J OUTrUl I of Glaci%gy, Vol. 2 1. No. 85. 197 8 INELASTIC ...€¦ · pos sibl e then to g e t an...

10
J OUTrUl I of Glaci%gy, Vol. 21. No. 85. 1978 INELASTIC BEHAVIOUR THE LOW-FREQUENCY OF ICE Ih SINGLE CRYSTALS IN RANGE DUE TO DISLOCATIONS By R ENE V ASSOILLE, CHRI STIAN MAl and J OSEPH PER EZ (Gr oup e d 'E tudes de Me tallurgie Physiqu e et de Physique des Materiaux, In stitut N ational d es Sciences A ppliqu es de Lyon, E.R.A. no. 463, Bat ime nt 502, 20 avenue A. Einstein, F -6962 I Ville urb a nn e-cedex, France ) ABS TRACT. The inelas ti c beh avioW' of ice Ih si ngle crystals has been in ves ti ga ted by an in verted torsional pe ndulum in the low-frequ e ncy range. T hr ee featur es are distin gu ish ed : (i) a relaxa tion pea k prev iously observed by seve ral authors in the higher-frequ en cy range, (ii ) a n int ernal friction increasing with temp era tur e in the high-te mp e ratur e range (230- 273 K ), (iii ) within this high-t e mpera tur e range, int e rn a l fri ction b eco m es a mplitude dependent, and this dependence becomes greate r the gr eater the te mp eratur e. In this case, the internal fri ct ion has been int erpre ted in terms of movements of dislocat io ns. H ence, the experime ntal r es ults are inte rpret ed with a model of in terna l fri c ti on based on an e mpiri ca l rel at ion fo r the veloc ity of di slocat ions. Th is model of inte rn al fri ct io n is in fair ag r eeme nt with expe rim e ntal data. It is possible then to get an es timate of dislocat ion density. H ence it is sho wn that intern al fric tion experiments can be useful in the stud y of the plas ti c behav iour of ice single cr ys tals. R ESUM E. R ole des disloca tioll s dalls le com/J ortement ineLastique basse Jrtfquence de La glace Ih . Le co mport eme nt inelast iqu e de la glace Ih mon oc ristalline a ete et udi e it l 'a ide d' un pend ule de torsion in ve rse fonctionna nt da ns le dom aine des basses fre qu ences. 11 a ppa rait tro is caracteris tiqu es: (i) un pic de relaxa tion obse r ve precede mme nt p ar d ivers a ute ur s d a ns le doma ine d es h a ut es frequences, (ii) un fro tt eme nt inter ie ur croissant rapideme nt avec la temper at ure dan s le domain e 230- 273 K, (iii) dans ce domaine de te mpe ratures, le fro tt eme nt interieur depend de I' amp li tud e de de format ion et ce tt e depe nd ance est d 'a utant plus forte q ue la te mpera tur e est plus elevee. No us nous som mes plus pa rti culierement int eresses d a ns ce trava il a u co mport eme nt de la gla ce mono- cri sta lline dans le domaine des ha ut es temp era tur es en mettant en evid ence le role des d islocations. La co mparaison de nos res ult a ts avec ceux obte nus par topogr aphie de r ayo ns X nous pe rm et d' int erprt: tcr l' cnse mbl e d es donn ees a pport ees pa r le fr otte me nt int erie ur . 11 est alors p oss ible d' obt enir un e estimation de la densit e de dislocation. II appa rait ainsi que les m es ur es de fro tt ement in terieur pe u vent etre util es po ur I'et ude de la deforma ti on plast iqu e de la glace. Z USAMM ENFASSUNG. Anelastisches Verhalttll VOIl Eis-lh-Einkristallen im Niedeifreq ue ll zbereich auJgnmd VOIl Versetz llll.gen. D as a nel as ti sche Ve rhalten von Eis-Ih- Einkr ista ll en wu rde mit einem umge keh rten Torsions- pendel im N iederfr eque nzbereich unt ersucht. Drei Merkma le werden herausgeslell t: (i) Ein Rclax a Li onsdampf u ngsmaximum, das berei ts frUh er von verschiedenen Ve rf asse rn im h6heren Frequenzbereich b eo b ac ht et wurde. ( ii ) E in Anstieg der inn eren Reibung mit der Te mp erat ur im H ochte mpera turbereich (230- 273 K). (iii) Inn e rh alb dieses H ochte mpe raturbereiches w ird di e innere R e ibung a mplitud en abhangig , und diese A bh a ngigkeil wi rd gr osser je h6her die Te mpe ratur. Die inn ere R e ibun g wur de in di esem Fa ll mit Hilf e von Verse tz un gsbewegungen gede u te t. Di e ex peri- mentcllen Be fund e werden daher mit einem Mod e ll der inneren Re ibung erklar t, das a uf c in er empiri schen Bez ie hung fur die Verse tzungsgeschwindigke it beruht. Di eses Model l der i nneren Reibun g st immt mit den experime ntellen Werten gut Oberein. Es ist da mit mog li ch eine Abschatz ung der Versetz un gsdichte zu e rhalten. Daraus i ass t sich folge rn , d ass Exper ime nt e der inner en Re ibung bei d er Untersuchun g des pl astischen Ve rh altens von Eis-Einkri sta ll en nutzli ch se in k6nnen. I. I NTR ODUCTI ON The in elast ic behavio ur of ice single crystals has been st udi ed with a torsio nal pendulum in the low-frequ ency range (I H z) (Vassoille and others, 1974), where, in the temp erature range 100 to 273 K, thr ee not ewort hy features were observed (Figs I a nd 2) : (i) a relaxation peak previously observed by several a uthors in higher frequency ranges (Sc hill er, 1958; Kuroiwa , 1 964) . (ii) an int e rn al friction which increases with temperatur e in the high- tempera tur e range (230-273 K). (iii) in th e hi gh-t emper ature range, int ernal friction becom es a mplitud e d epend ent. Th e hi gher the t emperat ur e, the m ore pron ounce d this amplitude d epe nd e nce. 375

