J Cell Biol-2010-Cabianca-1049-60(2)

download J Cell Biol-2010-Cabianca-1049-60(2)

of 12

Transcript of J Cell Biol-2010-Cabianca-1049-60(2)

  • 8/8/2019 J Cell Biol-2010-Cabianca-1049-60(2)

    1/12

    The Rockefeller University Press $30.00J. Cell Biol. Vol. 191 No. 6 10491060

    www.jcb.org/cgi/doi/10.1083/jcb.201007028 JCB 104

    JCB: Review

    Correspondence to Davide Gabellini: [email protected]

    Abbreviations used in this paper: 3C, chromosome conormation capture; CNV,copy number variation; DRC, D4Z4 repressor complex; FSHD, acioscapulo-humeral muscular dystrophy; H3K9me3, histone H3 lysine 9 tri-methylation;H3K27me3, histone H3 lysine 27 tri-methylation; MAR, matrix attachment re-gion; SNP, single-nucleotide polymorphism.

    Copy number variations are an important

    source o human genetic diversity

    Genetic association studies generally evaluate single-nucleotide

    polymorphisms (SNPs), which are single nucleotides at specic

    genomic locations that vary between individuals o the same

    species. Recent results indicate that the human genome contains

    another requent type o polymorphism: copy number varia-

    tions (CNVs; Conrad et al., 2010). A CNV is a segment o DNA

    that can be ound in various copy numbers in the genomes o

    dierent individuals (Fig. 1). CNVs range in size rom a ew

    hundred nucleotides to several megabases. Compared with SNPs,

    CNVs aect a more signicant raction o the genome and

    arise more requently. Hence, CNVs signicantly contribute to

    human evolution, genetic diversity, and an increasing number o

    phenotypic traits (Stankiewicz and Lupski, 2010).

    Depending on the genomic context, CNVs can have vary-

    ing eects (Fig. 1). For example, recent data indicate that CNVs

    directly alter the structure o 12.5% o protein-coding genes

    (Conrad et al., 2010), and there is increasing evidence to suggest

    that CNVs play an important role in a number o Mendelian dis-

    eases and common complex disorders (Stankiewicz and Lupski,2010). For example, Charcot-Marie-Tooth type 1A disease is

    caused by duplications in the PMP22 gene, which encodes an inte-

    gral membrane protein that is a major component o compact my-

    elin in the peripheral nervous system (Chance et al., 1994). Also,

    susceptibility to acquired immune deciency syndrome is aected

    by segmental duplications encompassing the CCL3L1 gene,

    which encodes the CCR5 chemokine and ligand or the human

    immunodeciency virus coreceptor (Gonzalez et al., 2005).

    CNVs can also aect gene dosage and expression (Stranger

    et al., 2007). Recent data indicate that nonB-DNA orming se-

    quences, which are usually enriched in promoter regions, are

    also enriched in CNV breakpoints. Thus, the same eatures that

    are involved in transcriptional regulation may also be involvedin the ormation o CNVs. As a consequence, CNVs might shape

    the evolution o gene regulation (Conrad et al., 2010).

    More than hal o the human genome is comprised o repeti-

    tive sequences (Neguembor and Gabellini, 2010). Because repeti-

    tive sequences can act as substrates or homologous recombination,

    their presence acilitates the instability o our genome (Gu et al.,

    2008). As a result, repetitive sequences account or a signicant

    amount o human CNVs (Warburton et al., 2008).

    In this review we will ocus on an important human ge-

    netic disease, acioscapulohumeral muscular dystrophy (FSHD),

    which is caused by the presence o CNVs o a repetitive sequence

    that regulates gene expression.

    Clinical eatures o FSHD

    FSHD (MIM #158900) is characterized by the progressive

    weakness and atrophy o a specic subset o skeletal muscles.

    In humans, copy number variations (CNVs) are a com-mon source o phenotypic diversity and disease suscepti-bility. Facioscapulohumeral muscular dystrophy (FSHD) isan important genetic disease caused by CNVs. It is an

    autosomal-dominant myopathy caused by a reduction inthe copy number o the D4Z4 macrosatellite repeat lo-cated at chromosome 4q35. Interestingly, the reduction oD4Z4 copy number is not sufcient by itsel to cause FSHD.A number o epigenetic events appear to aect the sever-ity o the disease, its rate o progression, and the distribu-tion o muscle weakness. Indeed, recent fndings suggestthat virtually all levels o epigenetic regulation, rom DNAmethylation to higher order chromosomal architecture,are altered at the disease locus, causing the de-regulationo 4q35 gene expression and ultimately FSHD.

    The cell biology o disease

    FSHD: copy number variations on the theme omuscular dystrophy

    Daphne Selvaggia Cabianca1,2 and Davide Gabellini2,3

    1International PhD Program in Cellular and Molecular Biology, Vita-Salute San Raaele University, 20132 Milan, Italy2Division o Regenerative Medicine, San Raaele Scientifc Institute, DIBIT 1, 2A3-49, 20132 Milan, Italy3Dulbecco Telethon Institute, 20132 Milan, Italy

    2010 Cabianca and Gabellini This article is distributed under the terms o an AttributionNoncommercialShare AlikeNo Mirror Sites license or the frst six months ater the pub-lication date (see http://www.rupress.org/terms). Ater six months it is available under aCreative Commons License (AttributionNoncommercialShare Alike 3.0 Unported license,as described at http://creativecommons.org/licenses/by-nc-sa/3.0/).

    Published December 13, 2010

  • 8/8/2019 J Cell Biol-2010-Cabianca-1049-60(2)

    2/12

    JCB VOLUME 191 NUMBER 6 20101050

    onset can vary rom inancy to age 50 (van der Maarel et al.,

    2007). Early-onset cases are generally associated with more se-

    vere phenotypes (Miura et al., 1998; Klinge et al., 2006). Inter-estingly, the FSHD phenotype is gender dependent. Typically,

    males are more severely aected, whereas emales can develop

    a milder or asymptomatic orm o the disease (Padberg, 1982;

    Zatz et al., 1998; Ricci et al., 1999; Tonini et al., 2004).

    Muscle impairment in FSHD is oten asymmetric: mus-

    cles on one side o the body appear much more compromised

    than on the other side (Kilmer et al., 1995). Various hypotheses

    have been proposed to explain this phenomenon, including over-

    work weakness and handedness, but the mechanism underlying

    this asymmetric phenotype in FSHD remains unknown (Pandya

    et al., 2008).

    The rate o FSHD progression and the distribution o

    muscle weakness are highly variable, even between close amily

    relatives. Indeed, these eatures were noted in the rst study

    conducted on the disease in the late 1800s (Landoyzy and

    Dejerine, 1886). A number o monozygotic twins discordant or

    the penetrance o FSHD have been described, pointing to a

    strong epigenetic component in the disease (Tawil et al., 1993;

    Griggs et al., 1995; Hsu et al., 1997; Tupler et al., 1998).

    Although the genetic deect underlying FSHD has been

    identied, the molecular mechanism causing the disease re-

    mains unclear. Recent results suggest that complex genetic

    events contribute to FSHD, as discussed below.

    As the name implies, FSHD mostly aects the muscles o the

    ace, scapula, and upper arms (Tawil et al., 1998). The peculiar

    involvement o specic muscles is such a striking eature oFSHD that it is oten used in the clinic to distinguish FSHD

    rom the other orms o muscular dystrophy (Padberg et al.,

    1991). FSHD onset generally involves the wasting o acial

    muscles, such as orbicularis oris and orbicularis oculi, whereas

    others, like the pharyngeal and lingual muscles, are unaected.

    As the disease progresses, limb girdle muscles, such as scapula

    xator and trapezius, are also aected. Abdominal muscle weak-

    ness is another eature o FSHD, causing a characteristic lordotic

    posture (an abnormal curvature o the lumbar spine) associated

    with a protuberant abdomen. In the most severe cases, the

    muscular degeneration can extend to the pelvic girdle and oot

    dorsifexor muscles, thereby aecting the ability o the patient

    to walk. Approximately 20% o FSHD patients become wheel-

    chair bound (Pandya et al., 2008).

    FSHD is associated with retinal vasculopathy, a blood vessel

    disorder o the retina, in 60% o cases (Tawil and Van Der Maarel,

    2006) and sensorineural hearing loss in 75% o aected indi-

    viduals (Trevisan et al., 2008). Mental retardation, epilepsy, and

    cardiac involvement are also present in FSHD patients more re-

    quently than in healthy people (Faustmann et al., 1996; Funakoshi

    et al., 1998; Trevisan et al., 2006, 2008; Saito et al., 2007).

    Most FSHD patients report their rst symptoms during

    the second or third decade o their lie; however, the age o

    Figure 1. CNVs and their possible effects on gene expression. CNVs can generate dierent outcomes based on the nature o the aected element. I aCNV encompasses an entire gene(s) locus, the dosage o the gene may be altered, leading to gene amplifcation or deletion. Alternatively, the aectedregion can encompass only part o a gene. In this case, i the CNV includes an exon, it can result in the production o an aberrant protein isoorm. Whena CNV localizes to a nonprotein coding region o the gene it may generate imbalances at the level o splicing or noncoding RNA (ncRNA) production.In addition, extragenic CNVs can give rise to altered gene expression when aecting cis regulatory regions.

    Published December 13, 2010

  • 8/8/2019 J Cell Biol-2010-Cabianca-1049-60(2)

    3/12

    10Copy number variations and FSHD Cabianca and Gabellini

    A detailed genomic characterization o the 4q35 region ledto the identication o dierent haplotypes (Fig. 3; van Geel

    et al., 2002; Lemmers et al., 2007, 2010a). A simple sequence

    length polymorphism is localized 3.5 kb proximal to D4Z4.

    D4F104S1 (p13E-11), a region located immediately proximal to

    D4Z4, contains 15 SNPs. The most proximal unit o the D4Z4

    repeat array contains several SNPs. Finally, a large region o

    sequence variation (alleles A, B, or C) has been detected distal

    to D4Z4 (Fig. 3). Considering these various eatures, 4q alleles

    were subdivided in 18 haplotype variants (Lemmers et al., 2010a).

    Importantly, D4Z4 deletions are pathogenic only in a ew o

    these haplotype backgrounds (4qA161, 4qA159, and 4qA168;

    Lemmers et al., 2007, 2010b). D4Z4 deletions in the presence

    o these haplotypes are not sucient to cause FSHD because

    4qA161 asymptomatic carriers have been described (Arashiro

    et al., 2009), suggesting that these haplotypes represent only a

    permissive condition or FSHD rather than being the causative

    event. Importantly, it was observed that FSHD2 patients carry at

    least one 4qA161 allele (de Gree et al., 2009), urther supporting

    the role o this permissive haplotype in the disease.

    There are sequences homologous to D4Z4 on several

    human chromosomes (Lyle et al., 1995). On chromosome 10q26

    there is a repeat array that shares 98% identity with the D4Z4

    repeat array at 4q35 (Cacurri et al., 1998). Additionally, high

    homology extends to 45 kb proximal o D4Z4 and 1525 kb

    distal (van Geel et al., 2002). The 10q and 4q D4Z4 repeats areequally polymorphic, and some individuals have nonstandard,

    hybrid alleles containing 4q-derived repeats on chromosome 10

    and 10q repeats on chromosome 4 (van Deutekom et al., 1996a;

    van Overveld et al., 2000; Lemmers et al., 2010a). Several stud-

    ies have reported that the D4Z4 repeats (even i 4q derived) on

    10q are not pathogenic, suggesting that 4q-specic sequences

    proximal to D4Z4 are required or FSHD (Bakker et al., 1995;

    Deidda et al., 1996; van Deutekom et al., 1996a; Lemmers

    et al., 1998; van Overveld et al., 2000). By contrast, an excep-

    tion to this rule was recently described (Lemmers et al., 2010b).

    In this unusual case, only the distal end o the D4Z4 repeat array

    FSHD genetics

    FSHD is the third most common myopathy, with an incidence

    in the general population o 1:15,000 (Flanigan et al., 2001).

    The disease is transmitted as an autosomal-dominant character,

    although it presents very complex genetics. Up to 30% o cases

    are due to de novo mutations (Zatz et al., 1995). Approximately

    hal o the de novo cases result rom a post-zygotic mutation

    that leads to mosaicism (Griggs et al., 1993; Weienbach et al.,

    1993; Upadhyaya et al., 1995; Bakker et al., 1996; van der

    Maarel et al., 2000). In more than 95% o cases, the disease

    maps to the subtelomeric region o chromosome 4 long arm at

    4q35.2 (FSHD1; Wijmenga et al., 1990, 1991). A small percent-

    age o FSHD cases are not genetically linked to chromosome 4

    (FSHD2; Wijmenga et al., 1991; Gilbert et al., 1992; Bakker

    et al., 1995), although no other putative genetic locus has

    been identied.

