Jan Ehrhardt Cristian Lorenz Editors 4D Modeling and ... · Ivar Giaever, Rensselaer Polytechnic...

30
123 Biological and Medical Physics, Biomedical Engineering 4D Modeling and Estimation of Respiratory Motion for Radiation Therapy Jan Ehrhardt Cristian Lorenz Editors

Transcript of Jan Ehrhardt Cristian Lorenz Editors 4D Modeling and ... · Ivar Giaever, Rensselaer Polytechnic...

Page 1: Jan Ehrhardt Cristian Lorenz Editors 4D Modeling and ... · Ivar Giaever, Rensselaer Polytechnic Institute, Troy, NY, USA Sol M. Gruner, Cornell University, Ithaca, NY, USA ... Cristian

123

Biological and Medical Physics, Biomedical Engineering

4D Modeling and Estimation of Respiratory Motion for Radiation Therapy

Jan EhrhardtCristian Lorenz Editors

Page 2: Jan Ehrhardt Cristian Lorenz Editors 4D Modeling and ... · Ivar Giaever, Rensselaer Polytechnic Institute, Troy, NY, USA Sol M. Gruner, Cornell University, Ithaca, NY, USA ... Cristian

Biological and Medical Physics,Biomedical Engineering

Editor-in-Chief

Elias Greenbaum, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA

Editorial Board

Masuo Aizawa, Department of Bioengineering, Tokyo Institute of Technology, Yokohama, JapanOlaf S. Andersen, Department of Physiology Biophysics & Molecular Medicine, Cornell University, NewYork, USARobert H. Austin, Department of Physics, Princeton University, Princeton, NJ, USAJames Barber, Department of Biochemistry, Imperial College of Science, Technology and Medicine, London,EnglandHoward C. Berg, Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USAVictor Bloomfield, Department of Biochemistry, University of Minnesota, St. Paul, MN, USARobert Callender, Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USABritton Chance, Department of Biochemistry/Biophysics, University of Pennsylvania, Philadelphia, PA, USASteven Chu, Berkeley National Laboratory, Berkeley, CA, USALouis J. DeFelice, Department of Pharmacology, Vanderbilt University, Nashville, TN, USAJohann Deisenhofer, Howard Hughes Medical Institute, The University of Texas, Dallas, TX, USAGeorge Feher, Department of Physics, University of California, San Diego, La Jolla, CA, USAHans Frauenfelder, Los Alamos National Laboratory, Los Alamos, NM, USAIvar Giaever, Rensselaer Polytechnic Institute, Troy, NY, USASol M. Gruner, Cornell University, Ithaca, NY, USAJudith Herzfeld, Department of Chemistry, Brandeis University, Waltham, MA, USAMark S. Humayun, Doheny Eye Institute, Los Angeles, CA, USAPierre Joliot, Institute de Biologie Physico-Chimique, Fondation Edmond de Rothschild, Paris, FranceLajos Keszthelyi, Institute of Biophysics, Hungarian Academy of Sciences, Szeged, HungaryRobert S. Knox, Department of Physics and Astronomy, University of Rochester, Rochester, NY, USAAaron Lewis, Department of Applied Physics, Hebrew University, Jerusalem, IsraelStuart M. Lindsay, Department of Physics and Astronomy, Arizona State University, Tempe, AZ, USADavid Mauzerall, Rockefeller University, New York, NY, USAEugenie V. Mielczarek, Department of Physics and Astronomy, George Mason University, Fairfax, VA, USAMarkolf Niemz, Medical Faculty Mannheim, University of Heidelberg, Mannheim, GermanyV. Adrian Parsegian, Physical Science Laboratory, National Institutes of Health, Bethesda, MD, USALinda S. Powers, University of Arizona, Tucson, AZ, USAEarl W. Prohofsky, Department of Physics, Purdue University, West Lafayette, IN, USAAndrew Rubin, Department of Biophysics, Moscow State University, Moscow, RussiaMichael Seibert, National Renewable Energy Laboratory, Golden, CO, USADavid Thomas, Department of Biochemistry, University of Minnesota Medical School, Minneapolis, MN,USA

For further volumes:http://www.springer.com/series/3740

Page 3: Jan Ehrhardt Cristian Lorenz Editors 4D Modeling and ... · Ivar Giaever, Rensselaer Polytechnic Institute, Troy, NY, USA Sol M. Gruner, Cornell University, Ithaca, NY, USA ... Cristian

The fields of biological and medical physics and biomedical engineering are broad,multidisciplinary and dynamic. They lie at the crossroads of frontier research inphysics, biology, chemistry, and medicine. The Biological and Medical Physics,Biomedical Engineering Series is intended to be comprehensive, covering a broadrange of topics important to the study of the physical, chemical and biologicalsciences. Its goal is to provide scientists and engineers with textbooks, mono-graphs, and reference works to address the growing need for information.

Books in the series emphasize established and emergent areas of scienceincluding molecular, membrane, and mathematical biophysics; photosyntheticenergy harvesting and conversion; information processing; physical principles ofgenetics; sensory communications; automata networks, neural networks, and cel-lular automata. Equally important will be coverage of applied aspects of biologicaland medical physics and biomedical engineering such as molecular electroniccomponents and devices, biosensors, medicine, imaging, physical principles ofrenewable energy production, advanced prostheses, and environmental control andengineering.

Page 4: Jan Ehrhardt Cristian Lorenz Editors 4D Modeling and ... · Ivar Giaever, Rensselaer Polytechnic Institute, Troy, NY, USA Sol M. Gruner, Cornell University, Ithaca, NY, USA ... Cristian

Jan Ehrhardt • Cristian LorenzEditors

4D Modeling and Estimationof Respiratory Motionfor Radiation Therapy

123

Page 5: Jan Ehrhardt Cristian Lorenz Editors 4D Modeling and ... · Ivar Giaever, Rensselaer Polytechnic Institute, Troy, NY, USA Sol M. Gruner, Cornell University, Ithaca, NY, USA ... Cristian

EditorsJan EhrhardtInstitut für Medizinische InformatikUniversität LübeckLübeckGermany

Cristian LorenzDepartment Digital ImagingPhilips Technologie GmbH

ForschungslaboratorienHamburgGermany

ISSN 1618-7210ISBN 978-3-642-36440-2 ISBN 978-3-642-36441-9 (eBook)DOI 10.1007/978-3-642-36441-9Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2013939038

� Springer-Verlag Berlin Heidelberg 2013This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part ofthe material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission orinformation storage and retrieval, electronic adaptation, computer software, or by similar or dissimilarmethodology now known or hereafter developed. Exempted from this legal reservation are briefexcerpts in connection with reviews or scholarly analysis or material supplied specifically for thepurpose of being entered and executed on a computer system, for exclusive use by the purchaser of thework. Duplication of this publication or parts thereof is permitted only under the provisions ofthe Copyright Law of the Publisher’s location, in its current version, and permission for use mustalways be obtained from Springer. Permissions for use may be obtained through RightsLink at theCopyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.The use of general descriptive names, registered names, trademarks, service marks, etc. in thispublication does not imply, even in the absence of a specific statement, that such names are exemptfrom the relevant protective laws and regulations and therefore free for general use.While the advice and information in this book are believed to be true and accurate at the date ofpublication, neither the authors nor the editors nor the publisher can accept any legal responsibility forany errors or omissions that may be made. The publisher makes no warranty, express or implied, withrespect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science?Business Media (www.springer.com)

Page 6: Jan Ehrhardt Cristian Lorenz Editors 4D Modeling and ... · Ivar Giaever, Rensselaer Polytechnic Institute, Troy, NY, USA Sol M. Gruner, Cornell University, Ithaca, NY, USA ... Cristian

Foreword

It has never been safe to assume motion is absent in external beam radiotherapy,although this was common until recently. Body motion is intrinsically complex,often autonomous and not readily predictable in general. Autonomous organmotion, including the entire gut, heart, lungs, kidneys and ureters, bladder, uterus,and to some extent the entire bronchial and arterial trees are present in vivo.Voluntary motion further compounds the complexity of motion detection, track-ing, prediction, and compensation.

