JB REU Report

9
Metabolomic and thermodynamic analysis of C. thermocellum strains engineered for high ethanol production Jordan Brown 1 , Dave Stevenson 2 , Daniel Amador-Noguez 2 1-Department of Botany-Microbiology (Genetics), Ohio Wesleyan University 2-Department of Bacteriology, University of Wisconsin-Madison Introduction Ethanol is a carbon neutral fuel that can be produced from the microbial conversion of cellulosic biomass [1]. One microorganism that is being engineered to perform this conversion is the aerobic thermophillic bacteria, Clostridium thermocellum. Past efforts that focused solely on metabolomic analyses have been able to increase ethanol production, but only up to a certain amount. Studies show that the overall pathway of this conversion is not as energetically favorable as in other biofuel producing strains. This causes the conversion of cellulose to ethanol to proceed slowly and, in some cases, allows for reactions in the pathway to proceed in reverse. By making the change in free energy (∆G) more negative at key steps in the reaction, the overall reaction will become more spontaneous and proceed at a faster rate. This would increase ethanol production, and drive down the price, allowing ethanol-based biofuels to better compete with fossil fuels at the pump. One key step in the pathway to be optimized is the conversion of phosphoenolpyruvate (PEP) to pyruvate. C. thermocellum utilizes the Emben-Meyerhof-Parnas (EMP) pathway, but unlike other bacteria that use this pathway it does not have the enzyme pyruvate kinase (PYK), which catalyzes the direct conversion of PEP to pyruvate. Instead it utilizes two different pathways. One is the direct conversion of PEP to pyruvate by a different enzyme, pyruvate phosphate dikinase (PPDK). This pathway has been experimentally shown not to be able to be the sole pathway in PEP to pyruvate conversion. The other pathway is the malate shunt, which uses PEP carboxylase (PEPCK), malate dihydrogenase (MDH)

Transcript of JB REU Report

Page 1: JB REU Report

Metabolomic and thermodynamic analysis of C. thermocellum strains engineered for high ethanol productionJordan Brown1, Dave Stevenson2, Daniel Amador-Noguez2

1-Department of Botany-Microbiology (Genetics), Ohio Wesleyan University

2-Department of Bacteriology, University of Wisconsin-Madison

Introduction  

Ethanol is a carbon neutral fuel that can be produced from the microbial conversion of cellulosic biomass [1]. One microorganism that is being engineered to perform this conversion is the aerobic thermophillic bacteria, Clostridium thermocellum. Past efforts that focused solely on metabolomic analyses have been able to increase ethanol production, but only up to a certain amount. Studies show that the overall pathway of this conversion is not as energetically favorable as in other biofuel producing strains. This causes the conversion of cellulose to ethanol to proceed slowly and, in some cases, allows for reactions in the pathway to proceed in reverse. By making the change in free energy (∆G) more negative at key steps in the reaction, the overall reaction will become more spontaneous and proceed at a faster rate. This would increase ethanol production, and drive down the price, allowing ethanol-based biofuels to better compete with fossil fuels at the pump.

One key step in the pathway to be optimized is the conversion of phosphoenolpyruvate (PEP) to pyruvate.  C. thermocellum utilizes the Emben-Meyerhof-Parnas (EMP) pathway, but unlike other bacteria that use this pathway it does not have the enzyme pyruvate kinase (PYK), which catalyzes the direct conversion of PEP to pyruvate. Instead it utilizes two different pathways. One is the direct conversion of PEP to pyruvate by a different enzyme, pyruvate phosphate dikinase (PPDK). This pathway has been experimentally shown not to be able to be the sole pathway in PEP to pyruvate conversion. The other pathway is the malate shunt, which uses PEP carboxylase (PEPCK), malate dihydrogenase (MDH) and malic enzyme (ME)1. This pathway has been shown to be able to be the sole PEP to pyruvate pathway.   4 genetically engineered strains of C. thermocellum with differing pathways for the PEP to pyruvate conversion were created and analyzed from an integrated metabolomic and thermodynamic point of view. Comparison of alternate pathways for this conversion will allow for determining the optimal PEP to pyruvate pathway to be used in C. thermocellum in converting cellulosic biomass to ethanol. 

Page 2: JB REU Report

Figure 1: The catabolic pathway from external cellobiose to ethanol in wild type C. thermocellum2

Methods

Genetically Engineering StrainsWild type C. thermocellum had been sent to (find name of lab). Four C. thermocellum strains (the wild type and 3 mutant strains) were produced with different PEP to pyruvate pathways. 345 is the wild type, with both PPDK and malate shunt activity. Strain 1138 diverts flux to the malate shunt with the deletion of PPDK. Strain 1163 was made by adding in an exogenous PYK from the strain Thermocellum saccharolyticum in order to supplement PPDK and deleting MDH and ME, disrupting the malate shunt. Strain 1251 also features the exogenous PYK but PPDK is also deleted in addition to MDH and ME.

Page 3: JB REU Report

Figure 2: Different PEP to pyruvate pathways in the different strains3

Culturing BacteriaThe four C. thermocellum were cultured anaerobically on MTC medium at 55˚ C. Escherichia coli used as an internal standard was cultured on nutrient-rich LB medium at 37˚ and then transferred to MTC medium overnight at 37˚ in preparation for metabolite extraction.