    In 4q-associated FSHD cases, the disease is caused by a

    molecular rearrangement that causes copy number variations o

    a 3.3-kb tandem repeated macrosatellite called D4Z4 (Wijmenga

    et al., 1992; van Deutekom et al., 1993). D4Z4 is extremely

    polymorphic in the general population (Hewitt et al., 1994;

    Winokur et al., 1994), ranging rom 11 to 150 copies. FSHD

    patients carry only 1 to 10 units (Fig. 2; Wijmenga et al., 1992;

    van Deutekom et al., 1993).

    Although FSHD is highly variable, there is a general cor-

    relation between the number o residual D4Z4 repeats, the ageo onset, and the severity o the disease (Goto et al., 1995; Lunt

    et al., 1995; Zatz et al., 1995; Tawil et al., 1996; Hsu et al.,

    1997; Ricci et al., 1999). In particular, larger deletions tend to

    be associated with earlier onset and a more rapid progression

    o FSHD (Goto et al., 1995; Lunt et al., 1995; Zatz et al., 1995;

    Tawil et al., 1996; Hsu et al., 1997; Ricci et al., 1999). Impor-

    tantly, it has been reported that at least one copy o D4Z4 is re-

    quired to cause FSHD, as individuals with deletions o the entire

    repeat array do not display signs o muscular dystrophy (Fig. 2;

    Goto et al., 1995; Tupler et al., 1996; Rossi et al., 2007), sug-

    gesting that the repeat itsel plays a critical role in the disease.

    Figure 2. FSHD is caused by a reduction in the copy number of D4Z4 repeats. (A) Healthy individuals carry 11150 units o D4Z4. (B) FSHD patientshave less than 11 repeats. (C) At least one copy o D4Z4 is required or FSHD development, as individuals completely lacking D4Z4 are healthy.(D) Patients having a large deletion encompassing FRG2 and DUX4chave been described, indicating that these genes are not necessary or FSHD. Dottedlines indicate that distances are not to scale.

    Published December 13, 2010

  • 8/8/2019 J Cell Biol-2010-Cabianca-1049-60(2)

    4/12

    JCB VOLUME 191 NUMBER 6 20101052

    long distance interactions and chromatin loop domain organiza-

    tion (Maeda and Karch, 2007). Here, we summarize the studies

    that have investigated the epigenetic actors involved in FSHD.

    DNA methylation in FSHD. D4Z4 belongs to a

    amily o human tandem repeats termed macrosatellites that are

    noncentromerically located (Chadwick, 2009). Together with

    other members o the amily, such as DXZ4 on chromosome X(Giacalone et al., 1992) and RS447 on 4p (Kogi et al., 1997),

    D4Z4 is extremely GC rich.

    DNA methylation is a chemical mark added to cytosine

    residues by DNA methyltranserases: DNMT1, DNMT3A, and

    DNMT3B (Chen and Li, 2004). Mammalian genomes are glob-

    ally methylated, with the noticeable exception o short non-

    methylated regions called CpG islands. Current data indicate

    that promoter methylation leads to stable gene silencing, whereas

    intragenic methylation helps to weaken transcriptional noise

    (Suzuki and Bird, 2008). In addition, because several transcrip-

    tion actors and chromatin-binding proteins, such as CTCF and

    YY1, are methylation sensitive (Hark et al., 2000; Kim et al.,

    2003), it is clear that DNA methylation can signicantly aect

    the occupancy o a specic genomic region.

    It has been shown that although D4Z4 is highly methyl-

    ated in healthy subjects, FSHD patients have a specic hypo-

    methylation o the D4Z4 contracted allele (Fig. 4; van Overveld

    et al., 2003; de Gree et al., 2009). Recent ndings indicate that

    D4Z4 contraction is always associated with hypomethylation,

    irrespective o the chromosome or the haplotype, as deletions

    on chromosome 10 and on chromosome 4 in asymptomatic car-

    riers are also associated with a reduction in DNA methylation o

    the contracted locus (de Gree et al., 2009). Moreover, D4Z4 is

    was transerred to chromosome 10. Thus, the 4q35 FSHD can-

    didate genes located proximal to the D4Z4 repeat array were

    not present on chromosome 10. This nding suggested that

    proximal 4q genes are not required or the pathogenesis o

    FSHD (Lemmers et al., 2010b). It has to be noted, however, that

    this case is a very unusual patient carrying a rare haplotype with

    hybrid repeats deleted on 10q chromosome and a permissive4qA161 allele on 4q chromosome (Lemmers et al., 2010b).

    Hence, in this case the disease could still be linked to chromo-

    some 4 through an in trans eect o the hybrid 10q repeats on

    the permissive chromosome 4q.

    Although the exact molecular mechanism responsible or

    the disease is unknown, it is agreed in the eld that the D4Z4

    deletion causes an epigenetic gain-o-unction alteration lead-

    ing to the up-regulation o candidate gene(s) (Neguembor and

    Gabellini, 2010).

    Epigenetic eatures associated with FSHD

    Several o the clinical eatures outlined above, such as the gen-

    der bias in severity, the asymmetric muscle wasting, and the dis-

    cordance in monozygotic twins, suggest that FSHD development

    involves epigenetic actors (Neguembor and Gabellini, 2010).

    Epigenetic changes do not aect the primary DNA se-

    quence; rather, gene expression is altered by changing the con-

    ormation o chromatin. Local chromatin structure is regulated

    by at least three processes: DNA methylation (Suzuki and Bird,

    2008), histone modications (Ruthenburg et al., 2007), and

    ATP-dependent chromatin remodeling (Ho and Crabtree, 2010).

    In addition, a number o elements (chromatin boundaries, insu-

    lators, etc.) aect higher order chromatin structure by regulating

    Figure 3. SNPs and sequence variants at 4q35. 18 dierent 4q haplotypes have been described. FSHD patients carry D4Z4 deletions in 4qA161,4qA159, and 4qA168 backgrounds. These genetic contexts represent a permissive condition or the disease rather than a cause given that asymptomaticcarriers have been described. SSLP, simple sequence length polymorphism; TEL, telomere.

    Published December 13, 2010

  • 8/8/2019 J Cell Biol-2010-Cabianca-1049-60(2)

    5/12

    10Copy number variations and FSHD Cabianca and Gabellini

    ubiquitination, and SUMOylation o lysine (K) residues,

    phosphorylation o serine (S) and threonine (T) residues, methyl-

    ation o arginines (R), and ADP-ribosylation o glutamic acid

    (Bernstein et al., 2007). Combinations o posttranslational

    modications o single histones, single nucleosomes, and

    nucleosomal domains establish local and global patterns o

    chromatin modications and recruit nuclear actors that medi-

    ate downstream unctions (Ruthenburg et al., 2007). These pat-

    terns can be altered by multiple extracellular and intracellular

    stimuli, and chromatin itsel unctions as a genomic integrator

    o various signaling pathways, ultimately aecting cellular

    processes such as replication and transcription (Cheung et al.,

    2000; Nightingale et al., 2006).

    The D4Z4 repeat array appears to be organized in distinct

    domains, some characterized by transcriptionally repressive

    heterochromatin and others by transcriptionally permissive

    euchromatin (Zeng et al., 2009). In particular, on both chromo-

    some 4 and 10, the repressive marks o histone H3 lysine 9

    tri-methylation (H3K9me3) and histone H3 lysine 27 tri-

    methylation (H3K27me3) are both present on some D4Z4 units,

    but the permissive mark histone H3 lysine 4 di-methylation is

    hypomethylated in patients aected by immunodeciency, cen-

    tromeric instability, and acial anomalies syndrome (Kondo

    et al., 2000). Interestingly, there are no common traits among

    these diseases. These ndings suggest that D4Z4 hypomethyl-

    ation is not responsible or FSHD by itsel. Nevertheless, it

    is interesting to note that non4q-associated FSHD patients

    (FSHD2), which lack D4Z4 contractions, display general D4Z4

    hypomethylation on both chromosome 4 alleles and on the two

    chromosome 10 alleles (de Gree et al., 2009), pointing to a

    general deect in methylation o D4Z4 repeats. Collectively,

    these results suggest that D4Z4 hypomethylation might repre-

    sent a permissive condition required or FSHD onset or that it

    might be a consequence o the primary cause o FSHD.

    Histone modifcations in FSHD. Most cellular DNA

    is compacted into nucleosomes, in which 146 bp o DNA are

    wrapped around a protein octamer composed o two copies o

    each core histone H2A, H2B, H3, and H4 (Campos and Reinberg,

    2009). Nucleosomes are linked by a variable length o DNA

    associated with linker histone H1 (Campos and Reinberg, 2009).

    Histone proteins are subjected to dierent posttranslational

    covalent modications, including acetylation, methylation,

    Figure 4. Epigenetic features at 4q35 in healthy subjects and FSHD patients. In control individuals, the D4Z4 repeat array is characterized by markers ochromatin repression, such as high levels o DNA methylation, SUV39H1-mediated H3K9me3, and EZH2-mediated H3K27me3. In contrast, FSHD patientsdisplay hypomethylation, loss o H3K9me3, and corresponding loss o HP1 and cohesin binding. In healthy subjects, D4Z4 is specifcally bound by EZH2and a repressor complex composed o YY1, HMGB2, and nucleolin. It is still to be determined whether binding o these actors is altered in FSHD patients.The human 4q is perinuclear in both control and FSHD individuals. This localization depends on a region that is proximal to D4Z4 in healthy subjects butis D4Z4-specifc and CTCF-mediated in FSHD patients. A MAR located upstream o the repeat array was ound to be weakened in FSHD, altering the 3Dchromosomal architecture o the region.

    Published December 13, 2010

  • 8/8/2019 J Cell Biol-2010-Cabianca-1049-60(2)

    6/12

    JCB VOLUME 191 NUMBER 6 20101054

    the 4q telomere is located near the nuclear periphery (Masny

    et al., 2004; Tam et al., 2004). Interestingly, a sequence 215 kb

    proximal to the repeat array shows a stronger localization to the

    nuclear rim than D4Z4 in healthy subjects, suggesting that a re-

    gion proximal to D4Z4, and not the repeat array itsel, directs

    the 4q telomere to the periphery (Fig. 4; Masny et al., 2004).

    Recently, Ottaviani et al. (2009b) identied an 80-bp sequence

    inside the D4Z4 unit that can trigger perinuclear positioning o

    articial telomeres in a CTCF- and lamin Adependent manner

    (see below). This property is lost upon D4Z4 multimerization.

    Thus, it appears that in healthy subjects, multiple copies o

    D4Z4 are located near the nuclear periphery due to a 4q-specic

    signal proximal to D4Z4, whereas in FSHD patients the peri-

    nuclear location is mediated by D4Z4 (Fig. 4; Ottaviani et al.,

    2009b). Although FISH analyses indicate that the peripheral

    localization o 4q is maintained in dierent cell types and is

    apparently unaltered in FSHD patients compared with controls,

    the peripheral environment o the FSHD 4q35 allele may be

    altered, and thereby contribute to the aberrant 4q35 gene ex-

    pression reported in FSHD (Masny et al., 2004; Tam et al., 2004;

    Ottaviani et al., 2009b).In metazoans, the nuclear lamina coats the inner surace o

    the nuclear envelope (Hetzer, 2010). Using the DNA adenine

    methyltranserase identication approach, lamin-associated do-

    mains that correlate with silenced regions have been identied

    (Guelen et al., 2008). Intriguingly, a lamin-associated domain has

    been mapped to a locus that is 50 kb proximal to D4Z4, which is

    consistent with the previous nding that this region has a role in

    maintaining gene repression (Guelen et al., 2008). The peripheral

    location o 4q seems to be strictly dependent on lamin A, given

    that chromosome 4 telomeres are dispersed in cells lacking the

    lamin A gene (Masny et al., 2004). Furthermore, chromatin

    immunoprecipitation assays revealed that lamin A is associated

    with D4Z4 in vivo (Ottaviani et al., 2009a).Altered chromatin organization at 4q35 in

    FSHD. As mentioned above, there is no macroscopic relocal-

    ization o 4q due to D4Z4 deletion in FSHD. Nonetheless,

    more subtle alterations may occur. For example, the 4q35 locus

    could be repositioned to a dierent peripheral subdomain, lead-

    ing to inappropriate 4q35 gene regulation (Masny et al., 2004;

    Ottaviani et al., 2009b). Alternatively, the higher order chroma-

    tin structure o the 4q35 locus might be aected. There is grow-

    ing evidence to indicate that the three-dimensional organization

    o the FSHD region signicantly contributes to the regulation o

    gene expression at 4q35 (Petrov et al., 2006; Pirozhkova et al.,

    2008; Bodega et al., 2009).

