Jardis Jdi........

38
MACAM – MACAM PEMBANGKIT LISTRIK TENAGA ALTERNATIF Dalam kehidupan sehari - hari, kita tentu sudah tak asing lagi dengan yg namanya listrik. memang benar listrik pada masa kini sudah menjadi bagian keseharian kita. Namun apakah kita tahu bagaimana proses "pembuatan" listrik?? secara umum, pembangkit listrik ada 6 macam, yaitu: PLTA (yg paling familiar di telinga), PLTU (juga ga asing), PLTG (lumayan terkenal), PLTGU (kurang familiar), PLTP (panas bumi), dan PLTD (diesel). berikut secara rinci pembangkit listrik tersebut bekerja: PLTA (Pembangkit Listrik Tenaga Air) Air adalah sumber daya alam yang merupakan energi primer potensial untuk Pusat Listrik Tenaga Air(PLTA), dengan jumlah cukup besar di Indonesia. Potensi tenaga air tersebut tersebar di seluruh Indonesia. Dengan pemanfaatan air sebagai energi primer, terjadi penghematan penggunaan bahan bakar minyak. Selain itu, PLTA juga memiliki keuntungan bagi pengembangan pariwisata, perikanan dan pertanian.Pada dasarnya, energi listrik yang dihasilkan dari air, sangat tergantung pada volume aliran dan tingginya air yang dijatuhkan. Sumber air potensial didapat dari hasil pembelokkan arah arus air sungai di daerah pegunungan tinggi oleh sebuah bendungan/waduk yang

description

jaringan distribusi

Transcript of Jardis Jdi........

MACAM MACAM PEMBANGKIT LISTRIKTENAGA ALTERNATIF

Dalam kehidupan sehari - hari, kita tentu sudah tak asing lagi dengan yg namanya listrik. memang benar listrik pada masa kini sudah menjadi bagian keseharian kita. Namun apakah kita tahu bagaimana proses "pembuatan" listrik?? secara umum, pembangkit listrik ada 6 macam, yaitu: PLTA (yg paling familiar di telinga), PLTU (juga ga asing), PLTG (lumayan terkenal), PLTGU (kurang familiar), PLTP (panas bumi), dan PLTD (diesel). berikut secara rinci pembangkit listrik tersebut bekerja:

PLTA(Pembangkit Listrik Tenaga Air)

Air adalah sumber daya alam yang merupakan energi primer potensial untuk Pusat Listrik Tenaga Air(PLTA), dengan jumlah cukup besar di Indonesia. Potensi tenaga air tersebut tersebar di seluruh Indonesia. Dengan pemanfaatan air sebagai energi primer, terjadi penghematan penggunaan bahan bakar minyak. Selain itu, PLTA juga memiliki keuntungan bagi pengembangan pariwisata, perikanan dan pertanian.Pada dasarnya, energi listrik yang dihasilkan dari air, sangat tergantung pada volume aliran dan tingginya air yang dijatuhkan. Sumber air potensial didapat dari hasil pembelokkan arah arus air sungai di daerah pegunungan tinggi oleh sebuah bendungan/waduk yang memotong arah aliran sungai dan mengubah arah arus menuju PLTA. Dari cara membendung air, PLTA terbagi atas 2 jenis, yaitu: PLTA Run-Off River (Memotong Aliran Sungai) PLTA Kolam Tando.Ilustrasi siklus perubahan wujud energi pada PLTA:Kedua PLTA tersebut memiliki kesamaan, yaitu membendung aliran air sungai dan mengubah arahnya ke PLTA. Bedanya, pada PLTA Kolam Tando sebelum aliran air sampai ke PLTA, debit air ditampung dalam suatu kolam yang biasa disebut kolam tando. Sedangkan pada PLTA Run-Off River tidak. Kolam Tando ini berguna menjadi sumber cadangan air, ketika debit air sungai menurun akibat musim kemarau yang panjang.Memang dari segi biaya pembangunan, PLTA Run-Off River akan menelan biaya yang lebih rendah daripada PLTA Kolam Tando karena PLTA Kolam Tando memerlukan waduk yang besar dan daerah genangan yang luas.Tetapi jika terdapat sungai yang mengalir keluar dari sebuah danau, danau ini dapat dipergunakan sebagai kolam tando alami, seperti pada PLTA Asahan di Danau Toba, Sumatra Utara.Air yang terbendung dalam waduk akan dialirkan melalui saluran/terowongan tertutup pipa pesat sampai ke turbin, dengan melalui katup pengaman di Intake dan katup pengatur turbin sebelum turbin. Pada saluran pipa pesat terdapat tabung peredam (surge tank), yang berfungsi sebagai pengaman tekanan yang tiba-tiba naik, saat katup pengatur ditutup.Air mengenai sudu-sudu turbin yang merubah energi potensial air menjadi energi gerak/mekanik yang memutar roda turbin, yang pada gilirannya generator akan merubah energi gerak/mekanik tersebut menjadi energi listrik. Katup pengatur turbin akan mengatur banyaknya air yang akan dialirkan ke sudu-sudu turbin sesuai kebutuhan energi listrik yang akan dibangkitkan pada putaran turbin yang tertentu.Putaran turbin yang terlalu cepat dapat menimbulkan kerusakan pada turbin dan generator, dimana hal ini dapat terjadi pada saat beban listrik tiba-tiba lepas/ hilang. Untuk mengatasi putaran yang berlebihan maka katup pengatur turbin harus segera ditutup. Katup pengatur turbin yang tiba-tiba menutup akan mengakibatkan terjadinya goncangan tekanan arus balik air ke pipa pesat, dimana goncangan ini diredam dalam tabung peredam.

PLTU(Pembangkit Listrik Tenaga Uap)

Uap Uap yang terjadi dari hasil pemanasan boiler/ketel uap pada Pusat Listrik Tenaga Uap (PLTU) digunakan untuk memutar turbin yang kemudian oleh generator diubah menjadi energi listrik. Energi primer yang digunakan oleh PLTU adalah bahan bakar yang dapat berwujud padat, cair maupun gas.Batubara adalah wujud padat bahan bakar dan minyak merupakan wujud cairnya. Terkadang dalam satu PLTU dapat digunakan beberapa macam bahan bakar.PLTU menggunakan siklus uap dan air dalam pembangkitannya. Mula-mula air dipompakan ke dalam pipa air yang mengelilingi ruang bakar ketel. Lalu bahan bakar dan udara yang sudah tercampur disemprotkan ke dalam ruang bakar dan dinyalakan, sehingga terjadi pembakaran yang mengubah bahan bakar menjadi energi panas/ kalor. Udara untuk pembakaran yang dihasilkan kipas tekan/force draf fan akan dipanasi dahulu oleh pemanas udara/heater. Setelah itu, energi panas akan dialirkan ke dalam air di pipa melalui proses radiasi, konduksi dan konveksi, sehingga air berubah menjadi uap bertekanan tinggi. Drum ketel akan berisi air di bagian bawah dan uap di bagian atasnya.Gas sisa setelah dialirkan ke air masih memiliki cukup banyak energi panas, tidak dibuang begitu saja melalui cerobong, tetapi akan digunakan kembali untuk memanasi Pemanas Lanjut (Super Heater), Pemanas Ulang (Reheater), Economizer dan Pemanas Udara.Dari drum ketel, uap akan dialirkan menuju turbin uap. Pada PLTU besar (di atas 150 MW), turbin yang digunakan ada 3 jenis yaitu turbin tekanan tinggi, menengah dan rendah. Sebelum ke turbin uap tekanan tinggi, uap dari ketel akan dialirkan menuju Pemanas Lanjut, hingga uap akan mengalami kenaikan suhu dan menjadi kering.Setelah keluar dari turbin tekanan tinggi, uap akan masuk ke dalam pemanas ulang yang akan menaikkan suhu uap sekali lagi dengan proses yang sama seperti di Pemanas Lanjut. Selanjutnya uap baru akan dialirkan ke dalam turbin tekanan menengah dan langsung dialirkan kembali ke turbin tekanan rendah. Energi gerak yang dihasilkan turbin tekanan tinggi, menengah dan rendah inilah yang akan diubah wujudnya dalam generator menjadi energi listrik.Dari turbin tekanan rendah uap dialirkan ke kondensor untuk diembunkan menjadi air kembali. Pada kondensor diperlukan air pendingin dalam jumlah besar. Inilah yang menyebabkan banyak PLTU dibangun di daerah pantai atau sungai. Jika jumlah air pendingin tidak mencukupi, maka dapat digunakan cooling tower yang mempunyai siklus tertutup. Air dari kondensor dipompa ke tangki air/deareator untuk mendapat tambahan air akibat kebocoran dan juga diolah agar memenuhi mutu air ketel berkandungan NaCl, Cl,O2 dan derajat keasaman (pH). Setelah itu, air akan melalui Economizer untuk kembali dipanaskan dari energi gas sisa dan dipompakan kembali ke dalam ketel.

