J. Daunizeau ICM, Paris, France ETH, Zurich, Switzerland Dynamic Causal Modelling of fMRI...

36
J. Daunizeau ICM, Paris, France ETH, Zurich, Switzerland Dynamic Causal Modelling of fMRI timeseries

Transcript of J. Daunizeau ICM, Paris, France ETH, Zurich, Switzerland Dynamic Causal Modelling of fMRI...

Page 1: J. Daunizeau ICM, Paris, France ETH, Zurich, Switzerland Dynamic Causal Modelling of fMRI timeseries.

J. Daunizeau

ICM, Paris, France

ETH, Zurich, Switzerland

Dynamic Causal Modellingof fMRI timeseries

Page 2: J. Daunizeau ICM, Paris, France ETH, Zurich, Switzerland Dynamic Causal Modelling of fMRI timeseries.

Overview

1 DCM: introduction

2 Dynamical systems theory

4 Bayesian inference

5 Conclusion

Page 3: J. Daunizeau ICM, Paris, France ETH, Zurich, Switzerland Dynamic Causal Modelling of fMRI timeseries.

Overview

1 DCM: introduction

2 Dynamical systems theory

4 Bayesian inference

5 Conclusion

Page 4: J. Daunizeau ICM, Paris, France ETH, Zurich, Switzerland Dynamic Causal Modelling of fMRI timeseries.

Introductionstructural, functional and effective connectivity

• structural connectivity= presence of axonal connections

• functional connectivity = statistical dependencies between regional time series

• effective connectivity = causal (directed) influences between neuronal populations

! connections are recruited in a context-dependent fashion

O. Sporns 2007, Scholarpedia

structural connectivity functional connectivity effective connectivity

Page 5: J. Daunizeau ICM, Paris, France ETH, Zurich, Switzerland Dynamic Causal Modelling of fMRI timeseries.

u1 u1 X u2

localizing brain activity:functional segregation

Introductionfrom functional segregation to functional integration

« Where, in the brain, didmy experimental manipulation

have an effect? »

A B

u2u1

A B

u2u1

effective connectivity analysis:functional integration

« How did my experimental manipulationpropagate through the network? »

?

Page 6: J. Daunizeau ICM, Paris, France ETH, Zurich, Switzerland Dynamic Causal Modelling of fMRI timeseries.

1 2

31 2

31 2

3

time

0 ?tx

t

0t

t t

t t

t

Introductiondynamical system theory

1 2

3

32

21

13

u

13u 3

u

u x y

Page 7: J. Daunizeau ICM, Paris, France ETH, Zurich, Switzerland Dynamic Causal Modelling of fMRI timeseries.

( , , )x f x u neural states dynamics

Electromagneticobservation model:spatial convolution

• realistic neuronal model• linear observation model

EEG/MEGEEG/MEG

inputs

IntroductionDCM: evolution and observation mappings

• agnostic neuronal model• realistic observation model

fMRIfMRI

Hemodynamicobservation model:temporal convolution

Page 8: J. Daunizeau ICM, Paris, France ETH, Zurich, Switzerland Dynamic Causal Modelling of fMRI timeseries.

IntroductionDCM: a parametric statistical approach

,

, ,

y g x

x f x u

• DCM: model structure

1

2

4

3

24

u

, ,p y m likelihood

• DCM: Bayesian inference

ˆ ,E y m

, ,p y m p y m p m p m d d

model evidence:

parameter estimate:

priors on parameters

Page 9: J. Daunizeau ICM, Paris, France ETH, Zurich, Switzerland Dynamic Causal Modelling of fMRI timeseries.

response

or or

time (ms)0 200 400 600 800 2000

Put

PPA FFA

PMd

P(outcome|cue)

PMdPutPPAFFA

auditory cue visual outcome

cue-independent surprise

cue-dependent surprise

Den Ouden, Daunizeau et al., J. Neurosci., 2010

IntroductionDCM for fMRI: audio-visual associative learning

Page 10: J. Daunizeau ICM, Paris, France ETH, Zurich, Switzerland Dynamic Causal Modelling of fMRI timeseries.