    Recently, it has been proposed that the area immediately

    proximal to D4Z4 could play a role in FSHD (Lemmers et al.,

    2007; Tsumagari et al., 2008). Interestingly, this area has been

    suggested to unction as a nuclear matrix attachment region

    (MAR; Petrov et al., 2006). Matrix attachment was shown to be

    weakened on the contracted chromosome 4 in FSHD-derived

    myoblasts compared with controls, leading to a drastic alter-

    ation in chromatin loop domain organization (Fig. 4; Petrov

    et al., 2006). In particular, whereas a high number o D4Z4 re-

    peats maintain the organization o the repeat array and 4q35

    genes in two distinct chromatin loops, loosening o the MAR in

    present on dierent units (Zeng et al., 2009). Consistent with

    previous studies, the authors reported euchromatin histone marks

    in the rst proximal D4Z4 unit o the array (Jiang et al., 2003;

    Zeng et al., 2009).

    The modication o H3K9me3 on D4Z4 is mediated by

    the histone methyltranserase SUV39H1 (Zeng et al., 2009).

    Interestingly, H3K9me3 is lost in FSHD patients, preventing

    the binding o D4Z4 to the heterochromatin-binding protein

    HP1 and the sister chromatid cohesion complex, cohesin (Fig. 4).

    This loss could lead to the de-repression o 4q35 genes and

    muscular dystrophy (Zeng et al., 2009).

    In a study aimed at characterizing the chromatin status o

    the FSHD region, both D4Z4 and the promoter o the 4q35 gene

    FRG1 (see below) were reported to be bound by the transcrip-

    tion actor YY1 and the Polycomb Group protein EZH2 (Bodega

    et al., 2009). Polycomb Group proteins are chromatin modiers

    that implement transcriptional silencing in higher eukaryotes

    (Simon and Kingston, 2009). In particular, YY1 and EZH2

    binding are reduced both at D4Z4 and FRG1 promoter in myo-

    tubes compared with myoblasts (Bodega et al., 2009). As a

    consequence, the EZH2-mediated histone repressive markH3K27me3 is also reduced in myotubes compared with myo-

    blasts. Accordingly, FRG1 expression is increased in myotubes

    compared with myoblasts. Notably, the H3K27me3 modica-

    tion at D4Z4 was ound by 3D FISH to be less abundant in

    FSHD cells compared with controls (Bodega et al., 2009).

    In summary, a number o repressive histone marks are

    present on D4Z4 in healthy subjects and their loss in FSHD

    might lead to de-repression o 4q35 genes.

    A repressor complex binds to D4Z4. A ew years

    ago, a 27-bp sequence located inside each D4Z4 unit, termed the

    D4Z4 binding element, was identied (Gabellini et al., 2002).

    This element is specically bound by a D4Z4 repressor com-

    plex (DRC) composed o YY1, HMGB2, and nucleolin (Gabelliniet al., 2002). These actors interact with proteins that mediate

    gene silencing and heterochromatin ormation, such as DNA

    methyltranserases, histone deacetylases, and HP1 (Ko et al.,

    2008; Wu et al., 2009). DRC binds to the 4q35 located D4Z4

    in vivo and mediates the transcriptional repression o 4q35 genes

    (Gabellini et al., 2002). Thus, the loss o D4Z4 repeats in FSHD

    may result in reduced DRC binding to the region and, conse-

    quently, reduced silencing o the 4q35 genes (Fig. 4; Gabellini

    et al., 2004). Importantly, o the actors that have been identied

    to bind D4Z4, YY1 is the only one with sequence specicity.

    Thus, it would be interesting to investigate whether the recruit-

    ment o actors like SUV39H1, EZH2, HP1, and cohesin to

    D4Z4 is mediated by YY1 (Fig. 4).

    Subnuclear localization o 4q35. Most nuclear

    events do not occur randomly throughout the nucleoplasm;

    rather, they are usually limited to specic and spatially dened

    sites (Ferrai et al., 2010). Accordingly, the particular intra-

    nuclear positioning o a given chromosomal region plays an

    important role in several cellular processes, such as transcrip-

    tion and replication (Spector, 2001).

    Although mammalian telomeres in somatic cells are evenly

    dispersed in the inner part o the nucleus (Ludrus et al., 1996;

    Nagele et al., 2001; Amrichov et al., 2003; Weierich et al., 2003),

    Published December 13, 2010

  • 8/8/2019 J Cell Biol-2010-Cabianca-1049-60(2)

    7/12

    10Copy number variations and FSHD Cabianca and Gabellini

    The 4q35 locus is a relatively gene-poor region (van Geel

    et al., 1999; Blair et al., 2002). O the genes that have been

    identied at 4q35, those o particular interest areANT1, FRG1,

    DUX4c, FRG2, andDUX4 (Li et al., 1989; van Deutekom et al.,

    1996b; Gabrils et al., 1999; Rijkers et al., 2004; Bosnakovski

    et al., 2008b). We will ocus here on the two main candidate

    genes,DUX4 and FRG1. We will not discuss the other genes in

    detail because they are less attractive candidates. For example,

    DUX4c and FRG2 were ound to be deleted in some FSHD

    amilies (Fig. 2; Lemmers et al., 2003), suggesting that they are

    not necessary or disease onset. Nevertheless, these genes are

    present in most o the aected amilies and it is possible that

    they could contribute to the penetrance and severity o the disease.

    There is some experimental support or this idea or DUX4c

    (Bosnakovski et al., 2008b; Ansseau et al., 2009).

    DUX4. Although theDUX4 gene contains an ORF en-

    coding a putative double homeobox protein named DUX4, the

    D4Z4 repeat was initially considered to be a nonprotein coding

    sequence due to lack o evidence o transcription and protein

    synthesis. Nonetheless, both DUX4 mRNA and protein were

    recently detected in FSHD-derived primary myoblasts but notin controls, suggesting that D4Z4 may directly aect disease

    progression through the aberrant production o DUX4 (Dixit

    et al., 2007). Because the D4Z4 repeat does not contain a

    canonical polyadenylation signal, the mRNA is generated exclu-

    sively by transcription o the last, most distal, unit o the array

    that extends to a region named pLAM, which contains a poly-

    adenylation signal (Dixit et al., 2007). It was recently shown that

    the pLAM polyadenylation signal can stabilize DUX4 tran-

    scripts that are ectopically expressed in transected C2C12 cells

    (Lemmers et al., 2010b). This pLAM sequence also contains a

    polymorphism that could aect the polyadenylation o the dis-

    talDUX4 transcript (Lemmers et al., 2010b). Because a group

    o analyzed FSHD1 patients were all ound to carry the sameSNP in this region, it was suggested that this polymorphism

    contributes to the selective stabilization oDUX4 transcripts in

    FSHD (Lemmers et al., 2010b). It should be noted, however,

    that in this study the permissive 4qA161 allele was compared only

    to nonpermissive 4qB alleles or 10qA chromosomes (Lemmers

    et al., 2010b). Non-permissive 4qA variants, such as the previ-

    ously described 4qA166 (Lemmers et al., 2007; de Gree et al.,

    2009), were not analyzed. Hence, the available data do not allow

    us to exclude the possibility that the described variations refect

    4qA/B or 4q/10q dierences.

    TheDUX4 pre-mRNA can be alternatively spliced (Snider

    et al., 2009). Interestingly, it was recently reported that muscles

    o healthy subjects express low levels o aDUX4 splicing isoorm

    encoding or a truncated protein, whereas muscles o FSHD pa-

    tients express a splicing isoorm encoding or ull-length DUX4

    (Snider et al., 2010). It has also been reported that the repeat array

    displays a complex transcriptional prole that includes sense and

    antisense transcripts and RNA processing (Snider et al., 2009).

    Thus, there may be multiple D4Z4-derived RNA players in FSHD

    and uture work will be required to determine their unctions.

    Recently, an isogenetic screen to assess the eect o over-

    expressing FSHD candidate genesANT1, FRG1, FRG2, DUX4c,

    andDUX4 on cell viability was used (Bosnakovski et al., 2008a).

    FSHD patients would bring the contracted repeats and 4q35

    genes into the same chromatin loop (Petrov et al., 2006). Ulti-

    mately, the presence o an enhancer at the 5 end o the D4Z4

    unit could cause inappropriate 4q35 gene de-repression in FSHD

    (Petrov et al., 2008).

    Chromosome conormation capture (3C) is a technique

    that identies long distance intra- and inter-chromosomal inter-

    actions (Dekker et al., 2002). Using 3C, two groups have inde-

    pendently investigated the higher order chromatin organization

    o the 4q35 locus (Pirozhkova et al., 2008; Bodega et al., 2009).

    Pirozhkova et al. (2008) showed that the telomeric 4qA allele

    is in close proximity to the promoters o the 4q35 genes FRG1

    and ANT1 in FSHD myoblasts and not in control myoblasts.

    The 4qA allele is immediately distal to the D4Z4 repeat array

    (Lemmers et al., 2002). Interestingly, an enhancer element was

    detected in the 4qA allele that could be involved in the reported

    up-regulation oFRG1 and ANT1 in FSHD (Gabellini et al.,

    2002; Laoudj-Chenivesse et al., 2005; Pirozhkova et al., 2008).

    In the other 3C study, an interaction between D4Z4 and the

    FRG1 promoter was identied in human primary myoblasts that

    appears to be highly reduced upon myogenic dierentiation(Bodega et al., 2009). Consistent with the observed mis-regulation

    oFRG1, a small but statistically signicant reduction in the

    D4Z4FRG1 promoter interaction was observed in FSHD myo-

    blasts compared with controls (Bodega et al., 2009). Alto-

    gether, it appears that in healthy subjects , the FRG1 promoter

    is in close proximity with the D4Z4 repeat and the gene is

    repressed, whereas in FSHD patients the promoter oFRG1

    is in close proximity with the 4qA marker and the gene is up-

    regulated (Gabellini et al., 2002; Pirozhkova et al., 2008; Bodega

    et al., 2009).

    CTCF is a multiunctional DNA-binding protein that is

    important or transcriptional regulation, chromatin insula-

    tion, and chromatin organization (Filippova, 2008). The same80-bp D4Z4 element mediating the perinuclear positioning

    o the 4q telomere is also responsible or the CTCF and A-type

    lamin-dependent transcriptional insulator unction o the re-

    peat (Ottaviani et al., 2009a). The CTCF binding and insulation

    activity are lost upon multimerization o the repeats (Ottaviani

    et al., 2009a). As such, it has been proposed that FSHD patients

    have a CTCF gain-o-unction phenotype that protects certain

    genes rom the infuence o nearby repressive chromatin, ul-

    timately generating a 4q35 de-repressed state (Fig. 4; Ottaviani

    et al., 2009a).

    Clearly, the FSHD locus is organized into a higher order

    chromatin structure that undergoes dynamic remodeling. The

    3D architecture o the region appears to play a undamental role

    in regulating 4q35 chromatin status and gene expression, sug-

    gesting that deects in the organization o the epigenome o the

    FSHD region could underlie this disease.

    FSHD candidate genes

    The studies aimed at understanding the molecular basis o FSHD

    indicate that an in cis alteration likely leads to the de-repression

    o target gene(s). This model provides a valid explanation or

    the 4q specicity and the autosomal-dominant transmission o

    the disease (Tupler and Gabellini, 2004).

    Published December 13, 2010

  • 8/8/2019 J Cell Biol-2010-Cabianca-1049-60(2)

    8/12

    JCB VOLUME 191 NUMBER 6 20101056

    proteins involved in RNA biogenesis, such as SMN, PABPN1, and

    FAM71B (van Koningsbruggen et al., 2007). Interestingly, mu-

    tations in SMNand PABPN1 cause myopathies (Calado et al.,

    2000; Briese et al., 2005). Together, these results suggest that

    FRG1 unctions in RNA processing. Indeed, in FSHD and in

    transgenic mice or cells overexpressing FRG1, altered splicing

    has been observed or a number o genes (Gabellini et al., 2006;

    van Koningsbruggen et al., 2007; Davidovic et al., 2008).

    Specic muscle-related unctions or FRG1 have been

    identied in dierent animal models (Hanel et al., 2009; Liu

    et al., 2010). Interestingly, overexpression oXenopusfrg1 or

    C. elegans FRG-1 causes a muscle deect (Hanel et al., 2009;

    Liu et al., 2010).

    FRG1 contains a single ascin-like domain, a moti that is

    associated with actin-bundling properties (Edwards and Bryan,

    1995), and it was recently shown that FRG1 can bind F-actin

    and promote its bundling (Liu et al., 2010). In agreement with

    this nding, in dierent organisms the endogenous FRG1 in

    muscle has not only a nuclear distribution but is also a sarco-

    meric protein, suggesting that FRG1 might perorm a muscle-

    specic unction (Hanel et al., 2010; Liu et al., 2010).FSHD pathology is most prominent in the musculature;

    however, up to 75% o FSHD patients display retinal vasculopathy

    (Fitzsimons et al., 1987; Padberg et al., 1995). Intriguingly, it

    was recently reported that in human tissues the endogenous

    FRG1 is strongly expressed in arteries, veins, and capillaries

    (Hanel et al., 2010). Moreover, inXenopus FRG1 levels are

    crucial or proper vascular development, and up-regulation

    o FRG1 leads to a disrupted vascular phenotype (Wuebbles

    et al., 2009).