Transcript of J OUTrUl I of Glaci%gy, Vol. 2 1. No. 85. 197 8 INELASTIC ...€¦ · pos sibl e then to g e t an...

Page 1: J OUTrUl I of Glaci%gy, Vol. 2 1. No. 85. 197 8 INELASTIC ...€¦ · pos sibl e then to g e t an es tim t e of di slocat io n d e n ty. H ence it s sh o wn that intern a l fri c

J OUTrUlI of Glaci%gy, Vol. 21. No. 85. 1978

INELASTIC BEHAVIOUR THE LOW-FREQUENCY

OF ICE Ih SINGLE CRYSTALS IN RANGE DUE TO DISLOCATIONS

By R ENE V ASSOILLE, CHRISTIAN MAl and J OSEPH P EREZ (Groupe d 'Etudes de M etallurgie Physique et de Physique des Materiaux, Institut National des Sciences Appliques d e Lyon, E.R.A. n o. 463, Batiment 502, 20 avenue A. Einstein,

F -6962 I Villeurbanne-cedex, France)

ABSTRACT. The inelas ti c behavioW' of ice Ih single crystals has been inves tiga ted by an inverted torsional pendulum in the low-frequency ra nge. T hree features a re distinguished : (i) a relaxation peak previously observed by severa l authors in the higher-frequency range, (ii ) a n internal friction increas ing with tempera ture in the high-temperature range (230- 273 K ), (iii ) within this high-temperature range, interna l fri ction becom es a mplitude dependent, and this dependence becomes greater the greater the temperature.

In this case, the internal fri ction has been interpreted in terms of movements of dislocatio ns. H ence, the experimenta l resul ts are interpreted with a model of in ternal fri ction based on an empirical relation fo r the velocity of dislocations. This m odel of interna l fri ctio n is in fair agreement with experimental data. I t is possible then to get a n es tima te of dislocation de nsi ty. H ence it is shown that internal fri ction experiments can be useful in the study o f the p lasti c behaviour o f ice single crys ta ls. R ESUME. R ole des dislocatiolls dalls le com/Jortement ineLastique basse Jrtfquence de La glace Ih . L e comportement inelast ique d e la glace Ih monocrista lline a ete etudie it l'a ide d 'un pend ule de torsion inve rse fonctionnant dans le doma ine des basses frequences. 11 appa rait trois ca racteristiques:

(i) un pic de relaxation observe precedemment par d ivers a uteurs d a ns le domaine d es ha utes frequences, (ii ) un frottement inter ieur croissant ra pidem e nt avec la temperatu re dans le domaine 230- 273 K, (iii ) d a ns ce domaine d e temperatures, le fro ttem ent interieur depend de I'ampli tude de deformation et ce tte dependance est d 'autant plus forte q ue la tempera ture es t plus elevee. Nous nous sommes plus pa rticulierement interesses d a ns ce travail a u comportement d e la glace mono­cristalline dans le doma ine des ha utes tempera tures en mettant en evidence le role des d islocations. La compa ra ison d e nos resulta ts avec ceux obtenus par topographie d e rayons X nous permet d ' interprt: tcr l' cnsembl e d es donnees a pportees par le frottement interieur. 11 est a lors poss ible d 'obten ir une estimation de la d ensite d e dislocation. II appara it ainsi que les m esures de fro ttement in terieur peuvent e t re utiles pour I'etude d e la d eforma tion p lastique de la glace.

Z USAMM ENFASSUNG. Anelastisches Verhalttll VOIl Eis-lh-Einkristallen im Niedeifrequell z bereich auJgnmd VOIl Versetz llll.gen. Das anelas tische Verha lten von E is-Ih-Einkrista ll en wurde mit einem umgekeh rten Torsions­pendel im N iederfrequenzbereich untersucht. Drei Merkmale werden hera usgeslell t: (i) Ein Rclaxa Li onsdampfu ngsmaximum, d as bereits frUher von verschiedenen Verfassern im h6heren Frequenzbereich beobachtet wurde.

(ii ) E in Anstieg der inneren R eibung mit der T emperatur im H ochtempera turbereich (230- 273 K ). (iii) Innerha lb dieses H ochtemperaturbereiches w ird die innere R eibung amplitudenabhangig, und diese A bha ngigkeil wi rd grosser j e h6her die Temperatur. Die innere R eibung wurd e in diesem Fa ll mit Hilfe von Verse tzungsbewegungen gedeu te t. Die experi­mentcllen Befund e werden d a her mit einem Modell der inneren R eibung erklar t, das a uf ciner empirischen Beziehung fur die Versetzungsgeschwindigkeit beruht. Dieses Model l d er inneren R eibung stimmt mit den experimentell en Werten gu t Oberein . Es ist d a mit moglich eine Abscha tzung der Verse tzungsdichte zu erha lten. Da ra us iass t sich folgern , dass Experim e nte der inneren R eibung bei der Untersuchung des plas tischen Verhaltens von Eis-Einkrista llen nutzlich sein k6nnen .

I. I NTR ODUCTION

The inelastic behaviour of ice single crystals has been studied with a torsional pendulum in the low-frequency range ( I H z) (Vassoille and others, 1974), where, in the temperature range 100 to 273 K , three noteworthy features were observed (Figs I and 2) : (i) a relaxation peak previously observed by several authors in higher frequency ranges (Schiller, 1958; Kuroiwa, 1964) .

(ii) an internal friction which increases with temperature in the high-tempera ture range (230-273 K ). (iii) in the high-temperature range, internal friction b ecom es amplitude dependent. The higher the temperature, the more pronounced this amplitude dependence.

375

Page 2: J OUTrUl I of Glaci%gy, Vol. 2 1. No. 85. 197 8 INELASTIC ...€¦ · pos sibl e then to g e t an es tim t e of di slocat io n d e n ty. H ence it s sh o wn that intern a l fri c

JOURNAL OF GLAC10LOOY

The relaxation peak is generally considered in terms of the reorientation of water molecules during the application of cyclic stress (Bass, 1958; Gosar, 1974). This peak is described by the well known Debye relation.