Lebreton et al., 2011

IntroductionDCM for fMRI: assessing mimetic desire in the brain

Page 11: J. Daunizeau ICM, Paris, France ETH, Zurich, Switzerland Dynamic Causal Modelling of fMRI timeseries.

Overview

1 DCM: introduction

2 Dynamical systems theory

4 Bayesian inference

5 Conclusion

Page 12: J. Daunizeau ICM, Paris, France ETH, Zurich, Switzerland Dynamic Causal Modelling of fMRI timeseries.

Dynamical systems theorysystem’s stability

-0.5 0 0.5 1 1.5 2

-20

-10

0

10

20

time (sec)

x(t)

a=1.2

-0.5 0 0.5 1 1.5 2

-20

-10

0

10

20

time (sec)

x(t)

a=-1.2

fixed point = stable fixed point = unstable

 .

a<0 a>0

Page 13: J. Daunizeau ICM, Paris, France ETH, Zurich, Switzerland Dynamic Causal Modelling of fMRI timeseries.

Dynamical systems theorydynamical modes in ND

Page 14: J. Daunizeau ICM, Paris, France ETH, Zurich, Switzerland Dynamic Causal Modelling of fMRI timeseries.

Dynamical systems theorydamped oscillations: spirals

x1

x2

Page 15: J. Daunizeau ICM, Paris, France ETH, Zurich, Switzerland Dynamic Causal Modelling of fMRI timeseries.

Dynamical systems theorydamped oscillations: states’ correlation structure

Page 16: J. Daunizeau ICM, Paris, France ETH, Zurich, Switzerland Dynamic Causal Modelling of fMRI timeseries.

Dynamical systems theoryimpulse response functions: convolution kernels

u

0 20 40 60 80 100-0.2

0

0.2

0.4

0.6

0.8

1

1.2

time (sec)

u(t

)

input u

0 20 40 60 80 100-0.2

0

0.2

0.4

0.6

0.8

1

1.2

time (sec)

x(t)

output xu

Page 17: J. Daunizeau ICM, Paris, France ETH, Zurich, Switzerland Dynamic Causal Modelling of fMRI timeseries.

Dynamical systems theorysummary

• Motivation: modelling reciprocal influences (feedback loops)

• Dynamical repertoire depend on the system’s dimension (and nonlinearities):o D>0: fixed pointso D>1: spiralso D>1: limit cycles (e.g., action potentials)o D>2: metastability (e.g., winnerless competition)

• Linear dynamical systems can be described in terms of their impulse response

limit cycle (Vand Der Pol) strange attractor (Lorenz)

Page 18: J. Daunizeau ICM, Paris, France ETH, Zurich, Switzerland Dynamic Causal Modelling of fMRI timeseries.

( )

1

mi

ii

x A u B x Cu

bilinear state equation:

a24

c1

4

13

driving input

b12

2

d24 gating effect

u1

u2modulatory effect

2 2 2

0 2

0

( , ) ,0 ...2

f f f f xx f x u f x x u ux

x u x u x

( ) ( )

1 1

m ni j

i ji j

x A u B x D x Cu

nonlinear state equation:

Stephan et al., 2008

Dynamical systems theoryagnostic neural dynamics

Page 19: J. Daunizeau ICM, Paris, France ETH, Zurich, Switzerland Dynamic Causal Modelling of fMRI timeseries.

experimentally controlledstimulus

u ( ) ( )

1 1

m ni j

i ji j

x A u B x D x Cu

tneural states dynamics

(rCBF) flow induction

f s

s

v

v

q1

0 0( ) /

changes in dHb

q f E f,E E v q / v 1/

changes in volume

v f v

f

q

( 1)

vasodilatory signal

s x s f s

f

Balloon model

hemodynamic states dynamics

BOLD signal change observation

0 1 2 30

1 0 0

2 0 0

3

( , ) 1 1 1

4.3

1

S qq v V k q k k v

S v

k E TE

k r E TE

k

0{ , , , , , }h E

( ) ( ){ , , , }n i jA B C D

Friston et al., 2003

Dynamical systems theorythe neuro-vascular coupling

Page 20: J. Daunizeau ICM, Paris, France ETH, Zurich, Switzerland Dynamic Causal Modelling of fMRI timeseries.