    Collectively, these studies indicate that FRG1 overexpres-

    sion in dierent animal models is associated with aberrant mus-

    cle structure and vasculature, the two most prominent eatures

    o FSHD pathology.

    Conclusions

    Recent studies suggest that copy number variations (CNVs) are

    important or human phenotypic diversity and disease suscepti-

    bility. DNA repeats account or 55% o the human genome and

    a signicant raction o CNVs.

    FSHD is an important pathology caused by CNVs o

    D4Z4 repeats. It is an extremely complicated and ascinating

    disease, and research into this topic is revealing much about the

    unctional organization o our genome.

    An increasing amount o evidence suggests that the 4q35

    macrosatellite repeat D4Z4 plays a crucial role in the chromo-

    somal organization o the FSHD region. There is a general con-

    sensus that the D4Z4 deletion in FSHD leads to epigenetic

    alterations that aect the expression proles o genes within the

    FSHD region. Unortunately, despite considerable eort, almost

    20 years ater the identication o the genetic deect underlying

    the disease, the causative FSHD gene(s) remains unknown, and

    no eective treatments or FSHD are currently available.

    The heterogeneity in disease maniestation probably re-

    fects heterogeneity in gene expression in FSHD. An interesting

    possibility, thereore, is that the complexity o FSHD could be

    explained by considering it to be a contiguous gene syndrome,

    Previous work demonstrated a pro-apoptotic unction or DUX4

    (Kowaljow et al., 2007), and DUX4 overexpression was ound to

    have a dramatically toxic eect. As a consequence o increased

    DUX4 levels, the expression o oxidative stress response genes

    and o myogenic actors (such as MyoD and My5) was altered.

    Interestingly, a myogenic deect has been reported in FSHD

    patients (Winokur et al., 2003a; Celegato et al., 2006).

    DUX4 homeodomains are similar to those o Pax3 and

    Pax7, which are transcription actors that are pivotal to muscle

    unction (Buckingham, 2007). Additionally, the phenotype o

    DUX4 overexpression can be rescued by overexpression o Pax3

    or Pax7 (Bosnakovski et al., 2008a).

    Recently, DUX4 overexpression (even at extremely low

    levels) was reported to cause massive apoptosis and severely

    abnormal development in Xenopus laevis, a model or verte-

    brate development (Wuebbles et al., 2010). Note that an increase

    in apoptosis is not generally considered to be a phenotype o

    FSHD (Winokur et al., 2003b).

    In theory,DUX4 represents an attractive FSHD candidate

    gene, as it would easily explain the requirement or at least one

    D4Z4 or the development o the disease. Due to its extremetoxicity, however, DUX4 could only unction in FSHD i it is ab-

    sent under normal conditions and overexpressed exclusively in the

    muscle cell precursors o FSHD patients (Wuebbles et al., 2010).

    FRG1. FSHD region gene 1 (FRG1) is highly conserved in

    both vertebrates and invertebrates (Grewal et al., 1998). FRG1

    is considered a likely candidate gene or mediating FSHD due

    to its selective chromosomal location at 4q35, its overexpres-

    sion in FSHD samples (Gabellini et al., 2002; Bodega et al.,

    2009), and the development o FSHD-like phenotypes ollow-

    ing its overexpression in mice,Xenopus laevis, and Caenorhab-

    ditis elegans (Gabellini et al., 2006; Hanel et al., 2009; Wuebbles

    et al., 2009; Liu et al., 2010). Transgenic mice overexpressing

    FRG1 selectively in the skeletal muscle develop pathologieswith physiological, histological, ultrastructural, and molecular

    eatures that resemble those o FSHD patients (Gabellini et al.,

    2006). Nevertheless, FRG1 overexpression in FSHD patients

    is currently controversial, and studies have reported incon-

    sistent results (Gabellini et al., 2002, 2006, Dixit et al., 2007,

    Osborne et al., 2007; Bodega et al., 2009; Klooster et al., 2009).

    The idea that FRG1 plays an important role in FSHD was very

    recently challenged by the identication o an unusual FSHD

    patient with deletion o D4Z4 only on chromosome 10 (Lemmers

    et al., 2010b). However, as stated above, beore discarding a

    causative role or FRG1 in FSHD, this patient requires urther

    characterization. As discussed below, FRG1 is crucial or proper

    muscle unction and vascular development (Gabellini et al.,

    2006; Hanel et al., 2009; Wuebbles et al., 2009). Hence, FRG1

    could at minimum aect the severity o the disease.

    To better understand the role o FRG1 in FSHD, eorts

    have been made to characterize its biological unction. The

    human endogenous FRG1 protein copuries with the spliceo-

    some, the proteinRNA macromolecular complex responsible

    or pre-mRNA splicing (Kim et al., 2001; Rappsilber et al.,

    2002; Bessonov et al., 2008). When ectopically overexpressed,

    FRG1 localizes to nucleoli, Cajal bodies, and speckles (van

    Koningsbruggen et al., 2004), and colocalizes and/or interacts with

    Published December 13, 2010

  • 8/8/2019 J Cell Biol-2010-Cabianca-1049-60(2)

    9/12

    10Copy number variations and FSHD Cabianca and Gabellini

    Buckingham, M. 2007. Skeletal muscle progenitor cells and the role o Paxgenes. C. R. Biol. 330:530533. doi:10.1016/j.crvi.2007.03.015

    Cacurri, S., N. Piazzo, G. Deidda, E. Vigneti, G. Galluzzi, L. Colantoni, B.Merico, E. Ricci, and L. Felicetti. 1998. Sequence homology between4qter and 10qter loci acilitates the instability o subtelomeric KpnI re-peat units implicated in acioscapulohumeral muscular dystrophy. Am.J. Hum. Genet. 63:181190. doi:10.1086/301906

    Calado, A., F.M. Tom, B. Brais, G.A. Rouleau, U. Khn, E. Wahle, and M.Carmo-Fonseca. 2000. Nuclear inclusions in oculopharyngeal musculardystrophy consist o poly(A) binding protein 2 aggregates which seques-ter poly(A) RNA.Hum. Mol. Genet. 9:23212328.

    Campos, E.I., and D. Reinberg. 2009. Histones: annotating chromatin. Annu.Rev. Genet. 43:559599. doi:10.1146/annurev.genet.032608.103928

    Celegato, B., D. Capitanio, M. Pescatori, C. Romualdi, B. Pacchioni, S. Cagnin,A. Vigan, L. Colantoni, S. Begum, E. Ricci, et al. 2006. Parallel proteinand transcript proles o FSHD patient muscles correlate to the D4Z4 ar-rangement and reveal a common impairment o slow to ast bre dieren-tiation and a general deregulation o MyoD-dependent genes. Proteomics.6:53035321. doi:10.1002/pmic.200600056

    Chadwick, B.P. 2009. Macrosatellite epigenetics: the two aces o DXZ4 andD4Z4. Chromosoma. 118:675681. doi:10.1007/s00412-009-0233-5

    Chance, P.F., N. Abbas, M.W. Lensch, L. Pentao, B.B. Roa, P.I. Patel, and J.R.Lupski. 1994. Two autosomal dominant neuropathies result rom recipro-cal DNA duplication/deletion o a region on chromosome 17. Hum. Mol.Genet. 3:223228. doi:10.1093/hmg/3.2.223

    Chen, T., and E. Li. 2004. Structure and unction o eukaryotic DNAmethyltranserases. Curr. Top. Dev. Biol. 60:5589. doi:10.1016/S0070-2153(04)60003-2

    Cheung, P., C.D. Allis, and P. Sassone-Corsi. 2000. Signaling to chromatinthrough histone modications. Cell. 103:263271. doi:10.1016/S0092-8674(00)00118-5

    Conrad, D.F., D. Pinto, R. Redon, L. Feuk, O. Gokcumen, Y. Zhang, J. Aerts, T.D.Andrews, C. Barnes, P. Campbell, et al; Wellcome Trust Case ControlConsortium. 2010. Origins and unctional impact o copy number variationin the human genome.Nature. 464:704712. doi:10.1038/nature08516

    Davidovic, L., S. Sacconi, E.G. Bechara, S. Delplace, M. Allegra, C. Desnuelle,and B. Bardoni. 2008. Alteration o expression o muscle specic iso-orms o the ragile X related protein 1 (FXR1P) in acioscapulo-humeral muscular dystrophy patients. J. Med. Genet. 45:679685. doi:10.1136/jmg.2008.060541

    de Gree, J.C., R.J. Lemmers, B.G. van Engelen, S. Sacconi, S.L. Venance, R.R.Frants, R. Tawil, and S.M. van der Maarel. 2009. Common epigeneticchanges o D4Z4 in contraction-dependent and contraction-independentFSHD.Hum. Mutat. 30:14491459. doi:10.1002/humu.21091

    Deidda, G., S. Cacurri, N. Piazzo, and L. Felicetti. 1996. Direct detection o 4q35

    rearrangements implicated in acioscapulohumeral muscular dystrophy(FSHD).J. Med. Genet. 33:361365. doi:10.1136/jmg.33.5.361

    Dekker, J., K. Rippe, M. Dekker, and N. Kleckner. 2002. Capturing chromosomeconormation. Science. 295:13061311. doi:10.1126/science.1067799

    Dixit, M., E. Ansseau, A. Tassin, S. Winokur, R. Shi, H. Qian, S. Sauvage, C.Mattotti, A.M. van Acker, O. Leo, et al. 2007. DUX4, a candidate geneo acioscapulohumeral muscular dystrophy, encodes a transcriptionalactivator o PITX1. Proc. Natl. Acad. Sci. USA. 104:1815718162.doi:10.1073/pnas.0708659104

    Edwards, R.A., and J. Bryan. 1995. Fascins, a amily o actin bundling proteins.Cell Motil. Cytoskeleton. 32:19. doi:10.1002/cm.970320102

    Faustmann, P.M., J. Farahati, B. Rupilius, R. Dux, M.C. Koch, and C.Reiners. 1996. Cardiac involvement in acio-scapulo-humeral mus-cular dystrophy: a amily study using Thallium-201 single-photon-emission-computed tomography. J. Neurol. Sci. 144:5963. doi:10.1016/S0022-510X(96)00145-1

    Ferrai, C., I.J. de Castro, L. Lavitas, M. Chotalia, and A. Pombo. 2010. Genepositioning. Cold Spring Harb Perspect Biol. 2:a000588. doi:10.1101/

    cshperspect.a000588

    Filippova, G.N. 2008. Genetics and epigenetics o the multiunctional pro-tein CTCF. Curr. Top. Dev. Biol. 80:337360. doi:10.1016/S0070-2153(07)80009-3

    Fitzsimons, R.B., E.B. Gurwin, and A.C. Bird. 1987. Retinal vascular ab-normalities in acioscapulohumeral muscular dystrophy. A general asso-ciation with genetic and therapeutic implications. Brain. 110:631648.doi:10.1093/brain/110.3.631

    Flanigan, K.M., C.M. Coeen, L. Sexton, D. Stauer, S. Brunner, and M.F.Leppert. 2001. Genetic characterization o a large, historically signicantUtah kindred with acioscapulohumeral dystrophy.Neuromuscul. Disord.11:525529. doi:10.1016/S0960-8966(01)00201-2

    Funakoshi, M., K. Goto, and K. Arahata. 1998. Epilepsy and mental retardationin a subset o early onset 4q35-acioscapulohumeral muscular dystrophy.Neurology. 50:17911794.

    where the epigenetic alteration oDUX4, FRG1, and other

    potential genes collaborate to determine the nal phenotype.

    Finally, because DUX4 behaves as a transcriptional activator

    (Dixit et al., 2007), it could play a direct role in transcriptional

    overexpression o the other 4q35 genes, providing a uniying

    model or the molecular mechanism o the disease.

    Due to space limitations, we apologize to our colleagues or the vastly incom-

    plete documentation o their important contributions to the topics describedin this review. We thank Drs. F. Jerey Dilworth, Claudia Ghigna, MichaelR. Green, and Lawrence G. Wrabetz or critical reading o the manuscript.

    Research in the Gabellini laboratory is made possible by supportprovided by the European Research Council (ERC), the Muscular DystrophyAssociation o the USA (MDA), the European Alternative Splicing Networko Excellence (EURASNET), the Association Francaise contre les Myopathies(AFM), the FSHD Global Research Foundation, a Jaya Motta private donation,and the FSH Society, Inc. Davide Gabellini is a Dulbecco Telethon InstituteAssistant Scientist.