The present work will deal only with the high-temperature internal friction of ice single crystals in order to show the role of dislocations. In this temperature range the dislocation mobility increases rapidly with temperature. When a shear stress is applied, dislocations can move for a short distance inducing a deformation which lags in phase behind the stress

15

10

5

100 200

2 )(10

5

4

3

2

T

273 K

Fig. I. Internal friction as a fUllction of temperature.

torsion

-C

u

B 4 e )(10 ~----.------.-----,------,------.--~

2 3 4 5

Fig. 2. Internal friction as a function of maximal strain amplitude at several temperatures. The shaded hand colltains all the results obtained between 260 and 272 K with a single crystal for which 0 = 15°, '" = 87°. The other curves are obtained with a sillgle crystal for which 0 = 21°, '" = I6° : • 272.5 K , 0 269.5 K, \l 267.5 K, 0 261.5 K, A 261 K .

Page 3: J OUTrUl I of Glaci%gy, Vol. 2 1. No. 85. 197 8 INELASTIC ...€¦ · pos sibl e then to g e t an es tim t e of di slocat io n d e n ty. H ence it s sh o wn that intern a l fri c

LOW-FREQUENCY IN ELAS TI C B E HAVIO U R OF I CE 377

(da mping), a phenomenon generally observed with other crystalline materials. T he modifica­tions of this high-temperature inelastic behaviour of ice single crystals produced by plastic deformation or doping with HF were examined. The interpretation of the experimental d ata has been sought in terms of an empirical relation for the velocity of dislocations.

2. EXPERIMENTAL PROCEDUR E

Measurements were made with a n inverted torsional p endulum in the low-frequency range. Variations in the logarithmic d ecay of oscillations versus temperature are automati­cally recorded (Etienne a nd others, 1975). The amplitude of oscillations is variable: thus, measurements of internal friction as a function of strain amplitude are possible. Specimens in the form of rectangula r bars (8 mm X 2 mm X 76 mm) were mechanically cut from single­crystal blocks grown b y the Bridgman m ethod . Measurements were directly made with: freshly grown ice, p lastically strained ice, or HF-doped ice. Plastic deformation is obtained by torsional creep at 265 K. The diffusion coefficien t of hydrogen fluoride in ice being very high (Fle tcher, 1970, p. 16 I ), this property is used for doping the specimens by covering them with a n HF solution . The HF concentration is estima ted by electrical r esistivity of the m elted specimen. Moreover, the displacement of the relaxation p eak (Vassoille and others, 19 77) confirms the result. Crystallographic orientation of specimens and dislocation density were determined by X-ray techniques.

3. EXPERIMENTAL R ESULTS

In addition to the previously observed relaxation peak, low-frequency experiments have shown a nother damping phenomenon a bove 230 K (Fig. I ) : a t these high er temperatures, as well as the normal increase of internal friction with temperature, 0 becomes amplitude

5

4

3

2

T

100 200 273 K

Fig. 3 . I nfluence oJ plastic deformation: A. wldeformed ice, B. after 0.5% straining, C. after 2.5% straining.

s

4

3

2

T

100 200 273 K

Fig. 4. In/ernal friction as a fimctioll oJ temperature Jor a single crystal oJ ice lit : A . /Jure ice, B. HF-doped ice.

Page 4: J OUTrUl I of Glaci%gy, Vol. 2 1. No. 85. 197 8 INELASTIC ...€¦ · pos sibl e then to g e t an es tim t e of di slocat io n d e n ty. H ence it s sh o wn that intern a l fri c

JOURNAL OF GLACIOLOGY

dependent. As is shown in Figure 2, this amplitude dependence IS maximum when the torsional axis is parallel to the c-axis.

It can be seen that this high-temperature internal friction increases as plastic strain is increased (Fig. 3), whereas the relaxation peak is not affected by plastic deformation as also observed by Kuroiwa (1964) . This evidence supports the view that mechanical relaxation phenomena observed in ice are not due to the movements of dislocations (VanDevender and Itagaki, 1973) .

When ice is doped with HF (Fig. 4), the relaxation peak is observed at lower temperatures than in the case of pure ice, and in addition the high-temperature internal friction is increased and becomes more amplitude dependent (Fig. 5). Furthermore, the amplitude dependence appears at lower temperatures than in the case of pure ice (the HF concentration obtained from the shift of the relaxation peak is : 2o ± 5 p.p.m.).