PLTG(Pembangkit Listrik Tenaga Gas)

Gas Gas yang dihasilkan dalam ruang bakar pada pusat listrik tenaga gas (PLTG) akan menggerakkan turbin dan kemudian generator, yang akan mengubahnya menjadi energi listrik. Sama halnya dengan PLTU, bahan bakar PLTG bisa berwujud cair (BBM) maupun gas (gas alam). Penggunaan bahan bakar menentukan tingkat efisiensi pembakaran dan prosesnya.Prinsip kerja PLTG adalah sebagai berikut, mulamula udara dimasukkan dalam kompresor dengan melalui air filter/penyaring udara agar partikel debu tidak ikut masuk dalam kompresor tersebut. Pada kompresor tekanan udara dinaikkan lalu dialirkan ke ruang bakar untuk dibakar bersama bahan bakar. Di sini, penggunaan bahan bakar menentukan apakah bisa langsung dibakar dengan udara atau tidak.Jika menggunakan BBG, gas bisa langsung dicampur dengan udara untuk dibakar. Tapi jika menggunakan BBM, harus dilakukan proses pengabutan dahulu pada burner baru dicampur udara dan dibakar. Pembakaran bahan bakar dan udara ini akan menghasilkan gas bersuhu dan bertekanan tinggi yang berenergi (enthalpy). Gas ini lalu disemprotkan ke turbin, hingga enthalpy gas diubah oleh turbin menjadi energi gerak yang memutar generator untuk menghasilkan listrik. Setelah melalui turbin sisa gas panas tersebut dibuang melalui cerobong/stack. Karena gas yang disemprotkan ke turbin bersuhu tinggi, maka pada saat yang sama dilakukan pendinginan turbin dengan udara pendingin dari lubang pada turbin. Untuk mencegah korosi turbin akibat gas bersuhu tinggi ini, maka bahan bakar yang digunakan tidak boleh mengandung logam Potasium, Vanadium dan Sodium 1 part per mill.

PLTGU(Pembangkit Listrik Tenaga Gas dan Uap)

Gas dan Uap Pusat Listrik Tenaga Gas dan Uap (PLTGU) merupakan kombinasi antara PLTG dan PLTU. Gas buang PLTG bersuhu tinggi akan dimanfaatkan kembali sebagai pemanas uap di ketel penghasil uap bertekanan tinggi.

Ketel uap PLTU yang memanfaatkan gas buang PLTG dikenal dengan sebutan Heat Recovery Steam Generator (HRSG). Umumnya 1 blok PLTGU terdiri dari 3 unit PLTG, 3 unit HRSG dan 1 unit PLTU. Daya listrik yang dihasilkan unit PLTU sebesar 50% dari daya unit PLTG, karena daya turbin uap unit PLTU tergantung dari banyaknya gas buang unit PLTG. Dalam pengoperasian PLTGU, daya PLTG yang diatur dan daya PLTU akan mengikuti saja. PLTGU merupakan pembangkit yang paling efisien dalam penggunaan bahan bakarnya.Secara umum HRSG tersebut adalah pengganti boiler pada PLTU, yang bekerja untuk menghasilkan uap. Setelah uap dalam ketel cukup banyak, uap tersebut akan dialirkan ke turbin uap dan memutar generator untuk menghasilkan daya listrik. Dan efisiensi PLTGU lebih baik dari pusat listrik termal lainnya mengingat listrik yang dihasilkan merupakan penjumlahan yang dihasilkan PLTG ditambah PLTU tanpa bahan bakar.

PLTP(Pembangkit Listrik Tenaga Panas Bumi)Panas Bumi Panas bumi merupakan sumber tenaga listrik untuk pembangkit Pusat Listrik Tenaga Panas (PLTP). Sesungguhnya, prinsip kerja PLTP sama saja dengan PLTU. Hanya saja uap yang digunakan adalah uap panas bumi yang berasal langsung dari perut bumi.Karena itu, PLTP biasanya dibangun di daerah pegunungan dekat gunung berapi. Biaya operasional PLTP juga lebih murah daripada PLTU, karena tidak perlu membeli bahan bakar, namun memerlukan biaya investasi yang besar terutama untuk biaya eksplorasi dan pengeboran perut bumi. Ilustrasi siklus perubahan energi pada PLTP : Uap panas bumi didapatkan dari suatu kantong uap di perut bumi. Tepatnya di atas lapisan batuan yang keras di atas magma dan mendapat air dari lapisan humus di bawah hutan penahan air hujan. Pengeboran dilakukan di atas permukaan bumi menuju kantong uap tersebut, hingga uap dalam kantong akan menyembur keluar. Semburan uap dialirkan ke turbin uap penggerak generator. Setelah menggerakkan turbin, uap akan diembunkan dalam kondensor menjadi air dan disuntikkan kembali ke dalam perut bumi menuju kantong uap. Jumlah kandungan uap dalam kantong uap ini terbatas, karenanya daya PLTP yang sudah maupun yang akan dibangun harus disesuaikan dengan perkiraan jumlah kandungan tersebut. Melihat siklus dari PLTP ini maka PLTP termasuk pada pusat pembangkit yang menggunakan energi terbarukan.