Often we begin modeling efforts by assuming a system is linear and timeinvariant as an expedient to quickly reach a solution. Unfortunately, real worldsystems, even familiar and seemingly simple functions such as respiration, are notaccurately predicted assuming linear and time invariance.

On the other hand, relaxing these assumptions imposes a high degree ofcomplexity even under conditions of quiet and seemingly regular respiratorymotion. To accommodate the variability of real respiration, it has been necessaryto use high dimensional large deformation spatial time series methods with highcomplexity and computation demands.

The precision of radiotherapy to lesions in the thorax is limited by many fac-tors, but respiratory motion has been the most difficult to overcome. Althoughrespiration is a normal physiological function required for life, it is notoriouslydifficult to model and predict, especially in any given individual patient. Simplyassuming that organs and the tumor target are fixed limits therapy delivery to thetarget or exposes adjacent normal tissues to overexposure and undue risk. Thespatial time series of even normal respiration is oversimplified with 2D projectionimaging, so 3D spatial image sequences are required with sufficient temporalresolution to track excursions of all major structures.

The principal benefit from real-time imaging of respiratory motion with CTsystems that enable motion sampling, characterization, and compensation isgreater precision in treatment delivery.

Pioneering work has been done by investigators worldwide in an effort tocapture, model, predict, and apply detailed spatial knowledge of large-scaledeformations in real time to remove the major constraint on precision radiotherapy

v

Page 7: Jan Ehrhardt Cristian Lorenz Editors 4D Modeling and ... · Ivar Giaever, Rensselaer Polytechnic Institute, Troy, NY, USA Sol M. Gruner, Cornell University, Ithaca, NY, USA ... Cristian

delivery imposed by respiration. This effort has yielded impressive results whencompared with the simplistic models and approaches of even a decade ago.

The major contributors from groups around the world have joined to author thisvolume with innovative and robust solutions that apply state-of-the-art computa-tional anatomy methods to characterize and provide the basis for solving therespiratory motion problem of radiotherapy.

The solution consists of several key enabling components: sufficient imagingdetail and temporal resolution to acquire snapshots of anatomic structures in realtime, followed by modeling of steady-state and variable motion, augmented byregistration methods, and variability modeling needed to fully realize 4D radio-therapy in the presence of unconstrained respiration.

To say that this is a major advance in biomedical image processing understatesthe real achievements where longstanding assumptions of limited or no motion canbe relaxed to provide an accurate and precise estimate of where each target andsurrounding normal tissue element lies, so they can be tracked and the lesionameliorated.

Chicago, November 2012 Michael W. Vannier

vi Foreword

Page 8: Jan Ehrhardt Cristian Lorenz Editors 4D Modeling and ... · Ivar Giaever, Rensselaer Polytechnic Institute, Troy, NY, USA Sol M. Gruner, Cornell University, Ithaca, NY, USA ... Cristian

Contents

1 Introduction to 4D Motion Modeling and 4D Radiotherapy . . . . . . 11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.2 Brief History of 4D CT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21.3 Respiratory Motion Statistics . . . . . . . . . . . . . . . . . . . . . . . . . 31.4 Methods for 4D Thoracic CT Imaging . . . . . . . . . . . . . . . . . . . 41.5 Respiratory Motion Estimation and Analysis. . . . . . . . . . . . . . . 71.6 4D CT Artifacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.6.1 Quantification of Artifact Frequency and Magnitude . . . . 81.6.2 Artifact Reduction Methods . . . . . . . . . . . . . . . . . . . . . 10

1.7 4D CT Applications 1: Radiation Therapy . . . . . . . . . . . . . . . . 111.8 4D CT Applications 2: Ventilation Imaging . . . . . . . . . . . . . . . 14

1.8.1 Rationale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141.8.2 Ventilation Imaging Methods . . . . . . . . . . . . . . . . . . . . 141.8.3 Validation of 4D CT Ventilation Imaging . . . . . . . . . . . 15

1.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Part I 4D Image Acquisition

2 Helical 4D CT and Comparison with Cine 4D CT . . . . . . . . . . . . . 252.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252.2 Helical 4D CT Data Acquisition . . . . . . . . . . . . . . . . . . . . . . . 27

2.2.1 Data Sufficiency Condition (DSC) . . . . . . . . . . . . . . . . 282.2.2 Data Acquisition Modes. . . . . . . . . . . . . . . . . . . . . . . . 292.2.3 Image Location, Slice Thickness, and Scan Time . . . . . . 31

2.3 Workflow and Phase Selection Accuracy . . . . . . . . . . . . . . . . . 332.4 Commercial Helical 4D CT Systems . . . . . . . . . . . . . . . . . . . . 352.5 Respiratory Monitoring Devices . . . . . . . . . . . . . . . . . . . . . . . 37

vii

Page 9: Jan Ehrhardt Cristian Lorenz Editors 4D Modeling and ... · Ivar Giaever, Rensselaer Polytechnic Institute, Troy, NY, USA Sol M. Gruner, Cornell University, Ithaca, NY, USA ... Cristian

2.6 Image Artifacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392.7 Conclusions and Future Directions. . . . . . . . . . . . . . . . . . . . . . 39References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3 Acquiring 4D Thoracic CT Scans Using Ciné CT Acquisition . . . . 433.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 433.2 Benefits of Ciné CT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 443.3 Development of Volumetric CT Using Ciné CT Scans. . . . . . . . 46

3.3.1 Amplitude and Phase-Angle Sorting . . . . . . . . . . . . . . . 483.4 Challenges with Ciné CT . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.4.1 Cone-Beam Artefacts in Ciné CT . . . . . . . . . . . . . . . . . 523.4.2 Abutment Challenges. . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.5 Future of Respiratory Sorting . . . . . . . . . . . . . . . . . . . . . . . . . 56References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Part II Motion Estimation and Modeling

4 Biophysical Modeling of Respiratory Organ Motion . . . . . . . . . . . 614.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 614.2 Single Organ Motion as a Problem of Elasticity Theory. . . . . . . 63

4.2.1 Modeling Macroscopic Lung Motion. . . . . . . . . . . . . . . 634.2.2 Liver Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.3 Multi-Organ Modeling Approaches . . . . . . . . . . . . . . . . . . . . . 774.3.1 Straight-Forward Extension of Single- to Multi-Organ

Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 774.3.2 Going Further Towards Realistic Biomechanics:

Incorporation of Rib Cage and Diaphragm Kinematics. . . 784.4 Comparison to Image Registration: The Benefit of Biophysical

Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 794.4.1 Comparison Studies. . . . . . . . . . . . . . . . . . . . . . . . . . . 794.4.2 Combining Both Worlds . . . . . . . . . . . . . . . . . . . . . . . 80