4. DISCUSSION

The inelastic behaviour of ice Ih in the high-temperature range is interpreted in terms of dislocation movements. Thus, it is necessary to describe models of dislocation glide in ice. Then the internal friction induced by the movement of these linear defects can be calculated and the result compared with experimental data.

~>< 102

0

40 ax 2 10 0

0

A 0 A 0

0

30 • 30 rfJ y

60 ~ •

• 0

AOO y • • 'V

• 'V A 20 • 'V • 'V

A 0 y

AO •• y

B y

20 0 y •

• 'V 00 'V 0

'V 0

0 0 [1J

y • .. • • •

10 .. .. .. 10 .. ..

£. >< 10 4

2 4 6 2 4 6

Fig. 5. Influence of HF doping on the amplitude-dependent internal friction. A . pure ice: • 272.5 K, \l 2 7I K, 0 269 K, o 267 K, t::,. 264 K. B. HF-doped ice: 0 272 K , t::,. 269.5 K, 0 267 K, \l 264 K, • 260 K.

Page 5: J OUTrUl I of Glaci%gy, Vol. 2 1. No. 85. 197 8 INELASTIC ...€¦ · pos sibl e then to g e t an es tim t e of di slocat io n d e n ty. H ence it s sh o wn that intern a l fri c

LOW - FREQUENCY INELA ST IC BEHAVIO U R OF ICE 379

4. I. On the dynamic behaviour of dislocations in ice." a summary

The experimental study of the plasticity of ice, and observations of etch pits or X-ray topography show that ice plasticity is connected with dislocation movement in the basal plane. These dislocations have Burgers vectors such as b = t a( I 120). The glide of these dislocations takes place by breaking bonds and forming other bonds. Glen (1968) suggested this formation of new bonds is only possible if H 20 molecules are correctly orientated. This idea has been quantitatively developed by several authors (Perez and others, 1975; Whitworth and others, 1976; Frost and others, 1976). The velocity of a dislocation Vd is generally given at low stresses by:

bs T

Vd = ANk--, kTTr

( I)

where A is a numerical coefficient ( I < A < 8), N k the concentration of kinks along the dislocation, and Tr the relaxation time associated with water-molecule rotation.

At higher stresses, thermal activation of double kinks must be taken into account and the following expression has been proposed

the factor P( 'T ) shows a stress dependence which is nearly exponential. However this model is not satisfactory since the stress d ependence at high stresses is not properly described , nor can the HF doping effect be satisfactorily explained by this model. Furthermore, X -ray topographic measurements show the dislocation velocity in ice to increase both with stress and temperature but as the temperature increases, the stress dependence becomes relatively higher. These results can be described by the empirical relation:

This relation corresponds to a linear variation of Vd with 'T only when 'T or a (or, strictly, aT!) has a low value. Ua is an apparent activation energy to which it is difficult to give a physical meaning. The results of Mal (1976) lead to the values A = 54.3 X 10" Ua = 0.55 ± 0.05 eV, while a varies from 10- 3 (at 25 I K ) to 3 X 10- 3 (at 270 K ).

4.2. Calculation of the internal friction

The logarithmic decrement is given by:

~W S = -

2W'

with ~ W = f 'T dE, the energy dissipa ted during one cycle of sine stress, and W = T 02 /2G,

the maximum elastic energy during this stress cycle. The strain-rate of a crystal having dislocation density Pd is given by :

E = PdVdb.

If the sinusoidally varying stress is given by 'T = To sin 217llt we obtain:

Gpdb f S = -- sin ( 27Tllt) Vd dt. TO

In an earlier paper, it was proposed (Perez and others, 1975) that

(i) kink diffusion induces amplitude-independent internal friction SI (Equation ( I) is used to calculate Equation (4) ) ;

(ii) thermal activation of double kinks induces temperature- and amplitude-dependent internal friction S2 (Equation (2) is used to calculate Equation (4)).

Page 6: J OUTrUl I of Glaci%gy, Vol. 2 1. No. 85. 197 8 INELASTIC ...€¦ · pos sibl e then to g e t an es tim t e of di slocat io n d e n ty. H ence it s sh o wn that intern a l fri c

JOURNAL OF GLACIOLOGY

Actually, the result obtained for high-amplitude stresses or after HF doping h ave shown that this suggestion is not in good agreement with a ll the experimental data. Hence, Equation (4) has been calculated using the empirical relation in Equation (3) . The result was simplified to:

sinh <%7} 8 ~ 8(0, T) !'