PLTD(Pembangkit Listrik Tenaga Diesel)Diesel Pusat Listrik Tenaga Diesel (PLTD) berbahan bakar BBM (solar), biasanya digunakan untuk memenuhi kebutuhan listrik dalam jumlah beban kecil, terutama untuk daerah baru yang terpencil atau untuk listrik pedesaan. Di dalam perkembangannya PLTD dapat juga menggunakan bahan bakar gas (BBG). Mesin diesel ini menggunakan ruang bakar dimana ledakan pada ruang bakar tersebut menggerak torak/piston yang kemudian pada poros engkol dirubah menjadi energi putar. Energi putar ini digunakan untuk memutar generator yang merubahnya menjadi energi listrik. Untuk meningkatkan efisiensi udara yang dicampur dengan bahan bakar dinaikkan tekanan dan temperaturnya dahulu pada turbo charger.Turbo charger ini digerakkan oleh gas buang hasil pembakaran dari ruang bakar. Mesin diesel terdiri dari 2 macam mesin, yaitu mesin diesel 2 langkah dan 4 langkah. Perbedaannya terletak pada langkah penghasil tenaga dalam putaran toraknya. Pada mesin 2 langkah, tenaga akan dihasilkan pada tiap 2 langkah atau 1 kali putaran. Sedang pada mesin 4 langkah, tenaga akan dihasilkan pada tiap 4 langkah atau 2 putaran. Seharusnya mesin 2 langkah dapat menghasilkan daya 2 kali lebih besar dari mesin 4 langkah, namun karena proses pembilasan ruang bakar silindernya tidak sesempurna mesin 4 langkah, tenaga yang dihasilkan hanya sampai 1,8 kalinya saja. Ilustrasi siklus perubahan energi pada PLTD : Selain kedua jenis mesin di atas, mesin diesel yang digunakan di PLTD ada yang berputaran tinggi (high speed) dengan bentuk yang lebih kompak atau berputaran rendah (low speed) dengan bentuk yang lebih besar.PLTAPembangkit Listrik Tenaga AnginTenaga angin dapat dikatakan sebagai sumber energi baru. Pengertian baru disini bukanlah menyatakan bahwa energi angin baru saja dikenal. Baru disini menjelaskan pemanfaatannya. Di banyak negara ternasuk di Indonesia, pemanfaatan angin sebagai energi (EA) belum begitu luas, malah mungkin belum nampak ada gejala ke arah itu.Tetapi seiring dengan semakin menipisnya cadangan bahan bakar fosil, maka pemanfaatan energi angin ini mulai mendapat perhatian sebagai sumber energi terabarukan pengganti bahan bakar fosil. Energi angin ini merupakan energi yang sangat potensial, karena: Energi angin dapat dimanfaatkan sebagai penggaanti bahan bakar fosil. Ketersediaannya di alam cukup banyak. Dapat diperoleh secara gratis di alam. Dalam pemanfaatannya secara langsung, tidak menimbulkan pencemaran udara. Atau dengan kata lain pemanfaatannya ramah lingkungan.Pemanfaatan angin untuk energi terbagi atas dua bentuk tenaga utama, yaitu: Sepenuhnya mekanik, seperti pompa air atau penggerak lainnya. Listrik Upaya pemanfaatan energi angin di Indonesia tidak berjalan giat walaupun tidak juga dapat dikatakan terbengkalai. Hal ini disebabkan oleh beberapa hal, antara lain : Masih tersedianya pilihan lain yang lebih efektif dalam biaya, seperti tenaga air dan biomassa. Pengembangannya (berupa riset) juga belum terlalu digiatkan.walaupun di negara-negara lain seperti Jerman dan Irlandia sudah melakukan pengembangan terhadap pembangkit listrik tenaga angin. Belum ditemukan yang benar-benar dapat dioperasikan dengan keandalan yang cukup dan biaya produksi yang bersaing, karena pemanfaatan energi angin ini sebagai pembangkit listrik juga memerlukan biaya investasi yang cukup besar.Untuk Indonesia, kecuali hambatan yang disebutkan dalam butir 3 sebenarnya masih mempunyai peluang untuk dikembangkan antara lain untuk daerah terpencil, atau untuk daerah pertanian dan petrnakan terpencil. Di tempat seperti iniada kemungkinan diesel (yang paling sering digunakan ) kalah bersaing dengan tenaga angin (TA). Bagi PLN sendiri rasanya pilihan jenis ini untuk dikonversi menjadi listrik madih memerlukan waktu yang panjang. Walupun demikian, penelitian tetap perlu dalam rangka pengembangan sumber energi alternative pengganti bahan bakar fosil yang ketersediaannya di alam semakin sedikit.PLTPPembangkit Listrik Tenaga Pohon

Pohon bisa menghasilkan voltase hingga 200 milivolt ketika sebuah elektroda dipasang. Beberapa peneliti telah menemukan bahwa terdapat listrik yang cukup di dalam pohon untuk memasok daya bagi sirkuit elektronik. Penemuan ini bisa menjadi jalan agar komputer di rumah bisa dipasok energinya dari pohon yang ditanam di kebun belakang rumah. "Sejauh pengetahuan kami, ini merupakan pertamakalinya peneliti menemukan bahwa seseorang bisa mengaktifkan sesuatu dengan memasang elektroda ke sebuah pohon," kata Babak Parviz, peneliti dari University of Washington, seperti VIVA news kutip dari Mother Nature Network, 14 September 2009.

Parviz, dan rekannya Brian Otiz telah mengembangkan alat yang akan memungkinkan sebuah sirkuit dicolokkan ke pohon. "Pengembangan ini nantinya bisa mengatasi masalah bagaimana melakukan charging terhadap gadget portabel seperti iPod dan ponsel," kata Parviz.

Penelitian ini didasari oleh temuan sebelumnya, ketika tahun lalu sejumlah peneliti mendapati bahwa pohon bisa menghasilkan voltase hingga 200 milivolt ketika sebuah elektroda dipasang di pohon dan elektroda lainnya ditanam di tanah. Teknologi tersebut didesain untuk berfungsi sebagai sensor hutan yang dayanya dipasok dengan cara tersebut. Tetapi sampai saat ini belum ada yang mencoba mengaplikasikan temuan ini untuk mengembangkan pembangkit listrik tenaga pohon. Tahun lalu, Carlton Himes, Mahasiswa University of Washington menghabiskan musim panasnya berkeliling di hutan sekitar kampus dan menancapkan paku di pohon maple lalu menghubungkannya pada voltmeter. Ia mendapati bahwa pohon-pohon tersebut memiliki voltase yang stabil sampai beberapa ratus milivolt.

Berhubung voltase pohon sangat rendah, ia kemudian membuat konverter khusus untuk mengambil voltase input sampai berukuran minimal 20 milivolt agar bisa disimapan untuk menghasilkan output yang lebih besar. Perangkat itu kemudian menghasilkan voltase output sampai 1,1 volt, yang cukup untuk menjalankan sensor berdaya rendah.

Meski begitu, teknologi untuk memanfaatkan pohon pinus sebagai pemasok daya untuk PC masih jauh. Dan sebagai informasi saja, tubuh manusia memiliki daya yang cukup besar untuk menyalakan komputer. Sayangnya belum ditemukan cara untuk menyambungkan manusia dengan PC lewat kabel tanpa menyakiti manusia tersebut.