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5 Feature-Based Registration Techniques. . . . . . . . . . . . . . . . . . . . . 855.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 855.2 Feature Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.2.1 Anatomical Features . . . . . . . . . . . . . . . . . . . . . . . . . . 885.2.2 Gray Value Structure Features . . . . . . . . . . . . . . . . . . . 89

5.3 Feature Correspondence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 905.3.1 Iterative Closest Point and Modifications . . . . . . . . . . . . 905.3.2 Shape-Based Descriptors . . . . . . . . . . . . . . . . . . . . . . . 905.3.3 Gray Value Descriptors . . . . . . . . . . . . . . . . . . . . . . . . 915.3.4 Shape Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

viii Contents

Page 10: Jan Ehrhardt Cristian Lorenz Editors 4D Modeling and ... · Ivar Giaever, Rensselaer Polytechnic Institute, Troy, NY, USA Sol M. Gruner, Cornell University, Ithaca, NY, USA ... Cristian

5.3.5 Shape Constrained Deformation . . . . . . . . . . . . . . . . . . 935.3.6 Currents-Based Registration . . . . . . . . . . . . . . . . . . . . . 97

5.4 Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 985.4.1 B-Splines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 985.4.2 Radial Basis Functions . . . . . . . . . . . . . . . . . . . . . . . . 995.4.3 Nearest Neighbour Interpolation . . . . . . . . . . . . . . . . . . 100

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6 Intensity-Based Deformable Registration: Introductionand Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1036.1 Principles of Intensity-Based Deformable Registration . . . . . . . . 103

6.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1036.1.2 General Framework. . . . . . . . . . . . . . . . . . . . . . . . . . . 1056.1.3 Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1056.1.4 Similarity Measure . . . . . . . . . . . . . . . . . . . . . . . . . . . 1066.1.5 Regularization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1106.1.6 Optimization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.2 Popular Algorithms of Deformable Image Registration . . . . . . . 1146.2.1 Free-Form Deformations Using Cubic B-Splines. . . . . . . 1146.2.2 The Demons Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 115

6.3 Overview of Respiratory Motion Estimation Based on IB-DIR. . . 1166.4 Open-Source Software and Data Sets . . . . . . . . . . . . . . . . . . . . 117References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

7 Intensity-Based Registration for Lung Motion Estimation . . . . . . . 1257.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1257.2 Intensity-Based Registration . . . . . . . . . . . . . . . . . . . . . . . . . . 127

7.2.1 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1287.2.2 Similarity Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1297.2.3 Transformation Constraints . . . . . . . . . . . . . . . . . . . . . 1347.2.4 Parameterization, Optimization and Multi-Resolution

Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1367.3 Registration Accuracy Assessment. . . . . . . . . . . . . . . . . . . . . . 138

7.3.1 Evaluation Methods Used in the EMPIRE10 Challenge. . . 1387.3.2 Validation Using Additional Information . . . . . . . . . . . . 142

7.4 Application: Assessment of Lung Biomechanics . . . . . . . . . . . . 1437.4.1 Displacement Vector Field . . . . . . . . . . . . . . . . . . . . . . 1447.4.2 Specific Volume Change . . . . . . . . . . . . . . . . . . . . . . . 1457.4.3 Specific Ventilation. . . . . . . . . . . . . . . . . . . . . . . . . . . 1467.4.4 Strain Tensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1477.4.5 Anisotropy Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 1497.4.6 Quantification of Lobar Sliding . . . . . . . . . . . . . . . . . . 151

7.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

Contents ix

Page 11: Jan Ehrhardt Cristian Lorenz Editors 4D Modeling and ... · Ivar Giaever, Rensselaer Polytechnic Institute, Troy, NY, USA Sol M. Gruner, Cornell University, Ithaca, NY, USA ... Cristian

8 Validation and Comparison of Approachesto Respiratory Motion Estimation. . . . . . . . . . . . . . . . . . . . . . . . . 1598.1 Lack of a Gold-Standard in Non-Rigid Image Registration . . . . . 1598.2 Morphological Validation Criteria . . . . . . . . . . . . . . . . . . . . . . 162

8.2.1 Landmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1628.2.2 Line-Like Anatomical Structures. . . . . . . . . . . . . . . . . . 1668.2.3 Surface Structures and Volumes . . . . . . . . . . . . . . . . . . 168

8.3 Functional Validation Criteria . . . . . . . . . . . . . . . . . . . . . . . . . 1738.3.1 Trajectory Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 1738.3.2 Deformation Vector Field Analysis . . . . . . . . . . . . . . . . 1758.3.3 Beyond Pure Deformation . . . . . . . . . . . . . . . . . . . . . . 178

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

Part III Modeling of Motion Variability

9 Estimating Internal Respiratory Motion from RespiratorySurrogate Signals Using Correspondence Models . . . . . . . . . . . . . 1879.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1879.2 Respiratory Surrogate Signals . . . . . . . . . . . . . . . . . . . . . . . . . 1909.3 Internal Motion Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

9.3.1 Imaging the Internal Motion. . . . . . . . . . . . . . . . . . . . . 1929.3.2 Representing the Internal Motion Data . . . . . . . . . . . . . 194

9.4 Correspondence Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1959.4.1 Types of Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1959.4.2 Fitting the Correspondence Models . . . . . . . . . . . . . . . . 2009.4.3 Indirect Correspondence Models . . . . . . . . . . . . . . . . . . 205

9.5 Discussion and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 2069.5.1 Intra-Fraction Variation . . . . . . . . . . . . . . . . . . . . . . . . 2079.5.2 Inter-Fraction Variation . . . . . . . . . . . . . . . . . . . . . . . . 2079.5.3 Reducing Variations . . . . . . . . . . . . . . . . . . . . . . . . . . 2089.5.4 Amount of Data Used to Build and Validate Models. . . . 2089.5.5 Computation Time . . . . . . . . . . . . . . . . . . . . . . . . . . . 2099.5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

10 Computational Motion Phantoms and Statistical Modelsof Respiratory Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21510.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21610.2 Computational Motion Phantoms in Radiation Therapy . . . . . . . 217

10.2.1 Characterization of Computational Motion Phantoms . . . 21810.2.2 Applications of Computational Motion Phantoms

in Radiation Therapy . . . . . . . . . . . . . . . . . . . . . . . . . . 22010.2.3 Limitations of Computational Motion Phantoms . . . . . . . 221

x Contents

Page 12: Jan Ehrhardt Cristian Lorenz Editors 4D Modeling and ... · Ivar Giaever, Rensselaer Polytechnic Institute, Troy, NY, USA Sol M. Gruner, Cornell University, Ithaca, NY, USA ... Cristian

10.3 Generation of Population-Based Motion Models . . . . . . . . . . . . 22310.3.1 Variability of Respiratory Motion . . . . . . . . . . . . . . . . . 22310.3.2 Estimation of Motion Fields . . . . . . . . . . . . . . . . . . . . . 22510.3.3 The Correspondence Problem . . . . . . . . . . . . . . . . . . . . 22610.3.4 Model Computation. . . . . . . . . . . . . . . . . . . . . . . . . . . 230

10.4 Applications of Population-Based Models. . . . . . . . . . . . . . . . . 23210.4.1 Statistical Modeling of Organ Motion Using

Surface-Based Registration. . . . . . . . . . . . . . . . . . . . . . 23210.4.2 Statistical Modeling of Organ Motion Using