    Submitted: 5 July 2010Accepted: 8 November 2010

    Reerences

    Amrichov, J., E. Luksov, S. Kozubek, and M. Kozubek. 2003. Nuclear andterritorial topography o chromosome telomeres in human lymphocytes.Exp. Cell Res. 289:1126. doi:10.1016/S0014-4827(03)00208-8

    Ansseau, E., D. Laoudj-Chenivesse, A. Marcowycz, A. Tassin, C. Vanderplanck,S. Sauvage, M. Barro, I. Mahieu, A. Leroy, I. Leclercq, et al. 2009.DUX4c is up-regulated in FSHD. It induces the MYF5 protein andhuman myoblast prolieration. PLoS One. 4:e7482. doi:10.1371/journal.pone.0007482

    Arashiro, P., I. Eisenberg, A.T. Kho, A.M. Cerqueira, M. Canovas, H.C.Silva, R.C. Pavanello, S. Verjovski-Almeida, L.M. Kunkel, and M.Zatz. 2009. Transcriptional regulation diers in aected acioscapulo-humeral muscular dystrophy patients compared to asymptomatic re-lated carriers. Proc. Natl. Acad. Sci. USA. 106:62206225.doi:10.1073/pnas.0901573106

    Bakker, E., C. Wijmenga, R.H. Vossen, G.W. Padberg, J. Hewitt, M. van derWielen, K. Rasmussen, and R.R. Frants. 1995. The FSHD-linked locusD4F104S1 (p13E-11) on 4q35 has a homologue on 10qter.Muscle Nerve. 2:S39S44. doi:10.1002/mus.880181309

    Bakker, E., M.J. Van der Wielen, E. Voorhoeve, P.F. Ippel, G.W. Padberg,R.R. Frants, and C. Wijmenga. 1996. Diagnostic, predictive, and pre-natal testing or acioscapulohumeral muscular dystrophy: diagnos-tic approach or sporadic and amilial cases. J. Med. Genet. 33:2935.doi:10.1136/jmg.33.1.29

    Bernstein, B.E., A. Meissner, and E.S. Lander. 2007. The mammalian epi-genome. Cell. 128:669681. doi:10.1016/j.cell.2007.01.033

    Bessonov, S., M. Anokhina, C.L. Will, H. Urlaub, and R. Lhrmann. 2008.Isolation o an active step I spliceosome and composition o its RNP core.Nature. 452:846850. doi:10.1038/nature06842

    Blair, I.P., L.J. Adams, R.F. Badenhop, M.J. Moses, A. Scimone, J.A. Morris,L. Ma, C.P. Austin, J.A. Donald, P.B. Mitchell, and P.R. Schoeld.2002. A transcript map encompassing a susceptibility locus or bipolaraective disorder on chromosome 4q35. Mol. Psychiatry.7:867873.doi:10.1038/sj.mp.4001113

    Bodega, B., G.D. Ramirez, F. Grasser, S. Cheli, S. Brunelli, M. Mora, R.Meneveri, A. Marozzi, S. Mueller, E. Battaglioli, and E. Ginelli. 2009.Remodeling o the chromatin structure o the acioscapulohumeral mus-cular dystrophy (FSHD) locus and upregulation o FSHD-related gene 1(FRG1) expression during human myogenic dierentiation. BMC Biol.7:41. doi:10.1186/1741-7007-7-41

    Bosnakovski, D., Z. Xu, E.J. Gang, C.L. Galindo, M. Liu, T. Simsek, H.R.Garner, S. Agha-Mohammadi, A. Tassin, F. Coppe, et al. 2008a. Anisogenetic myoblast expression screen identies DUX4-mediated FSHD-associated molecular pathologies.EMBO J. 27:27662779. doi:10.1038/emboj.2008.201

    Bosnakovski, D., S. Lamb, T. Simsek, Z. Xu, A. Belayew, R. Perlingeiro, andM. Kyba. 2008b. DUX4c, an FSHD candidate gene, intereres with myo-genic regulators and abolishes myoblast dierentiation. Exp. Neurol.214:8796. doi:10.1016/j.expneurol.2008.07.022

    Briese, M., B. Esmaeili, and D.B. Sattelle. 2005. Is spinal muscular atrophythe result o deects in motor neuron processes?Bioessays. 27:946957.doi:10.1002/bies.20283

    Published December 13, 2010

    http://dx.doi.org/10.1016/j.crvi.2007.03.015http://dx.doi.org/10.1086/301906http://dx.doi.org/10.1146/annurev.genet.032608.103928http://dx.doi.org/10.1002/pmic.200600056http://dx.doi.org/10.1007/s00412-009-0233-5http://dx.doi.org/10.1093/hmg/3.2.223http://dx.doi.org/10.1016/S0070-2153(04)60003-2http://dx.doi.org/10.1016/S0070-2153(04)60003-2http://dx.doi.org/10.1016/S0092-8674(00)00118-5http://dx.doi.org/10.1016/S0092-8674(00)00118-5http://dx.doi.org/10.1038/nature08516http://dx.doi.org/10.1136/jmg.2008.060541http://dx.doi.org/10.1136/jmg.2008.060541http://dx.doi.org/10.1002/humu.21091http://dx.doi.org/10.1136/jmg.33.5.361http://dx.doi.org/10.1126/science.1067799http://dx.doi.org/10.1073/pnas.0708659104http://dx.doi.org/10.1002/cm.970320102http://dx.doi.org/10.1016/S0022-510X(96)00145-1http://dx.doi.org/10.1016/S0022-510X(96)00145-1http://dx.doi.org/10.1101/cshperspect.a000588http://dx.doi.org/10.1101/cshperspect.a000588http://dx.doi.org/10.1016/S0070-2153(07)80009-3http://dx.doi.org/10.1016/S0070-2153(07)80009-3http://dx.doi.org/10.1093/brain/110.3.631http://dx.doi.org/10.1016/S0960-8966(01)00201-2http://dx.doi.org/10.1007/s00109-004-0583-7http://dx.doi.org/10.1371/journal.pone.0007482http://dx.doi.org/10.1371/journal.pone.0007482http://dx.doi.org/10.1073/pnas.0901573106http://dx.doi.org/10.1073/pnas.0901573106http://dx.doi.org/10.1002/mus.880181309http://dx.doi.org/10.1136/jmg.33.1.29http://dx.doi.org/10.1016/j.cell.2007.01.033http://dx.doi.org/10.1038/nature06842http://dx.doi.org/10.1038/sj.mp.4001113http://dx.doi.org/10.1186/1741-7007-7-41http://dx.doi.org/10.1038/emboj.2008.201http://dx.doi.org/10.1038/emboj.2008.201http://dx.doi.org/10.1016/j.expneurol.2008.07.022http://dx.doi.org/10.1002/bies.20283http://dx.doi.org/10.1002/bies.20283http://dx.doi.org/10.1016/j.expneurol.2008.07.022http://dx.doi.org/10.1038/emboj.2008.201http://dx.doi.org/10.1038/emboj.2008.201http://dx.doi.org/10.1186/1741-7007-7-41http://dx.doi.org/10.1038/sj.mp.4001113http://dx.doi.org/10.1038/nature06842http://dx.doi.org/10.1016/j.cell.2007.01.033http://dx.doi.org/10.1136/jmg.33.1.29http://dx.doi.org/10.1002/mus.880181309http://dx.doi.org/10.1073/pnas.0901573106http://dx.doi.org/10.1073/pnas.0901573106http://dx.doi.org/10.1371/journal.pone.0007482http://dx.doi.org/10.1371/journal.pone.0007482http://dx.doi.org/10.1007/s00109-004-0583-7http://dx.doi.org/10.1016/S0960-8966(01)00201-2http://dx.doi.org/10.1093/brain/110.3.631http://dx.doi.org/10.1016/S0070-2153(07)80009-3http://dx.doi.org/10.1016/S0070-2153(07)80009-3http://dx.doi.org/10.1101/cshperspect.a000588http://dx.doi.org/10.1101/cshperspect.a000588http://dx.doi.org/10.1016/S0022-510X(96)00145-1http://dx.doi.org/10.1016/S0022-510X(96)00145-1http://dx.doi.org/10.1002/cm.970320102http://dx.doi.org/10.1073/pnas.0708659104http://dx.doi.org/10.1126/science.1067799http://dx.doi.org/10.1136/jmg.33.5.361http://dx.doi.org/10.1002/humu.21091http://dx.doi.org/10.1136/jmg.2008.060541http://dx.doi.org/10.1136/jmg.2008.060541http://dx.doi.org/10.1038/nature08516http://dx.doi.org/10.1016/S0092-8674(00)00118-5http://dx.doi.org/10.1016/S0092-8674(00)00118-5http://dx.doi.org/10.1016/S0070-2153(04)60003-2http://dx.doi.org/10.1016/S0070-2153(04)60003-2http://dx.doi.org/10.1093/hmg/3.2.223http://dx.doi.org/10.1007/s00412-009-0233-5http://dx.doi.org/10.1002/pmic.200600056http://dx.doi.org/10.1146/annurev.genet.032608.103928http://dx.doi.org/10.1086/301906http://dx.doi.org/10.1016/j.crvi.2007.03.015
  • 8/8/2019 J Cell Biol-2010-Cabianca-1049-60(2)

    10/12

    JCB VOLUME 191 NUMBER 6 20101058

    Facioscapulohumeral muscular dystrophy. Am. J. Phys. Med. Rehabil.74:S131S139. doi:10.1097/00002060-199509001-00007

    Kim, S.K., J. Lund, M. Kiraly, K. Duke, M. Jiang, J.M. Stuart, A. Eizinger, B.N.Wylie, and G.S. Davidson. 2001. A gene expression map or Caenorhabditiselegans. Science. 293:20872092. doi:10.1126/science.1061603

    Kim, J., A. Kollho, A. Bergmann, and L. Stubbs. 2003. Methylation-sensitivebinding o transcription actor YY1 to an insulator sequence within thepaternally expressed imprinted gene, Peg3. Hum. Mol. Genet. 12:233245. doi:10.1093/hmg/ddg028

    Klinge, L., M. Eagle, I.D. Haggerty, C.E. Roberts, V. Straub, and K.M. Bushby.

    2006. Severe phenotype in inantile acioscapulohumeral muscular dystro-phy.Neuromuscul. Disord.16:553558. doi:10.1016/j.nmd.2006.06.008

    Klooster, R., K. Straasheijm, B. Shah, J. Sowden, R. Frants, C. Thornton, R.Tawil, and S. van der Maarel. 2009. Comprehensive expression analysiso FSHD candidate genes at the mRNA and protein level. Eur. J. Hum.Genet. 17:16151624. doi:10.1038/ejhg.2009.62

    Ko, C.Y., H.C. Hsu, M.R. Shen, W.C. Chang, and J.M. Wang. 2008. Epigeneticsilencing o CCAAT/enhancer-binding protein delta activity by YY1/polycomb group/DNA methyltranserase complex. J. Biol. Chem. 283:3091930932. doi:10.1074/jbc.M804029200

    Kogi, M., S. Fukushige, C. Leevre, S. Hadano, and J.E. Ikeda. 1997. A noveltandem repeat sequence located on human chromosome 4p: isola-tion and characterization. Genomics. 42:278283. doi:10.1006/geno.1997.4746

    Kondo, T., M.P. Bobek, R. Kuick, B. Lamb, X. Zhu, A. Narayan, D. Bourchis,E. Viegas-Pquignot, M. Ehrlich, and S.M. Hanash. 2000. Whole-genome methylation scan in ICF syndrome: hypomethylation o non-satellite DNA repeats D4Z4 and NBL2. Hum. Mol. Genet. 9:597604.doi:10.1093/hmg/9.4.597

    Kowaljow, V., A. Marcowycz, E. Ansseau, C.B. Conde, S. Sauvage, C. Mattotti,C. Arias, E.D. Corona, N.G. Nuez, O. Leo, et al. 2007. The DUX4 geneat the FSHD1A locus encodes a pro-apoptotic protein. Neuromuscul.Disord. 17:611623. doi:10.1016/j.nmd.2007.04.002

    Landoyzy, L., and J. Dejerine. 1886. Contribution ltude de la myopathie atro-phique progressive (myopathie atrophique progressive, type scapulo-humral. Comptes Rendus De La Socit De Biologie. 38:478481.