PLTSPembangkit Listrik Tenaga SuryaPembangkit Listrik Tenaga Surya adalah pembangkit yang memanfaatkan sinar matahari sebagai sumber penghasil listrik. Alat utama untuk menangkap, perubah dan penghasil listrik adalah Photovoltaic yang disebut secara umum Modul atau Panel SolarCell. Dengan alat tersebut sinar matahari dirubah menjadi listrik melalui proses aliran-aliran elektron negatif dan positif didalam cell modul tersebut karena perbedaan electron.Hasil dari aliran elektron-elektron akan menjadi listrik DC yang dapat langsung dimanfatkan untuk mengisi battery / aki sesuai tegangan dan ampere yang diperlukan. Rata-rata produk modul solar cell yang ada dipasaran menghasilkan tegangan 12 s/d 18 VDC dan ampere antaram 0.5 s/d 7 Ampere. Modul juga memiliki kapasitas beraneka ragam mulai kapsitas 10 Watt Peak s/d 200 Watt Peak juga memiliki type cell monocrystal dan polycrystal.Komponen inti dari sistem PLTS ini meliputi peralatan : Modul Solar Cell, Regulator / controller, Battery / Aki, Inverter DC to AC, Beban / Load.Perusahaan kami telah mengembangkan beberapa produk PLTS yang digunakan untuk rumah tangga dengan skala kecil, contoh paket produk kami adalah Penerangan Listrik Rumah (PLR).Dengan paket produk PLR tersebut dapat dimanfaatkan untuk para penduduk di Indonesia untuk solusi akan kebutuhan listrik yang di daerahnya sulit dijangkau listrik PLN atau di daerah pelosok dan produk paket PLR ini dari waktu ke waktu juga dibutuhkan beberapa konsumen perkotaan dan perusahaan dengan maksud mengkombinasikan dengan listrik PLN.Rata-rata produk paket PLR ini digunakan untuk lampu-lampu penerangan di rumah, kantor, tempat ibadah, tempat umum dengan skala kecil dan menengah dan hasilnya dari penggunaan tersebut kalau dihitung secara besar diseluruh Indonesia, maka defisit akan listrik PLN akan teratasi karena PLR turut membantu dalam program penghematan listrik. Bayangkan bila tiap rumah, kantor, tempat ibadah, tempat umum di seluruh pulau jawa beberapa peralatan lampu penerangannya diganti / dikombinasi dengan sistem PLTS, maka penghematan dalam listrik PLN akan terwujud secara nyata. Kalo ragu coba dihitung saja, misal 3 lampu 8 Watt (PLS/Cool day light, lumen cahanya sama dengan lampu pijar 40 Watt)untuk tiap rumah menggunakan PLTS maka, (8 Watt x 3 buah) x 20juta/malam (Perkiraan Pemakai PLN) = 480.000.000 Watt/malam. Bayangkan berapa besar penghematan dalam 1 malam saja. Kami bukan mempromosikan produk kami agar bisa terjual, cuma kami membantu kelangkaan / kesulitan akan energi khususnya listrik yang semakin lama sulit didapat.Sistem Pembangkit Listrik Tenaga Surya (PLTS) akan lebih diminati karena dapat digunakan untuk keperluan apa saja dan di mana saja : bangunan besar, pabrik, perumahan,dan lainnya. Selain persediaannya tanpa batas, tenaga surya nyaris tanpa dampak burukterhadap lingkungan dibandingkan bahan bakar lainnya.Di negara-negara industri maju seperti Jepang, Amerika Serikat, dan beberapa negara di Eropa dengan bantuan subsidi dari pemerintah telah diluncurkan program-program untuk memasyarakatkan listrik tenaga surya ini. Tidak itu saja di negara-negara sedang berkembang seperti India, Mongol promosi pemakaian sumber energi yang dapat diperbaharui ini terus dilakukan.Untuk lebih mengetahui apa itu pembangkit listrik tenaga surya atau kami singkat dengan PLTS maka dalam tulisan ini akan dijelaskan secara singkat komponen-komponen yang membentuk PLTS, sistim kelistrikan tenaga surya dan trend teknologi yang ada. Kelebihan Pembangkit Listrik Tenaga Surya: 1) Energi yang terbarukan atau tidak pernah habis2) Bersih,ramahlingkungan3) Umur panel sel surya panjangatauinvestasijangkapanjang4) Praktis, tidak memerlukan perawatan, sangat cocok untuk daerah tropis seperti Indonesia Perencanaan Pembangkit Listrik Tenaga Surya Karena pembangkit listrik tenaga surya sangat tergantung kepada sinar matahari, maka perencanaan yang baik sangat diperlukan. Perencanaan terdiri dari: Jumlah daya yang dibutuhkan dalam pemakaian sehari-hari (Watt). Berapa besar arus yang dihasilkan solar cells panel (dalam Ampere hour), dalam hal ini memperhitungkan berapa jumlah panel surya yang harus dipasang. Berapa unit baterai yang diperlukan untuk kapasitas yang diinginkan dan pertimbangan penggunaan tanpa sinar matahari. (Ampere hour).Dalam nilai ke-ekonomian, pembangkit listrik tenaga surya memiliki nilai yang lebih tinggi, dimana listrik dari PT. PLN tidak dimungkinkan, ataupun instalasi generator listrik bensin ataupun solar. Misalnya daerah terpencil: pertambangan, perkebunan, perikanan, desa terpencil, dll. Dari segi jangka panjang, nilai ke-ekonomian juga tinggi, karena dengan perencanaan yang baik, pembangkit listrik tenaga surya dengan panel surya memiliki daya tahan 20 - 25 tahun. Baterai dan beberapa komponen lainnya dengan daya tahan 3 - 5 tahun. Komponen Pembangkit Listrik Tenaga SuryaUntuk instalasi listrik tenaga surya sebagai pembangkit listrik, diperlukan komponen sebagai berikut: 1. Solar panel2. Charge controller 3. Inverter 4. Battery

Solar panel mengkonversikan tenaga matahari menjadi listrik. Sel silikon (disebut juga solar cells) yang disinari matahari/ surya, membuat photon yang menghasilkan arus listrik. Sebuah solar cells menghasilkan kurang lebih tegangan 0.5 Volt. Jadi sebuah panel surya 12 Volt terdiri dari kurang lebih 36 sel (untuk menghasilkan17 Volt tegangan maksimun). Jenis solar panel dapat di baca disini.Charge controller, digunakan untuk mengatur pengaturan pengisian baterai. Tegangan maksimun yang dihasilkan solar cells panel pada hari yang terik akan menghasilkan tegangan tinggi yang dapat merusak baterai. Inverter, adalah perangkat elektrik yang mengkonversikan tegangan searah (DC - direct current) menjadi tegangan bolak balik (AC - alternating current). Baterai, adalah perangkat kimia untuk menyimpan tenaga listrik dari tenaga surya. Tanpa baterai, energi surya hanya dapat digunakan pada saat ada sinar matahari. Diagram Pembangkit Listrik Tenaga SuryaDiagram instalasi pembangkit listrik tenaga surya ini terdiri dari solar panel, charge controller, inverter, baterai.

Dari diagram pembangkit listrik tenaga surya diatas: beberapa solar panel di paralel untuk menghasilkan arus yang lebih besar. Combiner pada gambar diatas menghubungkan kaki positif panel surya satu dengan panel surya lainnya. Kaki/ kutub negatif panel satu dan lainnya juga dihubungkan. Ujung kaki positif panel surya dihubungkan ke kaki positif charge controller, dan kaki negatif panel surya dihubungkan ke kaki negatif charge controller. Tegangan panel surya yang dihasilkan akan digunakan oleh charge controller untuk mengisi baterai. Untuk menghidupkan beban perangkat AC (alternating current) seperti Televisi, Radio, komputer, dll, arus baterai disupply oleh inverter. Instalasi pembangkit listrik dengan tenaga surya membutuhkan perencanaan mengenai kebutuhan daya: Jumlah pemakaian Jumlah solar panel Jumlah baterai Perhitungan Pembangkit Listrik Tenaga SuryaPerhitungan keperluan daya (perhitungan daya listrik perangkat dapat dilihat pada label di belakang perangkat, ataupun dibaca dari manual): Penerangan rumah: 10 lampu CFL @ 15 Watt x 4 jam sehari = 600 Watt hour. Televisi 21": @ 100 Watt x 5 jam sehari = 500 Watt hour Kulkas 360 liter : @ 135 Watt x 24 jam x 1/3 (karena compressor kulkas tidak selalu hidup, umumnya mereka bekerja lebih sering apabila kulkas lebih sering dibuka pintu) = 1080 Watt hour Komputer : @ 150 Watt x 6 jam = 900 Watt hour Perangkat lainnya = 400 Watt hour Total kebutuhan daya = 3480 Watt hourJumlah solar cells panel yang dibutuhkan, satu panel kita hitung 100 Watt (perhitungan adalah 5 jam maksimun tenaga surya): Kebutuhan solar cells panel : (3480 / 100 x 5) = 7 panel surya.Jumlah kebutuhan batere 12 Volt dengan masing-masing 100 Ah: Kebutuhan batere minimun (batere hanya digunakan 50% untuk pemenuhan kebutuhan listrik), dengan demikian kebutuhan daya kita kalikan 2 x lipat : 3480 x 2 = 6960 Watt hour = 6960 / 12 Volt / 100 Amp = 6 batere 100 Ah. Kebutuhan batere (dengan pertimbangan dapat melayani kebutuhan 3 hari tanpa sinar matahari) : 3480 x 3 x 2 = 20880 Watt hour =20880 / 12 Volt / 100 Amp = 17 batere 100 Ah. Instalasi pembangkit listrik tenaga surya dapat dilihat pada gambar-gambar di National Geographic Indonesia.