Diffeomorphic Image Registration. . . . . . . . . . . . . . . . . 23510.4.3 Applications of Statistical Motion Models . . . . . . . . . . . 23810.4.4 Summary and Discussion . . . . . . . . . . . . . . . . . . . . . . . 240

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

Part IV Applications of Motion Estimation Algorithms

11 4-Dimensional Imaging for Radiation Oncology:A Clinical Perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25111.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25111.2 4D Imaging for Radiotherapy Planning . . . . . . . . . . . . . . . . . . 255

11.2.1 Multiple Conventional CT Scans . . . . . . . . . . . . . . . . . 25611.2.2 Fluoroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25611.2.3 Slow CT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25711.2.4 4-Dimensional CT (4D CT) . . . . . . . . . . . . . . . . . . . . . 25711.2.5 Positron Emission Tomography (PET) . . . . . . . . . . . . . . 25911.2.6 4D Cine Magnetic Resonance Imaging (MRI) . . . . . . . . 26011.2.7 Comparison of 4D Imaging Methods. . . . . . . . . . . . . . . 260

11.3 Target Delineation in 4D RTP . . . . . . . . . . . . . . . . . . . . . . . . 26311.4 Generation of Treatment Plans . . . . . . . . . . . . . . . . . . . . . . . . 26511.5 4D Dose and Quality Assurance (QA) . . . . . . . . . . . . . . . . . . . 26611.6 Motion Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268

11.6.1 Physical Motion Reduction . . . . . . . . . . . . . . . . . . . . . 26911.6.2 Effective Motion Reduction . . . . . . . . . . . . . . . . . . . . . 27011.6.3 Motion Compensation . . . . . . . . . . . . . . . . . . . . . . . . . 270

11.7 On-line 4D Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27111.7.1 Imaging Techniques for Advanced On-line

Treatment Verification. . . . . . . . . . . . . . . . . . . . . . . . . 27211.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275

12 Respiratory Motion Prediction in Radiation Therapy . . . . . . . . . . 28512.1 Necessity for Respiratory Motion Prediction . . . . . . . . . . . . . . . 28512.2 Understanding Respiratory Motion Prediction . . . . . . . . . . . . . . 287

Contents xi

Page 13: Jan Ehrhardt Cristian Lorenz Editors 4D Modeling and ... · Ivar Giaever, Rensselaer Polytechnic Institute, Troy, NY, USA Sol M. Gruner, Cornell University, Ithaca, NY, USA ... Cristian

12.3 Respiratory Motion Prediction Models . . . . . . . . . . . . . . . . . . . 28812.3.1 Parametric Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 28912.3.2 Empirical Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 28912.3.3 Kernel Density Approximation (KDE) . . . . . . . . . . . . . . 29012.3.4 Kalman Filtering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29112.3.5 Neural Network Models. . . . . . . . . . . . . . . . . . . . . . . . 291

12.4 Quantifying Errors in Respiratory Motion Prediction . . . . . . . . . 29212.4.1 Simple Standard Deviation (1r) . . . . . . . . . . . . . . . . . . 29212.4.2 Normalized Root Mean Square Error (nRMSE) . . . . . . . 293

12.5 Effect of Sampling Interval, Signal History Lengthand Response Time on Prediction Error . . . . . . . . . . . . . . . . . . 293

12.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296

13 Estimation of Lung Ventilation. . . . . . . . . . . . . . . . . . . . . . . . . . . 29713.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29813.2 Image-Registration-Based Estimates of Regional

Lung Ventilation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29913.2.1 Definition of Regional Lung Ventilation . . . . . . . . . . . . 30113.2.2 Specific Air Volume Change by Specific Volume

Change (SAJ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30113.2.3 Specific Air Volume Change by corrected

Jacobian (SACJ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30213.2.4 Specific Air Volume Change by Intensity

Change (SAI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30313.2.5 Difference of Specific Air Volume Change (DSA)

and Difference of Tissue Volume (DT) . . . . . . . . . . . . . 30413.3 Compare Registration Based Regional Ventilation

with Gold Standard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30513.4 Application: Detecting Changes in Lung Function

in Subjects Following Radiation Therapy . . . . . . . . . . . . . . . . . 310References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315

14 Respiratory Motion Correction in Cone-Beam CTfor Image-Guided Radiotherapy . . . . . . . . . . . . . . . . . . . . . . . . . . 31914.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31914.2 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320

14.2.1 Static Cone-Beam Reconstruction . . . . . . . . . . . . . . . . . 32114.2.2 Breathing Artifacts . . . . . . . . . . . . . . . . . . . . . . . . . . . 322

14.3 Respiration-Correlated Cone-Beam CT. . . . . . . . . . . . . . . . . . . 32314.4 Motion-Compensated Cone-Beam CT . . . . . . . . . . . . . . . . . . . 32614.5 Motion Estimation for Motion-Compensated Cone-Beam CT . . . 329

14.5.1 Use of 4D Cone-Beam CT Images . . . . . . . . . . . . . . . . 329

xii Contents

Page 14: Jan Ehrhardt Cristian Lorenz Editors 4D Modeling and ... · Ivar Giaever, Rensselaer Polytechnic Institute, Troy, NY, USA Sol M. Gruner, Cornell University, Ithaca, NY, USA ... Cristian

14.5.2 Use of Prior 3D CT Images . . . . . . . . . . . . . . . . . . . . . 32914.5.3 Use of Prior 4D CT Images . . . . . . . . . . . . . . . . . . . . . 330

14.6 Discussion and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 330References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335

Contents xiii

Page 15: Jan Ehrhardt Cristian Lorenz Editors 4D Modeling and ... · Ivar Giaever, Rensselaer Polytechnic Institute, Troy, NY, USA Sol M. Gruner, Cornell University, Ithaca, NY, USA ... Cristian

Contributors

Ryan E. Amelon Department of Biomedical Engineering, The University ofIowa, Iowa, IA, USA, e-mail: [email protected]

Kunlin Cao Biomedical Image Analysis Laboratory, GE Global Research Center,Niskayuna, NY, USA, e-mail: [email protected]

Gary E. Christensen Department of Electrical and Computer Engineering andthe Department of Radiation Oncology, The University of Iowa, Iowa, IA, USA,e-mail: [email protected]

Max Dahele Department of Radiation Oncology, VU University Medical Center,Amsterdam, The Netherlands, e-mail: [email protected]

Kai Ding Department of Radiation Oncology, Johns Hopkins University,Baltimore, MD, USA, e-mail: [email protected]

Kaifang Du Department of Biomedical Engineering, The University of Iowa,Iowa, IA, USA, e-mail: [email protected]

Jan Ehrhardt Institute of Medical Informatics, University of Lübeck, Lübeck,Germany, e-mail: [email protected]

Sven Kabus Philips Research Laboratories, Hamburg, Germany, e-mail:[email protected]

Paul Keall School of Medicine, University of Sydney, Sydney, Australia, e-mail:[email protected]

Tobias Klinder Philips Research Laboratories, Hamburg, Germany, e-mail:[email protected]

Cristian Lorenz Philips Research Laboratories, Hamburg, Germany, e-mail:[email protected]

Daniel Low UCLA Radiation Oncology, Los Angeles, CA, USA, e-mail:[email protected]

xv

Page 16: Jan Ehrhardt Cristian Lorenz Editors 4D Modeling and ... · Ivar Giaever, Rensselaer Polytechnic Institute, Troy, NY, USA Sol M. Gruner, Cornell University, Ithaca, NY, USA ... Cristian