TO

where

AGpdb (Ua) 8(0, T) = --;;- exp -kT . (6)

8( 0, T ) is proportional to the dislocation density pd. At low stresses, Equation (5) can be simplified and one has

8 ~ Q'.8 (0, T ). Thus, it can be concluded that there is only one type of internal friction which is both stress and temperature d ependent and which is due to the movement of dislocations in ice ; at low stresses, this internal friction dep ends only on temperature (Equation (7)) but as the tempera­ture increases the stress dependence becomes rela tively higher (Equation (5)) .

A B 1000

500 / 1 3 5 7 1 3 5 7

2000

E

1000

1 3 5 7 1 3 5 7 9 1357913

1

sh {a.T'!} Fig. 6. Variations of ,h! plotted against sink (STi) for pure ice .' A. 26,; K, B. 267 K, C. 269 K, D. 27 I K, E . 272.5 K.

Page 7: J OUTrUl I of Glaci%gy, Vol. 2 1. No. 85. 197 8 INELASTIC ...€¦ · pos sibl e then to g e t an es tim t e of di slocat io n d e n ty. H ence it s sh o wn that intern a l fri c

255

255

LOW-FREQUENCY INELA ST I C BEHAVIOUR OF ICE

T A

260

(8) e - - --

260

e

)(

VTA

265

(a)

e

* T

v

e e

)(

A)(TA

V O

8

270

3 0<.. )(10

4

3 e

)(

T

° 2 V

3 0<)(10

4

3

_ _ e _ _ -e - - -e .-- ­---2

265 (b)

-- --

270

381

T

K

T

K

Fig. 7. Variation cif" with temperature. (a) All results for six specimens, (b) comparison between pure ice (A ) and HF-doped ice (E ).

Page 8: J OUTrUl I of Glaci%gy, Vol. 2 1. No. 85. 197 8 INELASTIC ...€¦ · pos sibl e then to g e t an es tim t e of di slocat io n d e n ty. H ence it s sh o wn that intern a l fri c

JOURNAL OF GLAC10LOGY

4.3. Comparison with experimental data

After measuring the internal friction as a function of amplitude, local internal friction has been calculated from global results (e.g. Figs 2 and 5) which corresponds to a specimen with a stress gradient as indicated by Perez and others (1965) . Then, after transformation of the curves in Figure 5, it has been asserted that it is possible to find such values of a that straight lines are obtained in a plot of ST! against sinh aT! (Fig. 6) . The variations of a with tempera­ture is shown for six different specimens in Figure 7(a) . In spite of the scatter, the values appear to be in good agreement with those obtained by X -ray topographical measurem ents and increase with tempera ture.

In the case of HF -doped ice, the same theoretical treatment applied to the experimental data leads to an higher value of a. Moreover, this value is less temperature dependent than in the case of non-doped ice (Fig. 7 (b)) . Such a result is again in accordance with those obtained by C. Mal and co-workers from X -ray topographic observations made with HF -doped

20 20

10

T

230 250 2 7 0 23 0 250 2 7 0 K

(a) (b)

Fig. 8. H igh temperature internal friction; the f ull line is the experimental curve, the points plotted are theoretical values : A. pure ice, B. HF-doped ice.

Laboratory :

Growing method: X-ray topography :

Internal friction:

TABLE 1. DISLOCATION DENSITIES Pd IN cm/cm3

SPecimen

G" Gzz G3 •

G 3•

Grenoble, June 1976

(a) Internalfriction measurements

Initial density

5.o x 105

3.5 X 105

5.o x 105

4.o x 105

4.o x 106

Densiry after plastic diformation

(4.8%) 1.5 X 10 7

(2. 1%) 107

(0.8%) 4.5 X 106

(7.0%) 2.5 X 10 7

D ensiry when HF doped

(b) Comparison between X -ray topographic and internal fric tion data

E.T.H., Institut de Glaciologie, D epartment of Environment, Zurich Grenoble Ottawa

modified Bridgman method modified Bridgman method melting-zone method I04± I IOS± I I03± I