KONSEP KERJA SISTEM PLTSPembangkit listrik tenaga surya itu konsepnya sederhana. Yaitu mengubah cahaya matahari menjadi energi listrik. Cahaya matahari merupakan salah satu bentuk energi dari sumber daya alam. Sumber daya alam matahari ini sudah banyak digunakan untuk memasok daya listrik di satelit komunikasi melalui sel surya. Sel surya ini dapat menghasilkan energilistrik dalam jumlah yang tidak terbatas langsung diambil dari matahari, tanpa ada bagianyang berputar dan tidak memerlukan bahan bakar. Sehingga sistem sel surya sering dikatakan bersih dan ramah lingkungan. Badingkan dengan sebuah generator listrik, ada bagian yang berputar dan memerlukanbahan bakar untuk dapat menghasilkan listrik. Suaranya bising. Selain itu gas buang yangdihasilkan dapat menimbulkan efek gas rumah kaca (green house gas) yang pengaruhnyadapat merusak ekosistem planet bumi kita. Sistem sel surya yang digunakan di permukaan bumi terdiri dari panel sel surya, rangkaian kontroler pengisian (charge controller), dan aki (batere) 12 volt yang maintenance free. Panel sel surya merupakan modul yang terdiri beberapa sel surya yang digabung dalam hubungkan seri dan paralel tergantung ukuran dan kapasitas yang diperlukan. Yang sering digunakan adalah modul sel surya 20 watt atau 30 watt. Modul sel surya itu menghasilkan energi listrik yang proporsional dengan luas permukaan panel yang terkena sinar matahari. Rangkaian kontroler pengisian aki dalam sistem sel surya itu merupakan rangkaian elektronik yang mengatur proses pengisian akinya. Kontroler ini dapat mengatur tegangan aki dalam selang tegangan 12 volt plus minus 10 persen. Bila tegangan turun sampai 10,8 volt, maka kontroler akan mengisi aki dengan panel surya sebagai sumber dayanya. Tentu saja proses pengisian itu akan terjadi bila berlangsung pada saat ada cahaya matahari. Jika penurunan tegangan itu terjadi pada malam hari, maka kontroler akan memutus pemasokanenergi listrik. Setelah proses pengisian itu berlangsung selama beberapa jam, tegangan aki itu akan naik. Bila tegangan aki itu mencapai 13,2 volt, maka kontroler akan menghentikan proses pengisian aki itu. Rangkaian kontroler pengisian itu sebenarnya mudah untuk dirakit sendiri. Tapi, biasanya rangkaian kontroler ini sudah tersedia dalam keadaan jadi di pasaran. Memang harga kontroler itu cukup mahal kalau dibeli sebagai unit tersendiri. Kebanyakan sistem sel suryaitu hanya dijual dalam bentuk paket lengkap yang siap pakai. Jadi, sistem sel surya dalam bentuk paket lengkap itu jelas lebih murah dibandingkan dengan bila merakit sendiri.

Biasanya panel surya itu letakkan dengan posisi statis menghadap matahari. Padahal bumi itu bergerak mengelilingi matahari. Orbit yang ditempuh bumi berbentuk elip dengan matahari berada di salah satu titik fokusnya. Karena matahari bergerak membentuk sudut selalu berubah, maka dengan posisi panel surya itu yang statis itu tidak akan diperoleh energi listrik yang optimal. Agar dapat terserap secara maksimum, maka sinar matahari itu harus diusahakan selalu jatuh tegak lurus pada permukaan panel surya.Jadi, untuk mendapatkan energi listrik yang optimal, sistem sel surya itu masih harus dilengkapi pula dengan rangkaian kontroler optional untuk mengatur arah permukaan panel surya agar selalu menghadap matahari sedemikian rupa sehingga sinar mahatari jatuh hampir tegak lurus pada panel suryanya. Kontroler seperti ini dapat dibangun, misalnya, dengan menggunakan mikrokontroler 8031. Kontroler ini tidak sederhana, karena terdiri dari bagian perangkat keras dan bagian perangkat lunak. Biasanya, paket sistem sel surya yang lengkap belum termasuk kontroler untuk menggerakkan panel surya secara otomatis supaya sinar matahari jatuh tegak lurus. Karena itu, kontroler macam ini cukup mahal.PLTBPembangkit Listrik Tenaga BiomassaBioenergi adalah istilah umum bagi energi yang dihasilkan melalui material organik, seperti kayu, tanaman pertanian, sekam, sampah, atau kotoran hewan. Berdasarkan sumbernya, bioenergi dapat dibagi menjadi dua bagian besar yaitu yang dari hasil pertanian dan budidaya, dan yang dari limbah buangan, seperti buangan tanaman sisa panen, kotoran hewan, sampah kota, limbah pabrik, dsb.Banyak yang menyangsikan kalau bioenergi adalah salah satu solusi energi terbarukan, terutama untuk bioenergi yang bersumber dari hasil pertanian dan budidaya. Hal ini disebabkan karena penggunaan lahan yang sangat besar dan waktu produksi yang terlalu lama. Terlebih lagi ternyata selisih antara energi keluaran dan energi fosil yang terpakai selama proses tidak terlalu signifikan. Selain itu walaupun ditujukan untuk mengurangi polusi CO2, produksi bioenergi bukan berarti tanpa CO2, walaupun memang jumlahnya jauh lebih sedikit daripada CO2 yang dihasilkan dari produksi energi fosil. Sehingga tantangan kedepan agar bioenergi dapat bersaing dengan sumber energi lainnya adalah bagaimana meningkatkan efisiensi dari teknologi prosesnya dan bagaimana mempercepat produksi sumber energinyaPengolahan biomassa menjadi bioenergi dapat dilakukan dalam tiga cara :(i) Pembakaran biomassa padat(ii) Produksi bahan bakar gas dari biomassa(iii) Produksi bahan bakar cair dari biomassa. Cara yang pertama adalah dengan membakar langsung biomassa dan diambil energi panasnya. Energi panas ini dapat digunakan untuk apa saja, bisa sebagai pemanas ruangan, ventilasi, atau jika dalam terminologi kelistrikan, energi panas ini kemudian digunakan untuk memanaskan dan menguapkan air pada aplikasi turbin uap. Biomassa yang digunakan bisa apa saja, namun umumnya adalah sisa produk hutan dan pertanian, arang, atau sampah kota (pada PLTSa). Pengolahan biomassa dengan cara ini umumnya sudah ditinggalkan (kecuali pada PLTSa), karena walaupun teknologinya sederhana namun efisiensinya sangat rendah. Selain itu biomassa padat memiliki kerapatan energi yang relatif kecil, sehingga proses transportasinya memakan biaya yang besar.Khusus untuk biomassa sampah kota, PLTSa dapat menjadi solusi yang menarik untuk dikembangkan, mengingat produksi sampah kota terus meningkat dari tahun ke tahun. PLTSa di dunia kini sudah mencapai lebih dari 3 GW dengan setengahnya berada di eropa. Di Indonesia sendiri PLTSa masih menjadi solusi yang sulit untuk diterapkan. Penolakan terhadap PLTSa umumnya disebabkan kekhawatiran masyarakat akan pencemaran lingkungan, terutama pencemaran udara. Namun tidak perlu khawatir karena teknologi PLTSa yang berkembang saat ini sudah dilengkapi dengan sistem pengeringan dan filter abu. Sistem ini berfungsi untuk mengurangi unsur-unsur kimia berbahaya yang terkandung pada abu gas buangan, sehingga gas buangan PLTSa masih dalam taraf aman.