Jamie McClelland Centre for Medical Image Computing, Department ofMedical Physics and Bioengineering, University College London, London, UK,e-mail: [email protected]

Keelin Murphy Image Sciences Institute, University Medical Center Utrecht,Utrecht, The Netherlands, e-mail: [email protected]

Tinsu Pan M.D. Anderson Cancer Center, Houston, TX, USA, e-mail:[email protected]

Madhavan L. Raghavan Department of Biomedical Engineering, The Univer-sity of Iowa, Iowa, IA, USA, e-mail: [email protected]

Joseph M. Reinhardt Department of Biomedical Engineering, The University ofIowa, Iowa, IA, USA, e-mail: [email protected]

Simon Rit Université de Lyon, CREATIS CNRS UMR5220, Inserm U1044,INSA-Lyon, Université Lyon 1, Centre Léon Bérard, Lyon, France, e-mail:[email protected]

David Sarrut Université de Lyon, CREATIS CNRS UMR5220, Inserm U1044,INSA-Lyon, Université Lyon 1, Centre Léon Bérard, Lyon, France, e-mail:[email protected]

Surseh Senan Department of Radiation Oncology, VU University MedicalCenter, Amsterdam, The Netherlands, e-mail: [email protected]

Jan-Jakob Sonke Department of Radiation Oncology, The Netherlands CancerInstitute, Amsterdam, The Netherlands, e-mail: [email protected]

Yelin Suh Department of Radiation Oncology, Stanford University, Stanford,CA, USA, e-mail: [email protected]

Jef Vandemeulebroucke Department of Electronics and Informatics (ETRO),Vrije Universiteit Brussel, Brussels, Belgium, e-mail: [email protected]

Michael Vannier The University of Chicago Medicine, 5841 S. MarylandAvenue, MC 2026, Chicago, IL 60637, USA, e-mail: [email protected]

Sastry Vedam Department of Radiation Physics, University of Texas M. D.Anderson Cancer Center, Houston, TX, USA, e-mail: [email protected]

Jens von Berg Philips Research Laboratories, Hamburg, Germany, e-mail: [email protected]

René Werner University Medical Center Hamburg-Eppendorf, Hamburg,Germany, e-mail: [email protected]

Tokihiro Yamamoto Department of Radiation Oncology, Stanford University,Stanford, CA, USA, e-mail: [email protected]

xvi Contributors

Page 17: Jan Ehrhardt Cristian Lorenz Editors 4D Modeling and ... · Ivar Giaever, Rensselaer Polytechnic Institute, Troy, NY, USA Sol M. Gruner, Cornell University, Ithaca, NY, USA ... Cristian

Acronyms

1D One-dimensional2D Two-dimensional3D Three-dimensional4D Four-dimensionalAAPC Autoadaptive phase-correlationAAPM American Association of Physicists in MedicineADI Anisotropy deformation indexAIP Average intensity projectionsANT Advanced Normalization ToolsAP Anterior–posteriorARMA Auto regressive moving averageASD-POCS Adaptive Steepest Descent Projection Onto Convex SetsASTRO American Society of Therapeutic Radiology and OncologyBC Boundary conditionBFGS Broyden–Fletcher–Goldfarb–ShannonBHCT Breath-hold computed tomographyBREP Boundary representationBVP Boundary value problemCA Computational AnatomyCACT Coronary artery computed tomographyCBCT Cone beam computed tomographyCD Centerline distanceCG Conjugate gradientCPU Central processing unitCR Correlation ratioCRT Conformal radiation therapyCT Computed tomographyCTV Clinical target volumeDC Dice coefficientDFP Davidon–Fletcher–PowellDI Distortion indexDIR Deformable image registration

xvii

Page 18: Jan Ehrhardt Cristian Lorenz Editors 4D Modeling and ... · Ivar Giaever, Rensselaer Polytechnic Institute, Troy, NY, USA Sol M. Gruner, Cornell University, Ithaca, NY, USA ... Cristian

DMLC Dynamic multi-leaf collimatorDRR Digitally computed radiographDoG Difference of GaussianDSA Difference of specific air volume changeDSC Data sufficiency conditionDT Difference of tissue volumeDTS Digital tomosynthesisDVF Deformation vector fieldEBS Elastic body splineEE End expirationEI End inspirationEMPIRE10 Evaluation of Methods for Pulmonary Image Registration

(MICCAI 2010)EORTC European Organisation for the Research and Treatment of CancerEPID Electronic portal imaging deviceEXACT’09 Extraction of airways from CT (MICCAI 2009)FDK Feldkamp, Davis and KressFEM Finite element methodsFFD Free-form deformationFOV Field of viewFPE Fissure positioning errorFRC Functional residual capacityFSR Full-scan reconstructionGD Gradient descentGPU Graphical processing unitGTV Gross tumor volumeHSR Half-scan reconstructionHU Hounsfield unitIB-DIR Intensity-based deformable image registrationICC Inverse consistency constraintICP Iterative closest pointIGRT Image-guided radiotherapyIMRT Intensity modulated radiation therapyITK Insight Segmentation and Registration ToolkitITV Internal target volumeJC Jaccard coefficientKDE Kernel density approximationLBFGS Limited memory Broyden–Fletcher–Goldfarb–ShannonLCC Linear correlation coefficientLDDMM Large deformation diffeomorphic metric mappingLLL Left lower lobeLM Levenberg-MarquardtLOLA11 Lobe and Lung Analysis (MICCAI 2011)LR Left-rightLTI Linear and time invariant

xviii Acronyms

Page 19: Jan Ehrhardt Cristian Lorenz Editors 4D Modeling and ... · Ivar Giaever, Rensselaer Polytechnic Institute, Troy, NY, USA Sol M. Gruner, Cornell University, Ithaca, NY, USA ... Cristian

LUL Left upper lobeMCAT Mathematical cardiac torso phantomMCL Multi-leaf collimatorMI Mutual informationMICCAI Medical Image Computing and Computer Assisted InterventionMIDRAS Multi-Institutional Deformable Registration Accuracy StudyMIP Maximum intensity projectionsMIRD Medical Internal Radiation Dosimetry phantomMKB McKinnon–BatesMRI Magnetic resonance imagingMSCT Multislice computed tomographyn-SIFT n-dimensional Scale-Invariant Feature TransformNCAT NURBS-based cardiac-torso phantomNMI Normalized mutual informationNSCLC Non-small-cell lung cancerNTCP Normal tissue complication probabilityNURBS Non-uniform rational B-splineOAR Organ at riskOD Orthogonal displacement projectionORNL Oak Ridge National LaboratoryPCA Principal component analysisPCR Principal component regressionPDE Partial differential equationsPET Positron emission tomographyPICCS Prior Image Constrained Compressed SensingPOPI Point-validated pixel-based breathing thorax modelPTV Planning target volumePV Partial volumeQA Quality assuranceQN Quasi-NewtonRLL Right lower lobeRML Right middle lobeROI Region of interestRPM Real-time position managementRT Radiation therapyRTDD Radiation treatment dose distributionRTP Radiotherapy treatment planningRUL Right upper lobeSACJ Specific air volume change by corrected JacobianSAD Sum of absolute differencesSAI Specific air volume change by intensity changeSAJ Specific air volume change by specific volume changeSART Simultaneous Algebraic Reconstruction TechniqueSBRT Stereotactic body radiotherapySI Superior–inferior