Overview

1 DCM: introduction

2 Dynamical systems theory

4 Bayesian inference

5 Conclusion

Page 21: J. Daunizeau ICM, Paris, France ETH, Zurich, Switzerland Dynamic Causal Modelling of fMRI timeseries.

Bayesian inferenceforward and inverse problems

,p y m

forward problem

likelihood

,p y m

inverse problem

posterior distribution

Page 22: J. Daunizeau ICM, Paris, France ETH, Zurich, Switzerland Dynamic Causal Modelling of fMRI timeseries.

Bayesian paradigmderiving the likelihood function

- Model of data with unknown parameters:

y f e.g., GLM: f X

- But data is noisy: y f

- Assume noise/residuals is ‘small’:

22

1exp

2p

4 0.05P

→ Distribution of data, given fixed parameters:

2

2

1exp

2p y y f

f

Page 23: J. Daunizeau ICM, Paris, France ETH, Zurich, Switzerland Dynamic Causal Modelling of fMRI timeseries.

Likelihood:

Prior:

Bayes rule:

Bayesian paradigmlikelihood, priors and the model evidence

generative model m

Page 24: J. Daunizeau ICM, Paris, France ETH, Zurich, Switzerland Dynamic Causal Modelling of fMRI timeseries.

Bayesian paradigmthe likelihood function of an alpha kernel

holding the parameters fixed holding the data fixed

0 20 40 60 80 100-0.2

0

0.2

0.4

0.6

0.8

1

1.2

time (sec)

u(t

)input u

0 20 40 60 80 100-0.2

0

0.2

0.4

0.6

0.8

1

1.2

time (sec)

x(t)

output x

Page 25: J. Daunizeau ICM, Paris, France ETH, Zurich, Switzerland Dynamic Causal Modelling of fMRI timeseries.

Bayesian inferencetype, role and impact of priors

• Types of priors:

Explicit priors on model parameters (e.g., connection strengths)

Implicit priors on model functional form (e.g., system dynamics)

Choice of “interesting” data features (e.g., ERP vs phase data)

• Impact of priors:

On parameter posterior distributions (cf. “shrinkage to the mean” effect)

On model evidence (cf. “Occam’s razor”)

On free-energy landscape (cf. Laplace approximation)

• Role of priors (on model parameters):

Resolving the ill-posedness of the inverse problem

Avoiding overfitting (cf. generalization error)

Page 26: J. Daunizeau ICM, Paris, France ETH, Zurich, Switzerland Dynamic Causal Modelling of fMRI timeseries.

Principle of parsimony :« plurality should not be assumed without necessity »

“Occam’s razor” :

mo

de

l evi

de

nce

p(y

|m)

space of all data sets

y=f(

x)y

= f(

x)

x

Bayesian inferencemodel comparison

Model evidence:

,p y m p y m p m d

Page 27: J. Daunizeau ICM, Paris, France ETH, Zurich, Switzerland Dynamic Causal Modelling of fMRI timeseries.

ln ln , ; ,KLqp y m p y m S q D q p y m

free energy : functional of q

1 or 2q

1 or 2 ,p y m

1 2, ,p y m

1

2

mean-field: approximate marginal posterior distributions: 1 2,q q

Bayesian inferencethe variational Bayesian approach

Page 28: J. Daunizeau ICM, Paris, France ETH, Zurich, Switzerland Dynamic Causal Modelling of fMRI timeseries.

1 2

3

32

21

13

u

13u 3

u

Bayesian inferenceDCM: key model parameters

state-state coupling 21 32 13, ,

3u input-state coupling

13u input-dependent modulatory effect

Page 29: J. Daunizeau ICM, Paris, France ETH, Zurich, Switzerland Dynamic Causal Modelling of fMRI timeseries.

Bayesian inferencemodel comparison for group studies

m1

m2

diffe

ren

ces

in lo

g- m

odel

evi

denc

es

1 2ln lnp y m p y m

subjects

fixed effect

random effect

assume all subjects correspond to the same model

assume different subjects might correspond to different models

Page 30: J. Daunizeau ICM, Paris, France ETH, Zurich, Switzerland Dynamic Causal Modelling of fMRI timeseries.