    Laoudj-Chenivesse, D., G. Carnac, C. Bisbal, G. Hugon, S. Bouillot, C.Desnuelle, Y. Vassetzky, and A. Fernandez. 2005. Increased levels oadenine nucleotide translocator 1 protein and response to oxidative stressare early events in acioscapulohumeral muscular dystrophy muscle.J. Mol. Med. 83:216224. doi:10.1007/s00109-004-0583-7

    Lemmers, R.J., S.M. van der Maarel, J.C. van Deutekom, M.J. van der Wielen, G.Deidda, H.G. Dauwerse, J. Hewitt, M. Hoker, E. Bakker, G.W. Padberg,and R.R. Frants. 1998. Inter- and intrachromosomal sub-telomeric re-arrangements on 4q35: implications or acioscapulohumeral muscular

    dystrophy (FSHD) aetiology and diagnosis. Hum. Mol. Genet. 7:12071214. doi:10.1093/hmg/7.8.1207

    Lemmers, R.J., P. de Kievit, L. Sandkuijl, G.W. Padberg, G.J. van Ommen, R.R.Frants, and S.M. van der Maarel. 2002. Facioscapulohumeral musculardystrophy is uniquely associated with one o the two variants o the 4qsubtelomere.Nat. Genet. 32:235236. doi:10.1038/ng999

    Lemmers, R.J., M. Osborn, T. Haa, M. Rogers, R.R. Frants, G.W. Padberg, D.N.Cooper, S.M. van der Maarel, and M. Upadhyaya. 2003. D4F104S1 de-letion in acioscapulohumeral muscular dystrophy: phenotype, size, anddetection.Neurology. 61:178183.

    Lemmers, R.J., M. Wohlgemuth, K.J. van der Gaag, P.J. van der Vliet, C.M. vanTeijlingen, P. de Knij, G.W. Padberg, R.R. Frants, and S.M. van derMaarel. 2007. Specic sequence variations within the 4q35 region areassociated with acioscapulohumeral muscular dystrophy. Am. J. Hum.Genet. 81:884894. doi:10.1086/521986

    Lemmers, R.J., P.J. van der Vliet, K.J. van der Gaag, S. Zuniga, R.R. Frants,P. de Knij, and S.M. van der Maarel. 2010a. Worldwide populationanalysis o the 4q and 10q subtelomeres identies only our discrete inter-chromosomal sequence transers in human evolution.Am. J. Hum. Genet.86:364377. doi:10.1016/j.ajhg.2010.01.035

    Lemmers, R.J., P.J. van der Vliet, R. Klooster, S. Sacconi, P. Camao, J.G.Dauwerse, L. Snider, K.R. Straasheijm, G.J. van Ommen, G.W. Padberg,et al. 2010b. A uniying genetic model or acioscapulohumeral musculardystrophy. Science. 329:16501653. doi:10.1126/science.1189044

    Li, K., C.K. Warner, J.A. Hodge, S. Minoshima, J. Kudoh, R. Fukuyama, M.Maekawa, Y. Shimizu, N. Shimizu, and D.C. Wallace. 1989. A humanmuscle adenine nucleotide translocator gene has our exons, is lo-cated on chromosome 4, and is dierentially expressed. J. Biol. Chem.264:1399814004.

    Liu, Q., T.I. Jones, V.W. Tang, W.M. Brieher, and P.L. Jones. 2010.Facioscapulohumeral muscular dystrophy region gene-1 (FRG-1) is anactin-bundling protein associated with muscle-attachment sites. J. CellSci. 123:11161123. doi:10.1242/jcs.058958

    Gabellini, D., M.R. Green, and R. Tupler. 2002. Inappropriate gene activation inFSHD: a repressor complex binds a chromosomal repeat deleted in dystro-phic muscle. Cell. 110:339348. doi:10.1016/S0092-8674(02)00826-7

    Gabellini, D., M.R. Green, and R. Tupler. 2004. When enough is enough: geneticdiseases associated with transcriptional derepression. Curr. Opin. Genet.Dev. 14:301307. doi:10.1016/j.gde.2004.04.010

    Gabellini, D., G. DAntona, M. Moggio, A. Prelle, C. Zecca, R. Adami,B. Angeletti, P. Ciscato, M.A. Pellegrino, R. Bottinelli, et al. 2006.Facioscapulohumeral muscular dystrophy in mice overexpressing FRG1.Nature. 439:973977.

    Gabrils, J., M.C. Beckers, H. Ding, A. De Vriese, S. Plaisance, S.M. vander Maarel, G.W. Padberg, R.R. Frants, J.E. Hewitt, D. Collen, and A.Belayew. 1999. Nucleotide sequence o the partially deleted D4Z4 locusin a patient with FSHD identies a putative gene within each 3.3 kb ele-ment. Gene. 236:2532. doi:10.1016/S0378-1119(99)00267-X

    Giacalone, J., J. Friedes, and U. Francke. 1992. A novel GC-rich human macro-satellite VNTR in Xq24 is dierentially methylated on active and inactiveX chromosomes.Nat. Genet. 1:137143. doi:10.1038/ng0592-137

    Gilbert, J.R., J.M. Stajich, M.C. Speer, J.M. Vance, C.S. Stewart, L.H. Yamaoka,F. Samson, M. Fardeau, T.G. Potter, A.D. Roses, et al. 1992. Linkagestudies in acioscapulohumeral muscular dystrophy (FSHD).Am. J. Hum.Genet. 51:424427.

    Gonzalez, E., H. Kulkarni, H. Bolivar, A. Mangano, R. Sanchez, G. Catano, R.J.Nibbs, B.I. Freedman, M.P. Quinones, M.J. Bamshad, et al. 2005. The infu-ence o CCL3L1 gene-containing segmental duplications on HIV-1/AIDSsusceptibility. Science. 307:14341440. doi:10.1126/science.1101160

    Goto, K., J.H. Lee, C. Matsuda, K. Hirabayashi, T. Kojo, A. Nakamura, Y.Mitsunaga, T. Furukawa, K. Sahashi, and K. Arahata. 1995. DNA re-arrangements in Japanese acioscapulohumeral muscular dystrophy pa-tients: clinical correlations. Neuromuscul. Disord. 5:201208. doi:10.1016/0960-8966(94)00055-E

    Grewal, P.K., L.C. Todd, S. van der Maarel, R.R. Frants, and J.E. Hewitt. 1998.FRG1, a gene in the FSH muscular dystrophy region on human chromo-some 4q35, is highly conserved in vertebrates and invertebrates. Gene.216:1319. doi:10.1016/S0378-1119(98)00334-5

    Griggs, R.C., R. Tawil, D. Storvick, J.R. Mendell, and M.R. Altherr. 1993.Genetics o acioscapulohumeral muscular dystrophy: new mutations insporadic cases.Neurology. 43:23692372.

    Griggs, R.C., R. Tawil, M. McDermott, J. Forrester, D. Figlewicz, and B.Weienbach; FSH-DY Group. 1995. Monozygotic twins with acioscapulo-humeral dystrophy (FSHD): implications or genotype/phenotype corre-lation.Muscle Nerve. 2:S50S55. doi:10.1002/mus.880181311

    Gu, W., F. Zhang, and J.R. Lupski. 2008. Mechanisms or human genomic re-arrangements. Pathogenetics. 1:4. doi:10.1186/1755-8417-1-4

    Guelen, L., L. Pagie, E. Brasset, W. Meuleman, M.B. Faza, W. Talhout, B.H. Eussen,

    A. de Klein, L. Wessels, W. de Laat, and B. van Steensel. 2008. Domainorganization o human chromosomes revealed by mapping o nuclear laminainteractions.Nature. 453:948951. doi:10.1038/nature06947

    Hanel, M.L., R.D. Wuebbles, and P.L. Jones. 2009. Muscular dystrophy candi-date gene FRG1 is critical or muscle development.Dev. Dyn. 238:15021512. doi:10.1002/dvdy.21830

    Hanel, M.L., C.Y. Sun, T.I. Jones, S.W. Long, S. Zanotti, D. Milner, and P.L. Jones.2010. Facioscapulohumeral muscular dystrophy (FSHD) region gene 1(FRG1) is a dynamic nuclear and sarcomeric protein.Differentiation.

    Hark, A.T., C.J. Schoenherr, D.J. Katz, R.S. Ingram, J.M. Levorse, andS.M. Tilghman. 2000. CTCF mediates methylation-sensitive enhancer-blocking activity at the H19/Ig2 locus.Nature. 405:486489. doi:10.1038/35013106

    Hetzer, M.W. 2010. The nuclear envelope. Cold Spring Harb Perspect Biol.2:a000539. doi:10.1101/cshperspect.a000539

    Hewitt, J.E., R. Lyle, L.N. Clark, E.M. Valleley, T.J. Wright, C. Wijmenga, J.C. vanDeutekom, F. Francis, P.T. Sharpe, M. Hoker, et al. 1994. Analysis o the

    tandem repeat locus D4Z4 associated with acioscapulohumeral musculardystrophy.Hum. Mol. Genet. 3:12871295. doi:10.1093/hmg/3.8.1287

    Ho, L., and G.R. Crabtree. 2010. Chromatin remodelling during development.Nature. 463:474484. doi:10.1038/nature08911

    Hsu, Y.D., M.C. Kao, W.C. Shyu, J.C. Lin, N.E. Huang, H.F. Sun, K.D. Yang, andW.L. Tsao. 1997. Application o chromosome 4q35-qter marker (pFR-1) orDNA rearrangement o acioscapulohumeral muscular dystrophy patients inTaiwan.J. Neurol. Sci. 149:7379. doi:10.1016/S0022-510X(97)05394-X

    Jiang, G., F. Yang, P.G. van Overveld, V. Vedanarayanan, S. van der Maarel,and M. Ehrlich. 2003. Testing the position-eect variegation hypoth-esis or acioscapulohumeral muscular dystrophy by analysis o histonemodication and gene expression in subtelomeric 4q.Hum. Mol. Genet.12:29092921. doi:10.1093/hmg/ddg323

    Kilmer, D.D., R.T. Abresch, M.A. McCrory, G.T. Carter, W.M. Fowler Jr., E.R.Johnson, and C.M. McDonald. 1995. Proles o neuromuscular diseases.

    Published December 13, 2010

    http://dx.doi.org/10.1097/00002060-199509001-00007http://dx.doi.org/10.1126/science.1061603http://dx.doi.org/10.1093/hmg/ddg028http://dx.doi.org/10.1016/j.nmd.2006.06.008http://dx.doi.org/10.1038/ejhg.2009.62http://dx.doi.org/10.1074/jbc.M804029200http://dx.doi.org/10.1006/geno.1997.4746http://dx.doi.org/10.1006/geno.1997.4746http://dx.doi.org/10.1093/hmg/9.4.597http://dx.doi.org/10.1016/j.nmd.2007.04.002http://dx.doi.org/10.1007/s00109-004-0583-7http://dx.doi.org/10.1093/hmg/7.8.1207http://dx.doi.org/10.1038/ng999http://dx.doi.org/10.1086/521986http://dx.doi.org/10.1016/j.ajhg.2010.01.035http://dx.doi.org/10.1126/science.1189044http://dx.doi.org/10.1242/jcs.058958http://dx.doi.org/10.1016/S0092-8674(02)00826-7http://dx.doi.org/10.1016/j.gde.2004.04.010http://dx.doi.org/10.1016/S0378-1119(99)00267-Xhttp://dx.doi.org/10.1038/ng0592-137http://dx.doi.org/10.1126/science.1101160http://dx.doi.org/10.1016/0960-8966(94)00055-Ehttp://dx.doi.org/10.1016/0960-8966(94)00055-Ehttp://dx.doi.org/10.1016/S0378-1119(98)00334-5http://dx.doi.org/10.1002/mus.880181311http://dx.doi.org/10.1186/1755-8417-1-4http://dx.doi.org/10.1038/nature06947http://dx.doi.org/10.1002/dvdy.21830http://dx.doi.org/10.1038/35013106http://dx.doi.org/10.1038/35013106http://dx.doi.org/10.1101/cshperspect.a000539http://dx.doi.org/10.1093/hmg/3.8.1287http://dx.doi.org/10.1038/nature08911http://dx.doi.org/10.1016/S0022-510X(97)05394-Xhttp://dx.doi.org/10.1093/hmg/ddg323http://dx.doi.org/10.1093/hmg/ddg323http://dx.doi.org/10.1016/S0022-510X(97)05394-Xhttp://dx.doi.org/10.1038/nature08911http://dx.doi.org/10.1093/hmg/3.8.1287http://dx.doi.org/10.1101/cshperspect.a000539http://dx.doi.org/10.1038/35013106http://dx.doi.org/10.1038/35013106http://dx.doi.org/10.1002/dvdy.21830http://dx.doi.org/10.1038/nature06947http://dx.doi.org/10.1186/1755-8417-1-4http://dx.doi.org/10.1002/mus.880181311http://dx.doi.org/10.1016/S0378-1119(98)00334-5http://dx.doi.org/10.1016/0960-8966(94)00055-Ehttp://dx.doi.org/10.1016/0960-8966(94)00055-Ehttp://dx.doi.org/10.1126/science.1101160http://dx.doi.org/10.1038/ng0592-137http://dx.doi.org/10.1016/S0378-1119(99)00267-Xhttp://dx.doi.org/10.1016/j.gde.2004.04.010http://dx.doi.org/10.1016/S0092-8674(02)00826-7http://dx.doi.org/10.1242/jcs.058958http://dx.doi.org/10.1126/science.1189044http://dx.doi.org/10.1016/j.ajhg.2010.01.035http://dx.doi.org/10.1086/521986http://dx.doi.org/10.1038/ng999http://dx.doi.org/10.1093/hmg/7.8.1207http://dx.doi.org/10.1007/s00109-004-0583-7http://dx.doi.org/10.1016/j.nmd.2007.04.002http://dx.doi.org/10.1093/hmg/9.4.597http://dx.doi.org/10.1006/geno.1997.4746http://dx.doi.org/10.1006/geno.1997.4746http://dx.doi.org/10.1074/jbc.M804029200http://dx.doi.org/10.1038/ejhg.2009.62http://dx.doi.org/10.1016/j.nmd.2006.06.008http://dx.doi.org/10.1093/hmg/ddg028http://dx.doi.org/10.1126/science.1061603http://dx.doi.org/10.1097/00002060-199509001-00007
  • 8/8/2019 J Cell Biol-2010-Cabianca-1049-60(2)