Acronyms xix

Page 20: Jan Ehrhardt Cristian Lorenz Editors 4D Modeling and ... · Ivar Giaever, Rensselaer Polytechnic Institute, Troy, NY, USA Sol M. Gruner, Cornell University, Ithaca, NY, USA ... Cristian

SIFT Scale-Invariant Feature TransformSNR Signal-to-noise ratioSPECT Single photon emission computed tomographySRO Simultaneously read-outSSCT Single slice computed tomographySSD Sum of squared differencesSSTVD Sum of squared tissue volume differenceSSVMD Sum of squared vesselness measure differenceSTE Spatio-temporal errorSURF Speed-up robust featuresSVD Singular value decompositionTCP Tumor control probabilityTLC Total lung capacityTO Target overlapTRE Target registration errorVESSEL12 Vessel Segmentation in the Lung (MICCAI 2012)VM Vesselness measureVMAT Volumetric modulated arc therapyVO Volumetric overlapXCAT Extended NURBS-based cardiac-torso phantomXe-CT Xenon-enhanced computed tomography

xx Acronyms

Page 21: Jan Ehrhardt Cristian Lorenz Editors 4D Modeling and ... · Ivar Giaever, Rensselaer Polytechnic Institute, Troy, NY, USA Sol M. Gruner, Cornell University, Ithaca, NY, USA ... Cristian

Chapter 1Introduction to 4D Motion Modelingand 4D Radiotherapy

Paul Keall, Tokihiro Yamamoto and Yelin Suh

Abstract The fusion of the fast growing fields of imaging science, imaginghardware, and computational modeling, together with a broad interest in learningmore about respiratory anatomy and physiology, has led to major advances in thescientific understanding and clinical applications of 4D motion modeling and radio-therapy. The advent of respiratory correlated, or ‘4D’ CT imaging has opened upapplications in ventilation imaging, radiation oncology and beyond. In radiationoncology in particular, 4D CT is used in clinical practice by over 60 % of US can-cer centers, growing ≈7 % per year. In this chapter we give discuss the history andgrowth of 4D CT, describe the variability in respiratory motion, and state both theapplications and limitations of 4D CT imaging.

1.1 Introduction

Four-dimensional (4D) radiotherapy started to emerge in the early 2000s. An Amer-ican Society of Radiation Oncology (ASTRO) panel on Time: the 4th Dimension inRadiotherapy at the 2003 annual meeting defined 4D radiotherapy as “the explicitinclusion of the temporal changes during the imaging, planning and delivery ofradiotherapy”. The definitions were further refined as: [35]

• 4D thoracic computed tomography (CT) imaging: The acquisition of a sequenceof CT image sets over consecutive segments of a breathing cycle

P. Keall (B)

School of Medicine, University of Sydney, Sydney, Australiae-mail: [email protected]

P. Keall · T. Yamamoto · Y. SuhDepartment of Radiation Oncology, Stanford University, Stanford, USA

Y. SuhDepartment of Radiation Oncology, MD Anderson Cancer Center, Houston, USA

J. Ehrhardt and C. Lorenz (eds.), 4D Modeling and Estimation of Respiratory Motion 1for Radiation Therapy, Biological and Medical Physics, Biomedical Engineering,DOI: 10.1007/978-3-642-36441-9_1, © Springer-Verlag Berlin Heidelberg 2013

Page 22: Jan Ehrhardt Cristian Lorenz Editors 4D Modeling and ... · Ivar Giaever, Rensselaer Polytechnic Institute, Troy, NY, USA Sol M. Gruner, Cornell University, Ithaca, NY, USA ... Cristian

2 P. Keall et al.

• 4D treatment planning: Designing treatment plans on CT image sets obtainedfor each segment of the breathing cycle

• 4D treatment delivery: Continuous delivery of the designed 4D treatment planthroughout the entire breathing cycle

Each of these areas have been substantially researched and developed in the inter-vening years, with key areas of motion estimation and modeling, deformable reg-istration, and applications of these methods well beyond those originally envisagedsuch as lung ventilation imaging. Also, the limitations of existing hardware andsoftware have been identified, with further refinements suggested and implemented.This book gives a detailed state-of-the-art insight into 4D CT image acquisition, 4Dmotion estimation and modeling, and 4D radiotherapy.

1.2 Brief History of 4D CT

A key driver in 4D motion modeling and radiotherapy has been the development andwidespread implementation of the more correctly termed respiratory correlated CTbut more commonly termed 4D CT. The phenomenal growth of the technology isshown in Fig. 1.1. From its first inception and commercial availability in 2002–03there has been a steady 7 % annual growth in the clinical implementation of thistechnology. In 2009 44 % of US cancer centers [71] used 4D CT; it is estimated thatover 60 % of centers use this technology now. At Stanford University 4D CT is inroutine use for planning lung, pancreas, liver and breast cancer treatments, with over1000 scans estimated to have been acquired in the single institution.

Fig. 1.1 The growth of the clinical implementation of 4D CT with time based on a survey of USradiation oncologists (394 respondents) [71]. Survey data courtesy of Drs. Daniel Simpson andLoren Mell, UC San Diego

Page 23: Jan Ehrhardt Cristian Lorenz Editors 4D Modeling and ... · Ivar Giaever, Rensselaer Polytechnic Institute, Troy, NY, USA Sol M. Gruner, Cornell University, Ithaca, NY, USA ... Cristian

1 Introduction to 4D Motion Modeling and 4D Radiotherapy 3

Table 1.1 History of the development of 4D thoracic CT acquisition from 2003–2006

Development Year First author

Multislice cine 2003 Low [46]Single slice helical 2003 Ford [19], Vedam [81]Multislice cine (commercial) 2003 Pan [57]Cone beam (benchtop) 2003 Taguchi [79]Multislice helical 2004 Keall [38]Multislice cine PET/CT 2004 Nehmeh [53, 54]Cone beam (clinical) 2005 Sonke [73]Applications outside radiation oncology 2005–2006 Guerrero [27, 28] and Low [47]

A summary of the early history of 4D CT developments is shown in Table 1.1.Despite the first 4D thoracic CT articles dating back only to 2003, there has been anintense clinical and commercial interest in this new technology, and the number ofsystems and clinical implementation of 4D CT are fast growing. The initial devel-opments of 4D thoracic CT were on single slice scanners published in 2003 with thefirst commercial implementation on a multislice scanner available in the same year.4D CT is now available from all major CT vendors. Four-dimensional cone-beamCT (CBCT) [73] and 4D PET/CT are currently active areas of development.

1.3 Respiratory Motion Statistics

During medical imaging and therapy procedures motion in the thorax and abdomenis predominantly caused by breathing, and therefore it is worth briefly reviewingrespiratory motion statistics. Organs in the thoracic and abdominal regions movedue to respiration. Patients’ respiration may vary, resulting in variations in the organmotion. Figure 1.2 shows an example of the variations in tumor positions, respiratorybaseline, and respiratory patterns over time. The respiration-induced organ motionand the extent and degree of its variations are acknowledged in the literature. Table 1.2summarizes the literature of the respiration-induced organ motion. A few guidelinesfor the respiration-induced organ motion are:

• Organs translate, rotate, and deform due to respiration.• Significant variations have been observed in the extent, phase, direction, regularity,

and linearity of the respiration-induced organ motion• The motion variations result in wide variations in tumor positions, tumor positions

relative to critical structures, tumor motion hysteresis, respiratory baseline, andrespiratory patterns, from cycle to cycle, from fraction to fraction, and from patientto patient.