Measuring Metabolite ConcentrationMetabolite concentration was measured for both the cells and the medium using E. coli as an internal standard. Metabolite extractions were performed at an approximate absorbance of .3 at a wavelength of 640 nm. For each strain, a sample concentrations were prepared in C. thermocellum-to-E. coli ratios of 5:1,1:1, and 1:5 measured via LC/MS.  Measuring ReversibilityThe strains were cultured on media containing C13-labeled acetate in order to measure carbon going in reverse up the pathway, initially assimilating into acetyl-CoA and working its way up. The reversibility of each reaction in the pathway was measured. Calculating ∆GUsing this information, overall ∆G was calculated with the equation: ∆G = ∆G˚’ + RT ln Q = RT ln(J+/J-)3. 

Results

Page 4: JB REU Report

345 1138 1163 125180%82%84%86%88%90%92%94%96%98%

100%

Fructose-1,6-Bisphosphate

0-Labeled 1-Labelled 2-Labelled 3-Labelled4-Labelled 5-Labelled 6-Labelled

345 F6P 1138 F6P 1163 F6P 1251 F6P80%82%84%86%88%90%92%94%96%98%

100%

Fructose-6-Phosphate

0-Labeled 1-Labelled 2-Labelled 3-Labelled 4-Labelled 5-Labelled 6-Labelled

345 1138 1163 12510%

10%20%30%40%50%60%70%80%90%

100%

Glucose-6-Phosphate

0-Labeled 1-Labelled 2-Labelled 3-Labelled 4-Labelled 5-Labelled 6-Labelled

     Figure 3: Carbon isotope ratios in the uppermost metabolites if glycolysis

Page 5: JB REU Report

345 1138 1163 125170%

75%

80%

85%

90%

95%

100%

Aspartate Reversibility

0 1 2 3 4

345 1138 1163 12510%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

3PG Reversibility

0 1 2 3

Figure 4: Carbon isotope ratios showing unexpectedly high amounts of 2-labeled carbon in metabolites in LL1251 (Aspartate used as a substitute for oxaloacetate)

Page 6: JB REU Report

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 240

0.1

0.2

0.3

0.4

0.5

0.6

GDP

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 240

0.1

0.2

0.3

0.4

0.5

0.6

GTP

Figure 5: Relative concentrations of GDP and GTP across the mutant strains

Page 7: JB REU Report

Discussion

Glycolytic ReversibilityContrary to most organisms, in which the reactions of upper glycolysis display essentially 100% forward flux, the reactions in the EMP pathway of C. thermocellum display some extent of reverse flux. This is particularly unique in the uppermost reactions of glycolysis[3].

Secret PathwaysIn LL1251 the only way for labeled carbon to make its way back through the pathway to oxaloacetate is in reverse from pyruvate to PEP and then forward to oxaloacetate. Because the enzyme responsible for PEP-> pyruvate (PYK) in LL1251 is relatively less reversible than those used in other strains (PPDK or PYK and PPDK together), it would be expected for less label to be found in oxaloacetate in LL1251. This however is not the case [4]. This suggests that there are additional pathways present in this mutant involving these metabolites that have yet to be elucidated.

Increase GDP and GTP in LL1163Compared to the other strains, there is a considerably higher relative concentration of GDP and GTP in LL1163. This is particularly of interest because GTP production is linked to conversion of PEP to oxaloacetate.

Further ResearchC. thermocellum contains the gene for oxaloacetate decarboxylase (ODC), an enzyme that catalyzes the conversion of oxaloacetate to pyruvate. However, there is no ODC expression in wild type C.thermocellum. It would be of use to investigate  this, and attempt to express this gene to create a novel and potentially more efficient pathway for the PEP to pyruvate conversion.

References 1) Olsen, Daniel G., Manuel Hörl, Tobias Fuhrer, Jingxuan Cui, Marybeth I. Mahoney, Daniel Amador-Noguez, Liang Tian, Uwe Sauer, and Lee R. Lynd. "Conversion of Phosphorenolpyruvate to Pyruvate in Clostridium Thermocellum." *Currently under Review and Not Yet Published (n.d.): n. pag. Print.2) Chinn, Mari, and Veronica Mbaneme. "Consolidated Bioprocessing for Biofuel Production: Recent Advances." EECT Energy and Emission Control Technologies (2015): 23. Web.3) Park, Junyoung O., Sara A. Rubin, Yi-Fan Xu, Daniel Amador-Noguez, Jing Fan, Tomer Shlomi, and Joshua D. Rabinowitz. "Metabolite Concentrations, Fluxes and Free Energies Imply Efficient Enzyme Usage." Nature Chemical Biology Nat Chem Biol (2016): n. pag. Print.4) Flamholz, A., E. Noor, A. Bar-Even, W. Liebermeister, and R. Milo. "Glycolytic Strategy as a Tradeoff between Energy Yield and Protein Cost." Proceedings of the National Academy of Sciences 110.24 (2013): 10039-0044. Print.