    11/12

    10Copy number variations and FSHD Cabianca and Gabellini

    diagnosis o acioscapulohumeral muscular dystrophy and correlation be-tween the number o KpnI repeats at the 4q35 locus and clinical phenotype.Ann. Neurol. 45:751757. doi:10.1002/1531-8249(199906)45:63.0.CO;2-M

    Rijkers, T., G. Deidda, S. van Koningsbruggen, M. van Geel, R.J. Lemmers, J.C.van Deutekom, D. Figlewicz, J.E. Hewitt, G.W. Padberg, R.R. Frants, andS.M. van der Maarel. 2004. FRG2, an FSHD candidate gene, is transcrip-tionally upregulated in dierentiating primary myoblast cultures o FSHDpatients.J. Med. Genet. 41:826836. doi:10.1136/jmg.2004.019364

    Rossi, M., E. Ricci, L. Colantoni, G. Galluzzi, R. Frusciante, P.A. Tonali, andL. Felicetti. 2007. The Facioscapulohumeral muscular dystrophy re-gion on 4qter and the homologous locus on 10qter evolved indepen-dently under dierent evolutionary pressure.BMC Med. Genet. 8:8. doi:10.1186/1471-2350-8-8

    Ruthenburg, A.J., H. Li, D.J. Patel, and C.D. Allis. 2007. Multivalent engagemento chromatin modications by linked binding modules.Nat. Rev. Mol. CellBiol. 8:983994. doi:10.1038/nrm2298

    Saito, Y., S. Miyashita, A. Yokoyama, H. Komaki, A. Seki, Y. Maegaki, andK. Ohno. 2007. Facioscapulohumeral muscular dystrophy with severemental retardation and epilepsy. Brain Dev. 29:231233. doi:10.1016/j.braindev.2006.08.012

    Simon, J.A., and R.E. Kingston. 2009. Mechanisms o polycomb gene silencing:knowns and unknowns.Nat. Rev. Mol. Cell Biol. 10:697708.

    Snider, L., A. Asawachaicharn, A.E. Tyler, L.N. Geng, L.M. Petek, L. Maves, D.G.Miller, R.J. Lemmers, S.T. Winokur, R. Tawil, et al. 2009. RNA transcripts,miRNA-sized ragments and proteins produced rom D4Z4 units: new can-didates or the pathophysiology o acioscapulohumeral dystrophy. Hum.Mol. Genet. 18:24142430. doi:10.1093/hmg/ddp180

    Snider, L., L.N. Geng, R.J. Lemmers, M. Kyba, C.B. Ware, A.M. Nelson, R.Tawil, G.N. Filippova, S.M. van der Maarel, S.J. Tapscott, and D.G.Miller. 2010. Facioscapulohumeral dystrophy: incomplete suppres-sion o a retrotransposed gene. PLoS Genet. 6:e1001181. doi:10.1371/journal.pgen.1001181

    Spector, D.L. 2001. Nuclear domains.J. Cell Sci. 114:28912893.

    Stankiewicz, P., and J.R. Lupski. 2010. Structural variation in the human ge-nome and its role in disease. Annu. Rev. Med. 61:437455. doi:10.1146/annurev-med-100708-204735

    Stranger, B.E., M.S. Forrest, M. Dunning, C.E. Ingle, C. Beazley, N. Thorne,R. Redon, C.P. Bird, A. de Grassi, C. Lee, et al. 2007. Relative impact onucleotide and copy number variation on gene expression phenotypes.Science. 315:848853. doi:10.1126/science.1136678

    Suzuki, M.M., and A. Bird. 2008. DNA methylation landscapes: provoca-tive insights rom epigenomics. Nat. Rev. Genet. 9:465476. doi:10.1038/nrg2341

    Tam, R., K.P. Smith, and J.B. Lawrence. 2004. The 4q subtelomere harbor-

    ing the FSHD locus is specically anchored with peripheral hetero-chromatin unlike most human telomeres. J. Cell Biol. 167:269279.doi:10.1083/jcb.200403128

    Tawil, R., and S.M. Van Der Maarel. 2006. Facioscapulohumeral muscular dys-trophy.Muscle Nerve. 34:115. doi:10.1002/mus.20522

    Tawil, R., D. Storvick, T.E. Feasby, B. Weienbach, and R.C. Griggs. 1993.Extreme variability o expression in monozygotic twins with FSH mus-cular dystrophy.Neurology. 43:345348.

    Tawil, R., J. Forrester, R.C. Griggs, J. Mendell, J. Kissel, M. McDermott, W.King, B. Weienbach, and D. Figlewicz; The FSH-DY Group. 1996.Evidence or anticipation and association o deletion size with severityin acioscapulohumeral muscular dystrophy. Ann. Neurol. 39:744748.doi:10.1002/ana.410390610

    Tawil, R., D.A. Figlewicz, R.C. Griggs, and B. Weienbach; FSH Consortium.1998. Facioscapulohumeral dystrophy: a distinct regional myopa-thy with a novel molecular pathogenesis. Ann. Neurol. 43:279282.doi:10.1002/ana.410430303

    Tonini, M.M., M.R. Passos-Bueno, A. Cerqueira, S.R. Matioli, R. Pavanello,and M. Zatz. 2004. Asymptomatic carriers and gender dierences inacioscapulohumeral muscular dystrophy (FSHD).Neuromuscul. Disord.14:3338. doi:10.1016/j.nmd.2003.07.001

    Trevisan, C.P., E. Pastorello, M. Armani, C. Angelini, G. Nante, G.Tomelleri, P. Tonin, T. Mongini, L. Palmucci, G. Galluzzi, et al. 2006.Facioscapulohumeral muscular dystrophy and occurrence o heartarrhythmia.Eur. Neurol. 56:15. doi:10.1159/000094248

    Trevisan, C.P., E. Pastorello, M. Ermani, C. Angelini, G. Tomelleri, P. Tonin,T. Mongini, L. Palmucci, G. Galluzzi, R.G. Tupler, et al. 2008.Facioscapulohumeral muscular dystrophy: a multicenter study on hear-ing unction.Audiol. Neurootol.13:16. doi:10.1159/000107431

    Tsumagari, K., L. Qi, K. Jackson, C. Shao, M. Lacey, J. Sowden, R. Tawil, V.Vedanarayanan, and M. Ehrlich. 2008. Epigenetics o a tandem DNA re-peat: chromatin DNaseI sensitivity and opposite methylation changes incancers.Nucleic Acids Res. 36:21962207. doi:10.1093/nar/gkn055

    Ludrus, M.E., B. van Steensel, L. Chong, O.C. Sibon, F.F. Cremers, andT. de Lange. 1996. Structure, subnuclear distribution, and nuclear matrixassociation o the mammalian telomeric complex.J. Cell Biol. 135:867881. doi:10.1083/jcb.135.4.867

    Lunt, P.W., P.E. Jardine, M.C. Koch, J. Maynard, M. Osborn, M. Williams,P.S. Harper, and M. Upadhyaya. 1995. Correlation between ragmentsize at D4F104S1 and age at onset or at wheelchair use, with a possiblegenerational eect, accounts or much phenotypic variation in 4q35-acioscapulohumeral muscular dystrophy (FSHD). Hum. Mol. Genet.4:951958. doi:10.1093/hmg/4.5.951

    Lyle, R., T.J. Wright, L.N. Clark, and J.E. Hewitt. 1995. The FSHD-associatedrepeat, D4Z4, is a member o a dispersed amily o homeobox-containingrepeats, subsets o which are clustered on the short arms o the acrocen-tric chromosomes. Genomics. 28:389397. doi:10.1006/geno.1995.1166

    Maeda, R.K., and F. Karch. 2007. Making connections: boundaries and insula-tors in Drosophila. Curr. Opin. Genet. Dev. 17:394399. doi:10.1016/j.gde.2007.08.002

    Masny, P.S., U. Bengtsson, S.A. Chung, J.H. Martin, B. van Engelen, S.M. vander Maarel, and S.T. Winokur. 2004. Localization o 4q35.2 to the nu-clear periphery: is FSHD a nuclear envelope disease? Hum. Mol. Genet.13:18571871. doi:10.1093/hmg/ddh205

    Miura, K., T. Kumagai, A. Matsumoto, E. Iriyama, K. Watanabe, K. Goto, andK. Arahata. 1998. Two cases o chromosome 4q35-linked early onsetacioscapulohumeral muscular dystrophy with mental retardation andepilepsy.Neuropediatrics. 29:239241. doi:10.1055/s-2007-973568

    Nagele, R.G., A.Q. Velasco, W.J. Anderson, D.J. McMahon, Z. Thomson, J.Fazekas, K. Wind, and H. Lee. 2001. Telomere associations in interphasenuclei: possible role in maintenance o interphase chromosome topology.

    J. Cell Sci. 114:377388.Neguembor, M.V., and D. Gabellini. 2010. In junk we trust: repetitive DNA,

    epigenetics and acioscapulohumeral muscular dystrophy.Epigenomics.2:271287. doi:10.2217/epi.10.8

    Nightingale, K.P., L.P. ONeill, and B.M. Turner. 2006. Histone modications:signalling receptors and potential elements o a heritable epigenetic code.Curr. Opin. Genet. Dev. 16:125136. doi:10.1016/j.gde.2006.02.015

    Osborne, R.J., S. Welle, S.L. Venance, C.A. Thornton, and R. Tawil. 2007.Expression proile o FSHD supports a link between retinal vascu-lopathy and muscular dystrophy.Neurology. 68:569577. doi:10.1212/01.wnl.0000251269.31442.d9

    Ottaviani, A., S. Rival-Gervier, A. Boussouar, A.M. Foerster, D. Rondier, S.Sacconi, C. Desnuelle, E. Gilson, and F. Magdinier. 2009a. The D4Z4macrosatellite repeat acts as a CTCF and A-type lamins-dependent in-sulator in acio-scapulo-humeral dystrophy. PLoS Genet. 5:e1000394.doi:10.1371/journal.pgen.1000394

    Ottaviani, A., C. Schluth-Bolard, S. Rival-Gervier, A. Boussouar, D. Rondier,

    A.M. Foerster, J. Morere, S. Bauwens, S. Gazzo, E. Callet-Bauchu, et al.2009b. Identication o a perinuclear positioning element in human sub-telomeres that requires A-type lamins and CTCF.EMBO J. 28:24282436.doi:10.1038/emboj.2009.201

    Padberg, G.W. 1982. Facioscapulohumeral disease. Thesis. Leiden University,Leiden, Netherlands.

    Padberg, G.W., P.W. Lunt, M. Koch, and M. Fardeau. 1991. Diagnostic criteria oracioscapulohumeral muscular dystrophy. Neuromuscul. Disord. 1:231234. doi:10.1016/0960-8966(91)90094-9

    Padberg, G.W., O.F. Brouwer, R.J. de Keizer, G. Dijkman, C. Wijmenga, J.J.Grote, and R.R. Frants. 1995. On the signicance o retinal vascular dis-ease and hearing loss in acioscapulohumeral muscular dystrophy.MuscleNerve. 2:S73S80. doi:10.1002/mus.880181314

    Pandya, S., W.M. King, and R. Tawil. 2008. Facioscapulohumeral dystrophy.Phys. Ther. 88:105113. doi:10.2522/ptj.20070104

    Petrov, A., I. Pirozhkova, G. Carnac, D. Laoudj, M. Lipinski, and Y.S. Vassetzky.2006. Chromatin loop domain organization within the 4q35 locus inacioscapulohumeral dystrophy patients versus normal human myoblasts.

