbiology
    • Human Physiology
    • Plant Science
    • Ecology
    • At least 1 upper level course

3. Incorporation of Molecular Biology, Bioinformatics, Genomics

  • Phase I (97-99) Intro and core course labs
    • Intro. Biology DNA sequence analysis, plasmid prep, transformation, restriction digest, gel.
    • Genetics PCR from cheek cell DNA, cloning into pBS
    • Microbiology PCR of unknowns rRNA gene, sequencing.
  • Phase II (99-02) Genomics added to many courses
    • Intro. Biology shotgun sequencing, HGP conclusions.
    • Genetics discussion of microarrays
    • Microbiology Microbial Genome Papers
    • Molecular Biology Microarrays (thanks to GCAT)
  • Project assessment survey Spring 01, GCAT Spring 02
  • Phase III (03 - ?) New course Genome Analysis

4. Genomics in Intro Biology

  • ReplicationPCRDNA sequencingshotgun strategycontig assembly demo.
  • In lab, students identify ORFs in pGLO sequence, translate to protein, BLAST search to ID genes.
  • Model Organisms
  • Human Genome Project
    • Gene number
    • Gene complexity
    • Types of gene products
      • Protein Families!
    • Disease genes

Venter et al., 2001 5. Genomics in Microbiology

  • Students learn DNA sequencing details in lab (for rRNA gene fragment), use of BLAST search, multiple sequence alignment, construction of phylogenetic trees
  • Shotgun sequencing method discussed, contig assembly, identification of ORFs demonstrated.

6. The Genomics Revolution

  • Genome sequences allow the following questions to be asked:
    • How many genes/proteins do we still know nothing about?
    • What are the minimal requirements for a living organism?
    • How has evolution streamlined microbial genomes?
    • How are microbes related to each other?
    • What are the genomic differences between:
      • Archaea and Bacteria?
      • obligate parasites and free-living organisms?
      • Phototrophic and chemotrophic organisms?
      • Organotrophic and lithotrophic organisms?
      • Mesophiles and Thermophiles?
      • Pathogenic and non-pathogenic strains?

7. Applications of Microbial Genome Data

  • Gene chips/microarrays can detect tens of thousands of specific DNA or RNA sequences
    • pathogen identification in tissue sample
    • virulence genes used for prognosis
    • antibiotic resistance genes for determining best treatment
  • Identification of genes required for pathogenesis will allow targeted drug/vaccine development
  • Determination of gene function in simple organisms will help understand function of genes in eukaryotes.
  • What enzymes might have industrial applications?

8. Completed Genomes in GenBank

  • Aeropyrum pernix
  • Aquifex aeolicus
  • Archaeoglobus fulgidus
  • Bacillus subtilis
  • Borrelia burgdorferi
  • Campylobacter jejuni
  • Chlamydia pneumoniae CWL029
  • Chlamydia pneumoniae AR39
  • Chlamydia muridarum
  • Chlamydia trachomatis D/UW-3/CX
  • Deinococcus radiodurans
  • Escherichia coli
  • Haemophilus influenzae
  • Helicobacter pylori26695
  • Helicobacter pyloriJ99
  • Methanobacterium thermoautotrophicum
  • Methanococcus jannaschii
  • Mycobacterium tuberculosis
  • Mycoplasma genitalium
  • Mycoplasma pneumoniae
  • Neisseria meningitidis MC58
  • Pyrococcus abyssi
  • Pyrococcus horikoshii
  • Rickettsia prowazekii
  • Synechocystis PCC6803
  • Thermotoga maritima
  • Treponema pallidum
  • Ureaplasma urealyticum

9. Annotation, sequencing in progress

  • Bordetella pertussis
  • Clostridium acetobutylicum
  • Clostridium tetani
  • Lactococcus lactis
  • Mycobacterium tuberculosis CSU#93
  • Neisseria gonorrhoeae
  • Neisseria meningitidis Z2491
  • Pasteurella multocida
  • Pyrobaculum aerophilum
  • Pyrococcus furiosus
  • Rhodobacter capsulatus
  • Sulfolobus tokodaii
  • Streptococcus pyogenes
  • Vibrio cholerae
  • Xylella fastidiosa
  • Actinobacillus actinomycetemcomitans
  • Aquifex aeolicus strain VF5
  • Bacillus anthracis
  • Bacillus halodurans C-125
  • Bacillus stearothermophilus C-125
  • Bartonella henselae
  • Bordetella bronchiseptica
  • Bordetella parapertussis
  • Buchnera aphidicola
  • Burkholderia pseudomallei
  • Caulobacter crescentus
  • Chlorobium tepidum
  • Clostridium difficile
  • Clostridium sp. BC1
  • Corynebacterium Glutamicum