Cara yang kedua adalah produksi biomassa dalam bentuk gas. Ada beberapa alasan dibalik berkembangnya teknologi ini. Hasil yang didapatkan melalui produk biogas ini selain dapat dimanfaatkan untuk pembakaran biasa / pemanasan, ternyata bisa juga digunakan sebagai bahan bakar pada mesin bakar dan turbin gas. Produk biogas juga menawarkan efisiensi yang lebih tinggi dari pembakaran biomassa padat, selain itu karena dalam bentuk gas, penyalurannya relatif lebih mudah (bisa dengan menggunakan pipa).Konversi kedalam bentuk gas dapat dilakukan melalui proses biokimia dan termokimia. Untuk proses biokimia, digunakan anaerob yang kemudian akan memecah materi organik kedalam senyawa gula, dan kemudian menjadi zat asam, dan akhirnya menjadi gas. Pada tahun 1999, Inggris telah memiliki 1-MW-anaerobic-disgestion-plant. Sementara di Cina ada 5 juta pembangkit anaerob skala kecil pada pertengahan 1990 dan di India ada 2.8 juta yang sudah terpasang sejak 1998 dan akan membangun lagi 12 juta pembangkit anaerob skala kecil. Untuk proses termokimia, gasifikasi dilakukan dengan cara yang tidak jauh berbeda dengan proses gasifikasi batu bara, hanya saja yang menjadi objeknya adalah biomassa.Produksi gasifikasi dalam kondisi tertentu dapat menghasilkan gas sintesis, kombinasi antara hidrokarbon dan hidrogen. Dari gas sintesis ini hampir seluruh hidrokarbon, bensin sintesis dan bahkan hidrogen murni dapat dibentuk (yang nantinya dapat digunakan pada fuel cell). Tantangan dari biogas ini adalah proses pembuatannya yang rumit, dan di negara berkembang seperti indonesia ini masih membutuhkan biaya yang tidak sedikit untuk investasi awalnya.Cara yang ketiga adalah dengan memproduksi biofuel cair dari biomassa. Fokus terbesar pengembangan bioenergi terletak pada biofuel sebagai pengganti bahan bakar minyak. Ada tiga macam olahan biofuel yang dapat mereduksi penggunaan bahan bakar minyak, yaitu (i) bio-ethanol (ii) bio-diesel (iii) bio-oil.Bio-ethanol didapatkan melalui proses fermentasi. Proses fermentasi ini membutuhkan produk gula, sehingga sumber paling efektif untuk digunakan dalam produksi bio-etanol ini adalah tebu. Brazil adalah negara terbesar penghasil ethanol dari residu gula. Kegunaan dari bio-ethanol adalah dapat mereduksi penggunaan bensin, yaitu dengan mencampurkan bio-ethanol kedalam bensin (premium). Salah satu produknya yang sudah banyak dikenal adalah Gasohol E-10, didapatkan dengan mencampurkan 10% Bio-ethanol dengan 90% premium. Seiring dengan perkembangan teknologi, bukan tidak mungkin campuran Bio-ethanol di kemudian hari akan semakin besar persentasenya.

Bio-diesel didapatkan melalui transesterifikasi minyak sayur (diekstrak dari biji-bijian seperti jarak, kelapa sawit, dsb). Sebenarnya minyak sayur dapat digunakan langsung pada mesin diesel, hal senada diungkapkan oleh Dr Rudolf Diesel pada tahun 1911 dalam tulisannya, hal ini disebabkan minyak sayur memiliki kandungan energi yang tidak jauh berbeda (37-39 Gj/t) dengan solar (42 Gj/t).Namun bio-diesel lebih dipilih karena minyak sayur memiliki pembakaran yang tidak sempurna jika dioperasikan langsung pada mesin diesel. Kegunaan dari bio-diesel adalah dapat mereduksi penggunaan solar, yaitu dengan mencampurkan bio-diesel kedalam solar. Salah satu produknya yang sudah banyak dikenal adalah Biodiesel B-10, didapatkan dengan mencampurkan 10% Bio-diesel dengan 90% solar. Di beberapa negara iklim tropis seperti filipina dan Brazil, campuran 70% solar dengan 30% minyak sayur tanpa transesterifikasi dilakukan untuk menggantikan diesel. Namun, biasanya sektor pangan dan kosmetik mau membayar lebih mahal, sehingga hal tersebut hanya dilakukan pada daerah tertentu yang kekurangan supply solar. Produksi biodiesel dunia kini mencapai lebih dari 1.5 juta ton per tahunnya. Dan kini pemerintah USA serta Inggris sedang mengembangkan teknologi biodiesel dari minyak jelantah. Bio-oil didapatkan melalui proses pyrolisis dari sekam, tempurung kelapa, jarak atau kelapa sawit. Proses ini melibatkan penguapan material biomassa sehingga terbagi menjadi uap dan padatan residu. Kemudian uapnya diembunkan sehingga dihasilkan cairan bio-oil yang membawa kandungan energi cukup besar. Bio-oil digunakan sebagai pengganti solar industri (IDO), Marine Fuel Oil (MFO), dan kerosin. Bio-oil dapat digunakan pada pembangkit listrik diesel.

PLTOPembangkit Listrik Tenaga OmbakKrisis energi diperkirakan akan melanda dunia pada tahun 2015. Hal ini dikarenakan semakin langkanya minyak bumi dan semakin meningkatnya permintaan energi. Untuk itu diperlukan suatu terobosan untuk memanfaatkan energi lain,selain energi yang tak terbarukan. Karena kalau kita tergantung pada energi tidak terbarukan, maka di masa depan kita juga akan kesulitan untuk memanfaatkan energiini karena keterbatasan populasi dari energi tersebut.Berdasarkan survei yang dilakukan Badan Pengkajian dan Penerepan Teknologi (BPPT) dan pemerintah Norwegia sejak tahun 1987, terlihat banyak daerah-daerah pantai yang berpotensi sebagai pembangkit listrik tenaga ombak. Ombak di sepanjang Pantai Selatan Pulau Jawa, di atas kepala Burung irian Jaya dan sebelah barat pulau Sumatera sangat sesuai untuk menyuplai energi listrik. Kondisi ombak seperti itu tentu sangat menguntungkan, sebab tinggi ombak yang bisa dianggap potensial untuk membangkitkan energi listrik adalah sekitar 1,5 hingga 2 meter dan gelombang ini tidak pecah hingga sampai di pantai.Potensi tingkat teknologi saat ini diperkirakan bisa mengkonversi per meter panjang pantai menjadi daya listrik sebesar 20-35 KW (panjang pantai Indonesia sekitar 80.000 km, yang terdiri dari sekitar 17.000 pulau dan sekitar 9.000 pulau-pulau kecil yang tidak terjangkau arus listrik nasional, dan penduduknya hidup dari hasil laut). Dengan perkiraan semacam itu, seluruh pantai di Indonesia dapat menghasilkan 2 3 Terra Watt Ekuivalensi listrik, bahkan tidak lebih dari 1% panjang pantai Indonesia.(~800 km) dapat memasok minimal ~16 GW atau sama dengan pasokan seluruh listrik di Indonesia tahun ini.