    Proc. Natl. Acad. Sci. USA. 103:69826987.doi:10.1073/pnas.0511235103

    Petrov, A., J. Allinne, I. Pirozhkova, D. Laoudj, M. Lipinski, and Y.S. Vassetzky.2008. A nuclear matrix attachment site in the 4q35 locus has an enhancer-blocking activity in vivo: implications or the acio-scapulo-humeral dys-trophy. Genome Res. 18:3945. doi:10.1101/gr.6620908

    Pirozhkova, I., A. Petrov, P. Dmitriev, D. Laoudj, M. Lipinski, and Y. Vassetzky.2008. A unctional role or 4qA/B in the structural rearrangement othe 4q35 region and in the regulation o FRG1 and ANT1 in acio-scapulohumeral dystrophy. PLoS One. 3:e3389. doi:10.1371/journal.pone.0003389

    Rappsilber, J., U. Ryder, A.I. Lamond, and M. Mann. 2002. Large-scale pro-teomic analysis o the human spliceosome. Genome Res. 12:12311245.doi:10.1101/gr.473902

    Ricci, E., G. Galluzzi, G. Deidda, S. Cacurri, L. Colantoni, B. Merico, N. Piazzo,S. Servidei, E. Vigneti, V. Pasceri, et al. 1999. Progress in the molecular

    Published December 13, 2010

    http://dx.doi.org/10.1002/1531-8249(199906)45:6%3C751::AID-ANA9%3E3.0.CO;2-Mhttp://dx.doi.org/10.1002/1531-8249(199906)45:6%3C751::AID-ANA9%3E3.0.CO;2-Mhttp://dx.doi.org/10.1136/jmg.2004.019364http://dx.doi.org/10.1186/1471-2350-8-8http://dx.doi.org/10.1186/1471-2350-8-8http://dx.doi.org/10.1038/nrm2298http://dx.doi.org/10.1016/j.braindev.2006.08.012http://dx.doi.org/10.1016/j.braindev.2006.08.012http://dx.doi.org/10.1093/hmg/ddp180http://dx.doi.org/10.1371/journal.pgen.1001181http://dx.doi.org/10.1371/journal.pgen.1001181http://dx.doi.org/10.1146/annurev-med-100708-204735http://dx.doi.org/10.1146/annurev-med-100708-204735http://dx.doi.org/10.1126/science.1136678http://dx.doi.org/10.1038/nrg2341http://dx.doi.org/10.1038/nrg2341http://dx.doi.org/10.1083/jcb.200403128http://dx.doi.org/10.1002/mus.20522http://dx.doi.org/10.1002/ana.410390610http://dx.doi.org/10.1002/ana.410430303http://dx.doi.org/10.1016/j.nmd.2003.07.001http://dx.doi.org/10.1159/000094248http://dx.doi.org/10.1159/000107431http://dx.doi.org/10.1093/nar/gkn055http://dx.doi.org/10.1083/jcb.135.4.867http://dx.doi.org/10.1093/hmg/4.5.951http://dx.doi.org/10.1006/geno.1995.1166http://dx.doi.org/10.1016/j.gde.2007.08.002http://dx.doi.org/10.1016/j.gde.2007.08.002http://dx.doi.org/10.1093/hmg/ddh205http://dx.doi.org/10.1055/s-2007-973568http://dx.doi.org/10.2217/epi.10.8http://dx.doi.org/10.1016/j.gde.2006.02.015http://dx.doi.org/10.1212/01.wnl.0000251269.31442.d9http://dx.doi.org/10.1212/01.wnl.0000251269.31442.d9http://dx.doi.org/10.1371/journal.pgen.1000394http://dx.doi.org/10.1038/emboj.2009.201http://dx.doi.org/10.1016/0960-8966(91)90094-9http://dx.doi.org/10.1002/mus.880181314http://dx.doi.org/10.2522/ptj.20070104http://dx.doi.org/10.1073/pnas.0511235103http://dx.doi.org/10.1101/gr.6620908http://dx.doi.org/10.1371/journal.pone.0003389http://dx.doi.org/10.1371/journal.pone.0003389http://dx.doi.org/10.1101/gr.473902http://dx.doi.org/10.1101/gr.473902http://dx.doi.org/10.1371/journal.pone.0003389http://dx.doi.org/10.1371/journal.pone.0003389http://dx.doi.org/10.1101/gr.6620908http://dx.doi.org/10.1073/pnas.0511235103http://dx.doi.org/10.2522/ptj.20070104http://dx.doi.org/10.1002/mus.880181314http://dx.doi.org/10.1016/0960-8966(91)90094-9http://dx.doi.org/10.1038/emboj.2009.201http://dx.doi.org/10.1371/journal.pgen.1000394http://dx.doi.org/10.1212/01.wnl.0000251269.31442.d9http://dx.doi.org/10.1212/01.wnl.0000251269.31442.d9http://dx.doi.org/10.1016/j.gde.2006.02.015http://dx.doi.org/10.2217/epi.10.8http://dx.doi.org/10.1055/s-2007-973568http://dx.doi.org/10.1093/hmg/ddh205http://dx.doi.org/10.1016/j.gde.2007.08.002http://dx.doi.org/10.1016/j.gde.2007.08.002http://dx.doi.org/10.1006/geno.1995.1166http://dx.doi.org/10.1093/hmg/4.5.951http://dx.doi.org/10.1083/jcb.135.4.867http://dx.doi.org/10.1093/nar/gkn055http://dx.doi.org/10.1159/000107431http://dx.doi.org/10.1159/000094248http://dx.doi.org/10.1016/j.nmd.2003.07.001http://dx.doi.org/10.1002/ana.410430303http://dx.doi.org/10.1002/ana.410390610http://dx.doi.org/10.1002/mus.20522http://dx.doi.org/10.1083/jcb.200403128http://dx.doi.org/10.1038/nrg2341http://dx.doi.org/10.1038/nrg2341http://dx.doi.org/10.1126/science.1136678http://dx.doi.org/10.1146/annurev-med-100708-204735http://dx.doi.org/10.1146/annurev-med-100708-204735http://dx.doi.org/10.1371/journal.pgen.1001181http://dx.doi.org/10.1371/journal.pgen.1001181http://dx.doi.org/10.1093/hmg/ddp180http://dx.doi.org/10.1016/j.braindev.2006.08.012http://dx.doi.org/10.1016/j.braindev.2006.08.012http://dx.doi.org/10.1038/nrm2298http://dx.doi.org/10.1186/1471-2350-8-8http://dx.doi.org/10.1186/1471-2350-8-8http://dx.doi.org/10.1136/jmg.2004.019364http://dx.doi.org/10.1002/1531-8249(199906)45:6%3C751::AID-ANA9%3E3.0.CO;2-Mhttp://dx.doi.org/10.1002/1531-8249(199906)45:6%3C751::AID-ANA9%3E3.0.CO;2-M
  • 8/8/2019 J Cell Biol-2010-Cabianca-1049-60(2)

    12/12

    JCB VOLUME 191 NUMBER 6 20101060

    Wijmenga, C., G.W. Padberg, P. Moerer, J. Wiegant, L. Liem, O.F. Brouwer,E.C. Milner, J.L. Weber, G.B. van Ommen, L.A. Sandkuyl, et al. 1991.Mapping o acioscapulohumeral muscular dystrophy gene to chromo-some 4q35-qter by multipoint linkage analysis and in situ hybridization.Genomics. 9:570575. doi:10.1016/0888-7543(91)90348-I

    Wijmenga, C., J.E. Hewitt, L.A. Sandkuijl, L.N. Clark, T.J. Wright, H.G.Dauwerse, A.M. Gruter, M.H. Hoker, P. Moerer, R. Williamson,et al. 1992. Chromosome 4q DNA rearrangements associated withacioscapulohumeral muscular dystrophy. Nat. Genet. 2:2630. doi:10.1038/ng0992-26

    Winokur, S.T., U. Bengtsson, J. Feddersen, K.D. Mathews, B. Weienbach, H.Bailey, R.P. Markovich, J.C. Murray, J.J. Wasmuth, M.R. Altherr, et al.1994. The DNA rearrangement associated with acioscapulohumeralmuscular dystrophy involves a heterochromatin-associated repetitive ele-ment: implications or a role o chromatin structure in the pathogenesis othe disease. Chromosome Res. 2:225234. doi:10.1007/BF01553323

    Winokur, S.T., Y.W. Chen, P.S. Masny, J.H. Martin, J.T. Ehmsen, S.J. Tapscott,S.M. van der Maarel, Y. Hayashi, and K.M. Flanigan. 2003a. Expression pro-ling o FSHD muscle supports a deect in specic stages o myogenic di-erentiation.Hum. Mol. Genet. 12:28952907. doi:10.1093/hmg/ddg327

    Winokur, S.T., K. Barrett, J.H. Martin, J.R. Forrester, M. Simon, R. Tawil, S.A.Chung, P.S. Masny, and D.A. Figlewicz. 2003b. Facioscapulohumeralmuscular dystrophy (FSHD) myoblasts demonstrate increased suscep-tibility to oxidative stress. Neuromuscul. Disord. 13:322333. doi:10.1016/S0960-8966(02)00284-5

    Wu, S., Y.C. Hu, H. Liu, and Y. Shi. 2009. Loss o YY1 impacts the hetero-chromatic state and meiotic double-strand breaks during mouse sper-matogenesis.Mol. Cell. Biol. 29:62456256. doi:10.1128/MCB.00679-09

    Wuebbles, R.D., M.L. Hanel, and P.L. Jones. 2009. FSHD region gene 1 (FRG1)is crucial or angiogenesis linking FRG1 to acioscapulohumeral mus-cular dystrophy-associated vasculopathy. Dis Model Mech. 2:267274.doi:10.1242/dmm.002261

    Wuebbles, R.D., S.W. Long, M.L. Hanel, and P.L. Jones. 2010. Testing theeects o FSHD candidate gene expression in vertebrate muscle develop-ment.Int J Clin Exp Pathol. 3:386400.

    Zatz, M., S.K. Marie, M.R. Passos-Bueno, M. Vainzo, S. Campiotto, A.Cerqueira, C. Wijmenga, G. Padberg, and R. Frants. 1995. High propor-tion o new mutations and possible anticipation in Brazilian acioscapulo-humeral muscular dystrophy amilies.Am. J. Hum. Genet. 56:99105.

    Zatz, M., S.K. Marie, A. Cerqueira, M. Vainzo, R.C. Pavanello, and M.R.Passos-Bueno. 1998. The acioscapulohumeral muscular dystrophy(FSHD1) gene aects males more severely and more requently thanemales. Am. J. Med. Genet. 77:155161. doi:10.1002/(SICI)1096-8628(19980501)77:23.0.CO;2-R

    Zeng, W., J.C. de Gree, Y.Y. Chen, R. Chien, X. Kong, H.C. Gregson, S.T.Winokur, A. Pyle, K.D. Robertson, J.A. Schmiesing, et al. 2009. Specic

    loss o histone H3 lysine 9 trimethylation and HP1gamma/cohesin bind-ing at D4Z4 repeats is associated with acioscapulohumeral dystrophy(FSHD). PLoS Genet. 5:e1000559. doi:10.1371/journal.pgen.1000559

    Tupler, R., and D. Gabellini. 2004. Molecular basis o acioscapulohumeralmuscular dystrophy. Cell. Mol. Life Sci. 61:557566. doi:10.1007/s00018-003-3285-3

    Tupler, R., A. Berardinelli, L. Barbierato, R. Frants, J.E. Hewitt, G. Lanzi, P.Maraschio, and L. Tiepolo. 1996. Monosomy o distal 4q does not causeacioscapulohumeral muscular dystrophy. J. Med. Genet. 33:366370.doi:10.1136/jmg.33.5.366

    Tupler, R., L. Barbierato, M. Memmi, C.A. Sewry, D. De Grandis, P. Maraschio,L. Tiepolo, and A. Ferlini. 1998. Identical de novo mutation at theD4F104S1 locus in monozygotic male twins aected by acioscapulo-

    humeral muscular dystrophy (FSHD) with dierent clinical expression.J. Med. Genet. 35:778783. doi:10.1136/jmg.35.9.778

    Upadhyaya, M., J. Maynard, M. Osborn, P. Jardine, P.S. Harper, and P. Lunt.1995. Germinal mosaicism in acioscapulohumeral muscular dystrophy(FSHD).Muscle Nerve. 2:S45S49. doi:10.1002/mus.880181310

    van der Maarel, S.M., G. Deidda, R.J. Lemmers, P.G. van Overveld, M. vander Wielen, J.E. Hewitt, L. Sandkuijl, B. Bakker, G.J. van Ommen, G.W.Padberg, and R.R. Frants. 2000. De novo