Overview

1 DCM: introduction

2 Dynamical systems theory

4 Bayesian inference

5 Conclusion

Page 31: J. Daunizeau ICM, Paris, France ETH, Zurich, Switzerland Dynamic Causal Modelling of fMRI timeseries.

Conclusionsummary

• Functional integration

→ connections are recruited in a context-dependent fashion

→ which connections are modulated by experimental factors?

• Dynamical system theory

→ DCM uses it to model feedback loops

→ linear systems have a unique impulse response function

• Bayesian inference

→ parameter estimation and model comparison/selection

→ types, roles and impacts of priors

Page 32: J. Daunizeau ICM, Paris, France ETH, Zurich, Switzerland Dynamic Causal Modelling of fMRI timeseries.

ConclusionDCM for fMRI: variants

stochastic DCM

two-states DCM

2 2 2

2 2

f f f f xx x u ux

x u x u x

0, xt N Q

Ex1

Ix1

11 11exp IE IEA uBIEx ,

1

time (s)

x 1 (

A.U

.) ( )p x t

Page 33: J. Daunizeau ICM, Paris, France ETH, Zurich, Switzerland Dynamic Causal Modelling of fMRI timeseries.

ConclusionDCM for fMRI: validation

activation deactivation

David et al., 2008

Page 34: J. Daunizeau ICM, Paris, France ETH, Zurich, Switzerland Dynamic Causal Modelling of fMRI timeseries.

• Suitable experimental design:– any design that is suitable for a GLM (including multifactorial designs)– include rest periods (cf. build-up and decay dynamics)– re-write the experimental manipulation in terms of:

• driving inputs (e.g., presence/absence of visual stimulation) • modulatory inputs (e.g., presence/absence of motion in visual inputs)

• Hypothesis and model:– Identify specific a priori hypotheses (≠ functional segregation)– which models are relevant to test this hypothesis?– check existence of effect on data features of interest– formal methods for optimizing the experimental design w.r.t. DCM [Daunizeau et al., PLoS Comp. Biol., 2011]

Conclusionplanning a compatible DCM study

Page 35: J. Daunizeau ICM, Paris, France ETH, Zurich, Switzerland Dynamic Causal Modelling of fMRI timeseries.

References

Daunizeau et al. 2012: Stochastic Dynamic Causal Modelling of fMRI data: should we care about neural noise? Neuroimage 62: 464-481.

Schmidt et al., 2012: Neural mechanisms underlying motivation of mental versus physical effort. PLoS Biol. 10(2): e1001266.

Daunizeau et al., 2011: Optimizing experimental design for comparing models of brain function. PLoS Comp. Biol. 7(11): e1002280

Daunizeau et al., 2011: Dynamic Causal Modelling: a critical review of the biophysical and statistical foundations. Neuroimage, 58: 312-322.

Den Ouden et al., 2010: Striatal prediction error modulates cortical coupling. J. Neurosci, 30: 3210-3219.

Stephan et al., 2009: Bayesian model selection for group studies. Neuroimage 46: 1004-1017.

David et al., 2008: Identifying Neural Drivers with Functional MRI: An Electrophysiological Validation. PloS Biol. 6: e315.

Stephan et al., 2008: Nonlinear dynamic causal models for fMRI. Neuroimage, 42: 649-662.

Friston et al., 2007: Variational Free Energy and the Laplace approximation. Neuroimage, 34: 220-234.

Sporns O., 2007: Brain connectivity. Scholarpedia 2(10): 1695.

David O., 2006: Dynamic causal modeling of evoked responses in EEG and MEG. Neuroimage, 30: 1255-1272.

Friston et al., 2003: Dynamic Causal Modelling. Neuroimage 19: 1273-1302.

Page 36: J. Daunizeau ICM, Paris, France ETH, Zurich, Switzerland Dynamic Causal Modelling of fMRI timeseries.

Many thanks to:

Karl J. Friston (UCL, London, UK)Will D. Penny (UCL, London, UK)

Klaas E. Stephan (UZH, Zurich, Switzerland)Stefan Kiebel (MPI, Leipzig, Germany)