Untuk sistem mekaniknya, PLTO dikenal memakai teknologi OWC (Oscillating Wave Column). Untuk OWC ini ada dua macam, yaitu OWC terapung dan OWC tidak terapung. Untuk OWC tidak terapung prinsip kerjanya sebagai berikut. Instalasi OWC tidak terapung terdiri dari tiga bangunan utama, yakni saluran masuk air, reservoir (penampungan) dan pembangkit. Dari ketiga bangunan tersebut yang terpenting adalah tahap pemodifikasian bangunan saluran masuk air yang berbentuk U, sebab ia bertujuan menaikkan air laut ke reservoir.Bangunan untuk memasukkan air laut ini terdiri dari dua unit, kolektor dan konverter. Kolektor berfungsi menangkap ombak, menahan energinya semaksimal mungkin, lalu memusatkan gelombang tersebut ke konverter. Konverter yang di desain berbentuk saluran yang runcing di salah satu ujungnya ini selanjutnya akan meneruskan air laut tersebut naik menuju reservoir. Karena bentuknya yang spesifik ini, saluran tersebut dinamakan tapchan (tappered channel).Setelah air tertampung pada reservoir, proses pembangkitan listrik tidak berbeda dengan mekanisme kerja yang ada pada pembangkit listrik tenaga air. Air yang sudah terkumpul itu diterjunkan ke sisi bangunan yang lain. Energi potensial inilah yang berfungsi menggerakkan atau memutar turbin pembangkit listrik. OWC ini dapat diletakkan sekitar ~50 meter dari garis pantai pada kedalaman ~15 m.Selain OWC tidak terapung, kita juga mengenal OWC tidak terapung lain seperti OWC tidak terapung saat air pasang. OWC ini bekerja pada saat air pasang saja, tapi OWC ini lebih kecil. Hasil survei hidrooseanografi di wilayah perairan Parang Racuk menunjukkan bahwa sistem akan dapat membangkitkan daya listrik optimal jika ditempatkan sebelum gelombang pecah atau pada kedalam 4-11 meter. Pada kondisi ini akan dapat dicapai putaran turbin antara 3000-700 rpm. Posisi prototip II OWC (Oscillating Wave Column) masih belum mencapai lokasi minimal yang disyaratkan, karena kesulitan pelaksanaan operasional alat mekanis. Posisi ideal akan dicapai melalui pembangunan prototip III yang berupa sistem OWC apung. Untuk OWC terapung, prinsip kerjanya sama seperti OWC tidak terapung, hanya saja peletakannya yang berbeda.Energi tidal juga merupakan salah satu macam dari energi ombak. Kelemahan energi ini diantaranya adalah membutuhkan alat konversi yang handal yang mampu bertahan dengan kondisi lingkungan laut yang keras yang disebabkan antara lain oleh tingginya tingkat korosi dan kuatnya arus laut.Saat ini baru beberapa negara yang yang sudah melakukan penelitian secara serius dalam bidang energi tidal, diantaranya Inggris dan Norwegia. Di Norwegia, pengembangan energi ini dimotori oleh Statkraft, perusahaan pembangkit listrik terbesar di negara tersebut. Statkraft bahkan memperkirakan energi tidal akan menjadi sumber energi terbarukan yang siap masuk tahap komersial berikutnya di Norwegia setelah energi hidro dan angin. Keterlibatan perusahaan listrik besar seperti Statkraft mengindikasikan bahwa energi tidal memang layak diperhitungkan baik secara teknologi maupun ekonomis sebagai salah satu solusi pemenuhan kebutuhan energi dalam waktu dekat.PLTOPembangkit Listrik Tenaga OsmotikSelama sepuluh tahun terakhir kebutuhan energi meningkat seiring dengan pertumbuhan sektor industri yang membutuhkan konsumsi energi yang besar. Tetapi banyak energi yang dihasilkan berasal dari pembangkit istrik yang tidak ramah lingkungan. Kebanyakan dari pembangkit listrik tersebut menggunakan bahan bakar fosil yang tidak ramah lingkungan dan tidak dapat diperbaharui.Jika hal ini terus menerus terjadi maka dalam waktu kedepan akan terjadi krisis energi dan kerusakan lingkungan. Isu lingkungan yang menjadi topik utama pada forum-forum ilmiah baik di tingkat nasional maupun internasional adalah Global warming. Penyebab utama pemanasan global adalah efek rumah kaca (green house efect). Efek rumah kaca terjadi akibat sinar matahari yang masuk ke dalam atmosfer bumi tidak bisa ke luar atmosfer melainkan kembali terpantul ke permukaan bumi. Terpantulnya kembali sinar matahari disebabkan banyaknya gas CO2 di atmosfer. Gas CO2 banyak dihasilkan dari pembakaran bahan bakar fosil. Pembakaran bahan bakar fosil ini terutama untuk memenuhi kebutuhan energi yang besar dari sektor industri dan masyarakat.Pemanasan global banyak mempengaruhi kehidupan manusia. Di Indonesia pola iklim berubah. Perubahan ini menyebabkan tidak seimbangnya ekosistem yang sudah ada di Indonesia. Ekosistem yang rusak tidak dapat dimanfaatkan lebih jauh oleh manusia. Oleh karena itu pengembangan energi yang berbasis energi terbarukan dan ramah lingkungan seperti tenaga osmotik harus menjadi pertimbangan utama dalam pengelolaan dan pemakaian sumber energi dimasa datang. Energi alternatif digunakan oleh kita dengan harapan tidak bergantung dengan minyak, karena minyak jumlahnya semakin menyusut, unpredictable dan kurang ramah lingkungan. Energi alternatif banyak macamnya antara lain energi nuklir, energi angin, energi surya, energi air dan masih banyak energi energi yang lain.Namun dari sekian banyak energi alternatif tersebut tidak semua cocok dengan keadaan di Indonesia. Energi nuklir dianggap kurang cocok dikembangkan di Indonesia karena biaya operasional yang mahal, sumber daya manusia yang kurang memadai, dan efek dari limbah maupun radiasinya berbahaya bagi penduduk sektarnya. Salah satu energy yang layak atau cocok dikembangkan di Indonesia adalah energi dari air, karena Indonesia termasuk negara kepulauan yang memilki pantai atau daerah perairan yang luas. Energi alternatif yang berasal dari air banyak macamnya antara lain energi dari ombak, energi air terjun, energi air pasng-surut dan energi osmotik. Energi osmotik dinilai lebih cocok karena tidak semua pantai di Indonesia berombak.Osmotik terjadi apabila larutan konsentrasi rendah mengalir ke larutan konsentrasi tinggi yang dipisahkan oleh membran semipermeabel. Larutan-larutan yang biasanya digunakan untuk proses osmotik adalah air laut dan air tawar. Proses osmotik dimulai antara air tawar dan air asin (mengandung garam) yang memiliki ketinggian sama dan dibaasi oleh membran semipermeabel. Perbedaan konsentrasi menyebabkan ketinggian air tawar berkurang dan sebaliknya ketinggian air asin meningkat. Hal ini disebabkan bergeraknya molekul-molekul air melalui membran semipermeable ke air asin. Meningkatnya ketinggian air asin menyebabkan efek tekanan osmotik. Efek tekanan osmotik digunakan untuk membangkitkan energi listrik melalui turbin dan generator.