• The motion can be from 0 to 5 cm for free breathing, and averages ∼0.5 cm forlung tumors and ∼1 cm for liver and pancreas tumors

• For lungs, the greatest motion is generally in the superior-inferior direction,whereas the least motion is in the left-right direction, and the motion tends toincrease from the upper lobes to the lower lobes of the lungs.

Page 24: Jan Ehrhardt Cristian Lorenz Editors 4D Modeling and ... · Ivar Giaever, Rensselaer Polytechnic Institute, Troy, NY, USA Sol M. Gruner, Cornell University, Ithaca, NY, USA ... Cristian

4 P. Keall et al.

Fig. 1.2 Tumor motion variations over time in three dimensions observed during stereotactic bodyradiotherapy in Cyberknife Synchrony [77]: there are significant variations in tumor positions,respiratory baseline, and respiratory patterns

Chapter 4 is further expanding on the biophysics and on the possibility of com-putational modeling of pulmonary motion.

1.4 Methods for 4D Thoracic CT Imaging

An example of 4D CT scan acquisition is shown in Fig. 1.3. 4D CT image acquisitioninvolves, firstly, the real-time recording of a respiratory signal simultaneously withover-sampled CT image acquisition. Over-sampling by re-imaging the same anatomyat different respiratory positions, typically by a factor of 8–15, is performed in orderto obtain sufficient number of CT slices over a given longitudinal width so that there

Page 25: Jan Ehrhardt Cristian Lorenz Editors 4D Modeling and ... · Ivar Giaever, Rensselaer Polytechnic Institute, Troy, NY, USA Sol M. Gruner, Cornell University, Ithaca, NY, USA ... Cristian

1 Introduction to 4D Motion Modeling and 4D Radiotherapy 5

Table 1.2 Literature summary of respiration-induced motion of organs in the thoracic and abdom-inal regions in three dimensions: mean extent (minimum-maximum) in millimeters. This is asummary and an update of Tables I and II in The American Association of Physicists in Medi-cine Task Group 76 [37]

Literature Sites DirectionSuperior- Anterior- Left-inferior posterior posterior(mm) (mm) (mm)

Barnes et al. [5] Lung, lower lobe 18.5 (9–32) - -Lung, middle/upper

lobe7.5 (2–11) - -

Bryan et al. [6] Pancreas, shallowrespiration

20 (0–35) - -

Case et al. [7] Liver 8.0 (0.1–18.8) 4.3 (0.1–12.1) 1.8 (0.1–7)Chen et al. [9] Lung (0–50) - -Davies et al. [11] Diaphragm, shallow

respiration12 (7–28) - -

Diaphragm, deeprespiration

43 (25–57) - -

Kidney, shallowrespiration

11 (5–16) - -

Liver, shallowrespiration

10 (5–17) - -

Liver, deeprespiration

37 (21–57) - -

Ekberg et al. [15] Lung 3.9 (0–12) 2.4 (0–5) 2.4 (0–5)Engelsman et al. [16] Lung, lower lobe (2–9) - -

Lung, middle/upperlobe

(2–6) - -

Erridge et al. [17] Lung 12.5 (6–34) 9.4 (5–22) 7.3 (3–12)Ford et al. [20] Diaphragm, shallow

respiration20 (13–31) - -

Giraud et al. [24] Diaphragm, deeprespiration

35 (3–95) - -

Grills et al. [25] Lung (2–30) (0–10) (0–6)Hanley et al. [30] Lung 12 (1–20) 5 (0–13) 1 (0–1)Harauz et al. [31] Liver, shallow

respiration14 - -

Korin et al. [41] Diaphragm, shallowrespiration

13 - -

Diaphragm, deeprespiration

39 - -

Murphy et al. [51] Lung 7 (2–15) - -Plathow et al. [59] Lung, lower lobe 9.5 (4.5–16.4) 6.1 (2.5–9.8) 6.0 (2.9–9.8)

Lung, middle lobe 7.2 (4.3–10.2) 4.3 (1.9–7.5) 4.3 (1.5–7.1)Lung, upper lobe 4.3 (2.6–7.1) 2.8 (1.2–5.1) 3.4 (1.3–5.3)

(continued)

Page 26: Jan Ehrhardt Cristian Lorenz Editors 4D Modeling and ... · Ivar Giaever, Rensselaer Polytechnic Institute, Troy, NY, USA Sol M. Gruner, Cornell University, Ithaca, NY, USA ... Cristian

6 P. Keall et al.

Table 1.2 (continued)

Literature Sites DirectionSuperior- Anterior- Left-inferior posterior posterior(mm) (mm) (mm)

Redmond et al. [60] Lung 6.7 2.9 2.1Ross et al. [64] Lung, lower lobe - 1 (0–4) 10.5 (0–13)

Lung, middle lobe - 0 9 (0–16)Lung, upper lobe - 1 (0–5) 1 (0–3)

Seppenwoolde et al. [67] Lung 5.8 (0–25) 2.5 (0–8) 1.5 (0–3)Shimizu et al. [68] Lung - 6.4 (2–24) -Sixel et al. [72] Lung (0–13) (0–5) (0–4)Stevens et al. [74] Lung 4.5 (0–22) - -Suh et al. [77] Lung 4.8 (0.2*-14.4) - -Suramo et al. [78] Kidney, shallow

respiration19 (10–40) - -

Kidney, deeprespiration

40 (20–70) - -

Liver, shallowrespiration

25 (10–40) - -

Liver, deeprespiration

55 (30–80) - -

Pancreas, shallowrespiration

20 (10–30) - -

Pancreas, deeprespiration

43 (20–80) - -

Wade [83] Diaphragm, shallowrespiration

17 - -

Diaphragm, deeprespiration

101 - -

Weiss et al. [84] Diaphragm, shallowrespiration

13 ± 5 - -

Liver, shallowrespiration

13 ± 5 - -

This is a summary and an update of Tables I and II in The American Association of Physicists inMedicine Task Group 76 [37]

are enough images to achieve respiratory sorting with acceptable spatial accuracy.Over-sampled images from the CT dataset are sorted into several bins based on theinformation obtained from the respiratory signal. Such a sorting procedure results inthe classification of the over-sampled images into several respiratory-sorted imagebins, such as end-exhale, mid-inhale etc. A complete set of image bins acquired overa respiratory cycle constitutes a 4DCT dataset. Typically 8–15 respiratory bins areused. Further details and alternative a pproaches for 4DCT image acquisitions aregiven in Chaps. 2 and 3 of this book.