106 3 X IOsto 4 X 105 6 X 105

(5 samples of part (a) above)

Page 9: J OUTrUl I of Glaci%gy, Vol. 2 1. No. 85. 197 8 INELASTIC ...€¦ · pos sibl e then to g e t an es tim t e of di slocat io n d e n ty. H ence it s sh o wn that intern a l fri c

LOW-FREQUENCY I NELAST IC BEHAVIOUR OF I CE

ice. Equation (7) has been used to d escribe the low-stress temperature-dependent interna l friction (Fig. I) . A value of Ua ~ 0.41 eV was obtained, but this value may vary from one specimen to another, and the results obtained with 70 samples corresponding to different ice single crystals are in the range :

0·33 eV ~ Ua ~ 0.53 eV,

depending on the history of the ice single crystal and the specimens. These values decrease after H F doping, for instance, in the case of the specimen corresponding to the curves sh own in Figure 4, Ua = 0.30 eV after HF doping. This value has to be compared to the one obtained before HF doping, i. e. 0.41 eV.

From Equation (6) , values of Pd can be calculated for different specimens with the corres­ponding values of Ua a nd A. These values are shown in Table I from which several conclusions can b e drawn:

(i) the calcula ted value of Pd is sensibly higher than that directly measured by X-ray topography. As the mounting of the specimens in the pendulum needs mechanical m achining, dislocation density might have been increased, especia lly on the surface; on the other hand, it was possible to use chemical cutting for sp ecimens used for X-ray topography and so the accidental multiplication of dislocations is less proba ble.

(ii) the dislocation density is increased by plastic deformation; this increase depends on strain ratio.

(iii) HF doping a lso leads to an increase of the dislocation density; this result is in agree­ment with X-ray topographic observations (Jones and Gilra, 1973) . So it appears that HF doping leads to an increase of both velocity and density of dislocations.

5. CONCLUSION

The present investigation has clearly shown the influence of dislocations in the inelastic behaviour of ice single crystals in the high-temperature range. Indeed , this inelastic behaviour is very similar to the behaviour of dislocations in the same range of temperature and stress observed by X-ray topography. Thus it is possible to use internal fric tion measurements to obtain results on linear defects which are useful for the a na lysis of the physical or mechanical behaviour of ice. Nevertheless, a description of the process of dislocation glide in ice is needed to improve the analysis of our interna l friction data.

ACKNOWLEDGEMENTS

We a re grateful to Drs J. Bilgra m (Zurich), j . Klinger (Grenoble) , S. J. j ones, and G. P. j ohari (Ottawa) for the ice single crystals they kindly supplied.

REFERENCES

Bass, R . 1958. Zur T heorie der mechanischen Relaxation des Eises. Z eitschrift fur Physik, Bd. 153, Ht. J,

p. 16- 37· Etienne, S., alld others. 1975. Estimation du coefficient d 'amortissement en presence de p erturbations; application

a la mesure du coefficient de frottement interieur d u materia u , [pa r] S. Etienne, J. Perez et B. Dubuisson. Journal of Physics E, Vo!. 8, No. 8, p. 666- 700;.

Flctcher, N. H. 1970. The chemical physics of ice. Cambridge, University Press . (Cambridge Monographs on Physics.)

Frost, H. J., alld others. 1976. Kink velocities on dislocations in ice. A comment on the Whitworth, Paren and Glen model, by H . J. Frost, D. J. Goodman a nd M . F. Ashby. Philosophical Maga z ine, E ighth Ser., Vo!. 33, No. 6, p . 95 1- 61.

Glen, J. W. 1968. T he effect of hyd rogen d isorder on dislocation movement and p lastic deformation of ice. Plrysik der kOlldensierten Materie, Bd. 7, Ht. I , p . 43- 51.

13

Page 10: J OUTrUl I of Glaci%gy, Vol. 2 1. No. 85. 197 8 INELASTIC ...€¦ · pos sibl e then to g e t an es tim t e of di slocat io n d e n ty. H ence it s sh o wn that intern a l fri c

JOURNAL OF GLACIOLOGY

Gosar, P. 1974. Theory of anelastic relaxation of cubic and hexagonal ice. Philosophical Maga z ine, Eighth Ser. , Vo!. 29, No. 2, p. 221 - 40.