Setiap hal pasti ada baik buruknya sama halnya dengan Pembangkit Listrik Tenaga Osmotik (PLTO) ini keuntungan besarnya adalah energi ini dapat diperbaharui dan tidak ada resiko untuk kehabisan bahan baku karena hasil buangan dari proses osmotik ini adalah air payau yang nantinya bisa dialirkan ke hutan mangrove atau dikembalikan ke laut. Jadi pembangkit listrik tenaga osmotik adalah renewable. Keuntungan lainnya adalah energi osmotik memilki dampak yang minimal terhadap lingkungan. Ini merupakan suatu proses yang bersih dan merupakan poin tambahan, jumlah panas yang terjadi dalam proses ini kurang dari sepuluh derajat celcius sehingga tidak berbahaya bagi organisme yang hidup di laut.Bahkan hasil buanganya merupakan air payau yang bisa dialirkan ke hutan mangrove. Sementara kita tahu bahwa mangrove memiliki fungsi yang sangat penting sebagai pelindung pantai dan pemukiman pesisir dari hantaman gelombang, badai dan erosi pantai.Satu hal yang mungkin mengganjal dalam proyek energi ini yaitu masalah biaya yang lebih besar dibandingkan pembangkit tenaga listrik konvensional. Untuk itu diperlukan studi lebih lanjut dari pihak pihak yang terkait agar dapat mengembangkan PLTO di Indonesia, mengingat Indonesia memiliki SDA yang mendukung dalam pembangunan PLTO & diperkirakan pembangkit listrik ini akan kompetitif pada sepuluh tahun kedepan.Pembangkit Listrik MikrohidroListrik, kini menjadi kebutuhan pokok bagi manusia. Bayangkan, jika listrik padam saat malam, pemukiman penduduk seakan-akan menjadi kota hantu (dengan catatan, bila belum satu orang pun yang menyalakan lilin, lampu teplok, lampu senter, atau lampu emergensi).Pernahkah anda membayangkan bahwa sebenarnya kita bisa menghasilkan listrik sendiri? Tentu saja ada syarat yang dibutuhkan, salah duanya, air yang mengalir kontinyu dan air yang mengalir dengan deras atau setidaknya aliran air memiliki perbedaan ketinggian.Selama ini, kebanyakan dari kita yakin dan percaya bahwa listrik hanya bisa disediakan dari negara (baca: PLN). Sehingga, penduduk daerah pelosok negeri hanya bisa gigit jari, kapan ya waktu kita akan datang untuk mengecap sedikit cahaya dari benda yang telah lama ditemukan Alfa Edison?Waktu sekolah dulu, salah seorang guru Fisika saya, memanfaatkan sungai kecil dekat rumahnya untuk menghemat pasokan listrik dari PLN. Tapi memang daya yang dihantarkan tidak sedahsyat energi listrik yang diberikan oleh PLN, namun cukup untuk keperluan listrik daya rendah seperti lampu rumah.Pembangkit listrik yang demikian disebut Pembangkit Listrik Tenaga Mikrohidro. Kenapa mikro? Karena daya yang dihasilkan tergolong kecil (masih dalam hitungan ratusan kilowatt). Tenaga air ini bisa berasal dari saluran sungai, saluran irigasi, air terjun alam, atau bahkan sekedar parit asal airnya kontinyu. Prinsip kerjanya adalah memanfaatkan tinggi terjunnya dan jumlah debit air.Teknik dari pembangkit listrik ini sangat sederhana, yaitu menggerakkan turbin dengan memanfaatkan tenaga air. Untuk bisa menggerakkan turbin ini, harus ada air yang mengalir deras karena perbedaan ketinggian. Jika di suatu daerah tidak ada air yang mengalir deras, maka dibuat jalur air buatan misalnya bendungan kecil yang berfungsi sebagai pembelok aliran air. Lalu, air yang mengalir deras akan sanggup menggerakkan turbin yang disambungkan ke generator, sehingga dihasilkanlah energi listrik.PLTPPembangkit Listrik Tenaga Panas BumiMikrohidro ini bisa dikatakan sebagai teknologi ramah lingkungan karena tidak menghasilkan limbah atau sisa buangan yang berbahaya. Selain itu, bila diterapkan pada desa-desa terpencil, mereka akan mengurangi pemakaian bahan bakar fosil yang tidak bisa diperbaharui seperti minyak tanah atau pemakaian dari hasil hutan seperti kayu bakar.Dan juga akan meningkatkan kepedulian masyarakat terhadap hutan, karena bila ingin air terus mengal AKARTA. Dalam artikel sebelumnya telah dijelaskan bagaimana proses terjadinya panas bumi yang selanjutnya dapat dimanfaatkan sebagai sumber energi yang ramah lingkungan. Dalam ulasan selanjutnya dibawah ini akan dijelaskan beberapa teknologi pembangkit panas bumi berbasis panas bumi.Pembangkit yang digunakan untuk meng-konversi fluida geothermal menjadi tenaga listrik secara umum mempunyai komponen yang sama dengan power plants lain yang bukan berbasis geothermal, yaitu terdiri dari generator, turbin sebagai penggerak generator, heat exchanger, chiller, pompa, dan sebagainya. Saat ini terdapat tiga macam teknologi pembangkit panas bumi (geothermal power plants) yang dapat mengkonversi panas bumi menjadi sumber daya listrik, yaitu dry steam, flash steam, dan binary cycle. Ketiga macam teknologi ini pada dasarnya digunakan pada kondisi yang berbeda-beda.1. Dry Steam Power PlantsPembangkit tipe ini adalah yang pertama kali ada. Pada tipe ini uap panas (steam) langsung diarahkan ke turbin dan mengaktifkan generator untuk bekerja menghasilkan listrik. Sisa panas yang datang dari production well dialirkan kembali ke dalam reservoir melalui injection well. Pembangkit tipe tertua ini per-tama kali digunakan di Lardarello, Italia, pada 1904 dimana saat ini masih berfungsi dengan baik. Di Amerika Serikat pun dry steam power masih digunakan seperti yang ada di Geysers, California Utara.2. Flash Steam Power PlantsPanas bumi yang berupa fluida misalnya air panas alam (hot spring) di atas suhu 1750 C dapat digunakan sebagai sumber pembangkit Flash Steam Power Plants. Fluida panas tersebut dialir-kan kedalam tangki flash yang tekanannya lebih rendah sehingga terjadi uap panas secara cepat. Uap panas yang disebut dengan flash inilah yang menggerakkan turbin untuk meng-aktifkan generator yang kemudian menghasil-kan listrik. Sisa panas yang tidak terpakai masuk kembali ke reservoir melalui injection well. Contoh dari Flash Steam Power Plants adalah Cal-Energy Navy I flash geothermal power plants di Coso Geothermalfield, California, USA.3. Binary Cycle Power Plants (BCPP)BCPP menggunakan teknologi yang berbeda dengan kedua teknologi sebelumnya yaitu dry steam dan flash steam. Pada BCPP air panas atau uap panas yang berasal dari sumur produksi (production well) tidak pernah menyentuh turbin. Air panas bumi digunakan untuk memanaskan apa yang disebut dengan working fluid pada heat exchanger. Working fluid kemudian menjadi panas dan menghasilkan uap berupa flash. Uap yang dihasilkan di heat exchanger tadi lalu dialirkan untuk memutar turbin dan selanjutnya menggerakkan generator untuk menghasilkan sumber daya listrik. Uap panas yang dihasilkan di heat exchanger inilah yang disebut sebagai secondary (binary) fluid. Binary Cycle Power Plants ini sebetulnya merupakan sistem tertutup. Jadi tidak ada yang dilepas ke atmosfer.Keunggulan dari BCPP ialah dapat dioperasikan pada suhu rendah yaitu 90-1750C. Contoh penerapan teknologi tipe BCPP ini ada di Mammoth Pacific Binary Geo-thermal Power Plants di Casa Diablo geothermal field, USA. Diperkirakan pembangkit listrik panas bumi BCPP akan semakin banyak digunakan dimasa yang akan datang. Khusus untuk PLTP binary cycle, BPPT telah merancang-bangun dan menguji prototype PLTP Binary Cycle kapasitas 2KW dengan menggunakan fluida hidrokarbon sebagai f1uida kerjanya. Selain itu BPPT telah merencanakan kegiatan Pengembangan PLTP Skala Kecil 2010-2014 yang meliputi 2 kegiatan utama, yaitu, pengembangan PLTP Binary Cycle dengan kapasitas 1 MW (target 2014) melalui tahapan prototipe 2KW (2008) dan pilot project 100KW (2012), serta pengembangan PLTP teknologi condensing turbine dengan kapasitas 2-5 MW (2011 dan 2013). (SF)