Page 27: Jan Ehrhardt Cristian Lorenz Editors 4D Modeling and ... · Ivar Giaever, Rensselaer Polytechnic Institute, Troy, NY, USA Sol M. Gruner, Cornell University, Ithaca, NY, USA ... Cristian

1 Introduction to 4D Motion Modeling and 4D Radiotherapy 7

Fig. 1.3 An example of the basics of 4D CT image acquisition. The 4D CT sorting process: the CTimages, breathing tracking signal and ‘X-Ray ON’ signal form the input data stream. The breathingcycle is divided into distinct bins (for example, peak exhale, mid inhale, peak inhale, mid exhale).Images are sorted into these image bins depending on the phase or displacement of the respiratorycycle in which they are acquired, yielding a 4D CT dataset. From Vedam et al. [81]. Further detailson 4D CT image acquisitions are given in Chaps. 2 and 3 of this book

1.5 Respiratory Motion Estimation and Analysis

4D CT image data provides a rich source of information about pulmonary motionwhich is, however, not trivial to exploit for the benefit of radiation therapy. A tumormay be interactively tracked by defining landmarks in a set of CT images. To dothis for several tumors is already cumbersome and very time consuming. Assessingbreathing motion properties of the whole lungs, however, renders impossible withoutsuitable image processing algorithms. Deformable image registration algorithms asdiscussed in Chaps. 5–8 play a crucial role in this context. They deliver whole lungmotion vector fields that allow following an arbitrary tissue element through thebreathing cycle. Based on this information, not only tumor motion can be assessed,but also further physiologically relevant lung properties like the local expansion andcontraction of lung parenchyma (local ventilation).

Non rigid image registration can also be used to adjust the treatment plan in caseof organ motion, to avoid completely anew organ contouring. The motion may haveoccurred between two radiation fractions or within, e.g. due to breathing motion.

While 4D CT imaging is well suited to assess pulmonary motion, it is not alwaysavailable when needed, especially not during the actual treatment sessions. There-fore the idea has been followed to create patient specific motion models based on4D CT image data. In combination with breathing motion surrogates, which canbe measured during radiation therapy, these models can be used to estimate thelocation and velocity of an arbitrary lung tissue element during treatment. Suitablesurrogates can be body motion visible from outside the body, e.g., chest wall and

Page 28: Jan Ehrhardt Cristian Lorenz Editors 4D Modeling and ... · Ivar Giaever, Rensselaer Polytechnic Institute, Troy, NY, USA Sol M. Gruner, Cornell University, Ithaca, NY, USA ... Cristian

8 P. Keall et al.

abdominal motion, but also internal motion, e.g., diaphragm motion as imaged usingan on-board X-ray imaging device. Methods to generate breathing motion models,how to correlate them with breathing surrogates, are introduced in Chaps. 9 and 10.

1.6 4D CT Artifacts

Despite the potential and clinical applications of 4D CT, there are several limitations,such as the increased acquisition time (by an additional 2–10 min depending on thescanner configuration), additional post-processing time and additional radiation doseas the same anatomy is imaged several times at different respiratory states. However, amajor limitation of current 4D CT technology are the imaging artifacts due to irregularbreathing. The prevalence of artifacts, as well as ongoing methods to improve theseartifacts are discussed below.

1.6.1 Quantification of Artifact Frequency and Magnitude

Typically there are temporal variations in patient breathing patterns, which lead tomismatches in the respiratory phases or displacements between two adjacent couchpositions (data segments) in a 4D CT scan. These variations could manifest as arti-facts in the coronal 4D CT images for the current retrospective phase-based sortingmethods [1, 14, 18, 26, 44, 48, 52, 56, 58, 62, 63, 90]. 4D CT artifacts can beclassified into four types: blurring, duplicate structure, overlapping structure, andincomplete structure as shown in Fig. 1.4. The blurring artifact occurs within a couchposition, when the organ motion exceeds the temporal resolution of scanning due tothe finite gantry rotation time. In contrast, all the other artifacts occur at an interfacebetween two adjacent couch positions due to a difference in respiratory states. Wemanually quantified the frequency and magnitude of artifacts in 50 consecutive cine4D CT images created by retrospective phase-based sorting, and found an alarmingresult, i.e., 45 of 50 patients (90 %) had at least one artifact (except blurring) with amean magnitude of 11.6 mm (range, 4.4–56.0 mm) in the diaphragm or heart [90].Statistical analysis revealed that the patients with artifacts had a significantly largermotion variability between respiratory cycles compared to the patients without arti-facts (p = 0.02). Furthermore, the magnitude of artifact in the diaphragm was foundto be weakly, but significantly correlated with the abdominal displacement difference(surface mismatch) between two adjacent couch positions (R = 0.34, p < 0.01, seealso Fig. 1.5). These results indicate a need for improved respiratory reproducibilityand/or significant improvements in 4D CT methods.

Page 29: Jan Ehrhardt Cristian Lorenz Editors 4D Modeling and ... · Ivar Giaever, Rensselaer Polytechnic Institute, Troy, NY, USA Sol M. Gruner, Cornell University, Ithaca, NY, USA ... Cristian

1 Introduction to 4D Motion Modeling and 4D Radiotherapy 9

Fig. 1.4 Example 4D CT images with artifacts: blurring, duplicate structure, overlapping struc-ture, and incomplete structure. Schematic diagrams of respective types of artifacts are also shown.Corresponding artifacts are indicated by red arrows. From Yamamoto et al. [90]

Fig. 1.5 Abdominal displacement difference between two adjacent couch positions (data segments)versus absolute magnitude of artifacts in tumor, diaphragm and heart. From Yamamoto et al. [90]

Page 30: Jan Ehrhardt Cristian Lorenz Editors 4D Modeling and ... · Ivar Giaever, Rensselaer Polytechnic Institute, Troy, NY, USA Sol M. Gruner, Cornell University, Ithaca, NY, USA ... Cristian

10 P. Keall et al.

1.6.2 Artifact Reduction Methods

Many methods have been proposed to reduce 4D CT artifacts. These methodscan be divided into four categories: (1) audiovisual biofeedback, (2) respiration-synchronized acquisition, (3) improved sorting and (4) post-processing. The firsttwo methods try to improve the acquisition of CT slices used to create a 4D data set,while the other two try to improve a 4D data set from the acquired CT slices. Thesefour categories are described in detail below.

1.6.2.1 Audiovisual Biofeedback

Audiovisual biofeedback to guide patient breathing has been demonstrated toimprove the respiratory regularity for healthy volunteers [45, 55, 82] and patients[21–23, 40, 55, 75]. Venkat et al. demonstrated significant reductions in the rootmean square variations by 55 % for displacement, and by 75 % for period (p < 0.01)in a ten-volunteer study [82]. Therefore, audiovisual biofeedback is expected toreduce 4D CT artifacts by minimizing the mismatches in the respiratory phases ordisplacements between two adjacent couch positions. Some patients may not showany improvement because of poor pulmonary function or other reasons. Currentlya clinical study has been ongoing at Stanford to test the hypothesis that audiovisualbiofeedback significantly reduces 4D CT artifacts.

1.6.2.2 Respiration-Synchronized Acquisition

Respiration-synchronized acquisition methods have been developed to gate the 4DCT acquisition based on pre-determined tolerances of the respiratory state (i.e., dis-placement, phase or velocity) and real-time monitoring of the respiratory signal[39, 42]. Gating ensures that CT data from irregular breathing patterns, which causeartifacts, are not acquired. Recently Langner and Keall compared 4D CT imagessimulated with the respiration-synchronized methods and the retrospective phase-based sorting, and demonstrated 50 % smaller magnitude of 4D CT artifacts forthe respiration-synchronized methods compared to the retrospective sorting [43].Moreover the respiration-synchronized methods reduce the imaging dose by approx-imately 50 % by eliminating unnecessary oversampling, however prolongs the acqui-sition time 20–100 % [43].

1.6.2.3 Improved Sorting

Several investigators showed that using the respiratory signal displacement ratherthan the respiratory signal phase resulted in better quality 4D CT images [1, 18, 48,52, 58, 62]. Lu et al. demonstrated better performance of displacement-based sorting