]ones, S. ]. , and Gilra, N. K. 1973. Dislocations in ice observed by X-ray topography. (In Whalley, E. , and others, ed. Physics and chemistry cif ice: papers presented at the Symposium on the Physics and Chemistry of Ice, held in Ottawa, Canada, [4- [8 August [972. Edited by E. Whalley, S. J . Jones, L. W. Gold. Ottawa, Royal Society of Canada, p. 344- 49.)

Kuroiwa, D. 1964. Internal fri ction of ice. Contributions from the Institute cif Low Temperature Science (Sapporo), Ser. A, No. 18.

Mal, C. 1976. Etude par topographie X du comportement dynamique des dislocations dans la glace Ih. Comptes Rendus Hebdomadaires des Siances de l 'Acadimie des Sciences (Paris), Ser. B, Tom. 282, No. 22, p. 515- 18.

P erez, ] ., and others. 1965. Calcula tion of the amplitude dependence of internal friction from measurement of torsional damping, [by]]. Percz, P. Peguin and P. F. Gobin. British Joumal of Applied Physics, Vo!. 16, No. 8, p . 1347- 51.

Perez, ] ., and others. 1975. Comportement dynamique des dislocations dans la glace, par]. P erez,]. T atibouet, R. Vassoille e t P.-F. Gobin. Philosophical Maga zine, Eighth Ser., Vo!. 31, No. 5, p. 985- 99.

Perez, J., and others. 1976. Internal friction and microplasticity of ice I, by]. Perez, C. Mal, ]. Tatibouet and R. Vassoille. Nuovo Cimento, Sel·. 11 , Vol. 33B, No. I , p. 86- 95.

Perez, J., and others. 1978. Cooperative movement of H 2 0 molecules and dynamic behaviour of dislocations in ice lh, by]. Perez, C. Mal and R. Vassoille. Joumal of Glaciology, Vol. 21, No. 85, p. 361- 74.

Schiller, P. 1958. Die mechanische R elation in reinen Eiseinkristallen. Z eitschrift fiir P~ysik, Bd. 153, Ht. I ,

P·I- 15· VanDevender, ]. P., alld Itagaki, K. 1973. Internal friction of single crystal ice. U.S. Cold Regions Research and

Engineering Laboratory. Research R eport 243. Vassoille, R., and others. 1974. Comportement anelastique de la glace aux faibles frequences de sollicitation,

[par] R . Vassoille, J. Tatibouet,]. Perez et P.-F. Gobin. Comptes Rendus H ebdomadaires des S i ances de l'Acadimie des Sciences (Paris), Ser. B, Tom. 278, No. 10, p. 409- 12.

Vassoille, R., and others. 1977. Comportement anelastique de la glace h dopee avec HF, [par] R. Vassoille, ]. Perez, C. Mal et]. Tatibouet. Journal of Physics and Chemistry of Solids , Vo!. 38, No. 11 , p. 1297- 300.

Whitworth, R . W. , alld others. 1976. The velocity of dislocations in ice- a theory based on proton disorder, by R. W. Whitworth,]. G. Paren and]. W. Glen. Philosophical Maga z ine, Eighth Ser. , Vo!. 33, No. 3, p. 409- 26.

DISCUSSION

C. R. BENTLEY: At what frequency were the torsional experiments carried out?

R. V ASSOILLE: The experiments were done with a torsional pendulum and the frequency was about one Hertz.

J . W. GLEN : Following Dr Jones' comment on the previous paper, it would seem desirable to do measurements of anelastic behaviour on crystals doped with dopants that do not increase the creep rate- they should presumably dissolve in the core and increase its size and might have been expected to increase velocity of individual dislocations. Your technique would seem to be capable of sorting this out.

VASSOILLE: We agree about the interest in such experiments and we hope to have the possi­bility of doing them in the near future. Nevertheless, the dissolution in the core of dopants, whatever they are, is not evident; furthermore as dopants can precipitate, it may be that they form obstacles to dislocation glide. In such a case, the suggested experiments would give results depending on both the increase of the size of cores and the effect of obstacles.