10. Sequencing in progress

  • Corynebacterium diphtheriae
  • Dehalococcoides ethenogenes
  • Desulfovibrio vulgaris
  • Ehrlichia species HGE agent
  • Enterococcus faecalis V583
  • Francisella tularensis
  • Geobacter sulfurreducens
  • Halobacterium salinarium
  • Halobacterium sp.
  • Haemophilus ducreyi
  • Klebsiella pneumoniae
  • Lactobacillus acidophilus
  • Legionella pneumophila
  • Listeria monocytogenes
  • Listeria innocua
  • Methanococcus maripaludis
  • Methanosarcina mazei
  • Methylobacterium extorquens
  • Mycobacterium avium
  • Mycobacterium bovis (spoligotype 9)
  • Mycobacterium bovis BCG
  • Mycobacterium leprae
  • Mycoplasma capricolum
  • Mycoplasma mycoides subsp. mycoides SC
  • Mycoplasma pulmonis
  • Nitrosomonas europaea
  • Nostoc punctiforme
  • Photorhabdus luminescens
  • Porphyromonas gingivalis
  • Prochlorococcus marinus

11. Sequencing in progress

  • Pseudomonas aeruginosa
  • Pseudomonas putida
  • Ralstonia solanacearum
  • Rickettsia conorii
  • Rhodobacter sphaeroides
  • Rhodopseudomonas palustris
  • Salmonella typhi
  • Salmonella typhimurium
  • Salmonella paratyphi A
  • Shewanella putrefaciens
  • Sinorhizobium meliloti
  • Shigella flexneri 2a
  • Staphylococcus aureus NCTC 8325
  • Staphylococcus aureus COL
  • Streptococcus mutans
  • Streptomyces coelicolor
  • Streptococcus pneumoniae
  • Sulfolobus solfataricus
  • Thermoplasma acidophilum
  • Thermoplasma volcanium GSS1
  • Thermus thermophilus
  • Thiobacillus ferrooxidans
  • Treponema denticola
  • Vibrio cholerae
  • Xanthomonas citri
  • Yersinia pestis

12. Haemophilus influenzaeThe first genome

  • Proof of principle
  • 1.8 Mbp chromosome, encodes 1703 proteins
  • Metabolic capability deduced from genes, not biochemistry

13. 14. Mycoplasma genitaliumthe smallest genome

  • Obligate parasite obtains nutrients from host, lacking many metabolic pathways
  • 580 kbp chromosome (many bacteria have larger plasmids)
  • Only 470 protein-coding genes

15. Mycoplasma mutated265-350 genes are essential 16. Minimal GenomeEthical issues

  • Microbial engineering - design of custom bacteria for specific tasks
    • will they spread?
    • Biological Weapons?
    • Are we playing God?, if so
      • is it wrong?
      • where do we draw the line?
  • Answers question What is life? from a reductionist perspective
    • is life now less special?
    • when does life begin?

17. Methanococcus jannaschii The first Archaeon sequenced

  • 1.66 Mbp chromosome + 2 plasmids
  • 62% of 1738 genes are of unknown function.
  • metabolic genes most similar to bacteria
  • information flow genes most similar to eukaryotes

18. 19. Escherichia coli - 38% of genes are of unknown function

  • 4.64 Mbp chromosome, 4288 protein-coding genes
  • despite amount of study, 38% of genes are of unknown function
  • evidence for acquisition of substantial amount of DNA from viruses and other organisms

20. Genomics in Molecular Biology

  • Yeast Gene Expression Lab (7 weeks)
    • student teams choose conditions, predict genes to be differentially regulated, design PCR primers
    • RT-PCR
    • Northern Blot
    • Microarray (GCAT)
  • Yeast cell cycle microarraypaper discussed in class
  • Students presented microarray papers for final exam

21. Genes Induced in Rich Medium mRNA splicing unknown SLU7 29 DNA replication, RNA processing ribonuclease H RNH70 31 Actin cortical patch assembly, Establishment of Cell polarity actin binding ABP1 33 Cell growth/maintenance, repression of transcription protein phosphatase type I REG1 33 ER to Golgi transport, IntraGolgi transport, Retrograde transport unknown SEC34 46 DNA dependent, DNA replication exit from mitosis protein phosphatase CDC14 47 DNA replication & Chromosome Cycle unknown HTL1 56.5 Function Protein Name Gene Name Ratio 22. Genes Repressed By Treatment With Ergosterol 23. The Assessment Survey

  • Conducted April & May, 2001
  • Concert recordings (legal) offered as incentive!!
  • 40 Surveys completed
  • Survey Sections
    • Assessment of Experience
    • Assessment of Content Knowledge
    • Assessment of Skills
    • Assessment of Attitudes/ Opinions

24. Significant Results

  • Of students who had taken Microbiology (n=27)
    • 56% identified the source of a DNA sequence
    • 52% identified a protein from its amino acid sequence
    • 52% retrieved a the cyclin cDNA sequence from Genbank
  • 0% of students who had not taken Microbiology (n=13) successfully completed the BLAST search, 15% successfully retrieved a sequence from the database
  • Of students who had taken Microbiology but no upper level courses and had not done molecular research (n=11)
    • 45% identified the source of a DNA sequence
    • 45% identified a protein from its amino acid sequence
    • 36% retrieved a the cyclin cDNA sequence from Genbank

25. Significant Results - Genomics

  • Of students with hands-on use of microarrays (Molecular Biology, Medical Genetics n=9) more students knew
    • microarrays are used to analyze many genes at once(89% vs 29%) (P=.02)
    • the shotgun method is used to sequence genomes(56% vs 13%) (P=.02)
    • how to perform a BLAST search (78% vs 26%) (P=.03)
    • How to translate a nucleic acid sequence (56% vs 10%) (P