Iterative Helmholtz Solversta.twi.tudelft.nl/users/vuik/talks/copper_2018_1.pdf · 2018-03-28 ·...

24
Kees Vuik and Vandana Dwarka (TU Delft) 15th Copper Mountain Conference On Iterative Methods March 28th, 2018 1 / 24 Iterative Helmholtz Solvers Accuracy of iterative Helmholtz solutions Delft University of Technology Kees Vuik and Vandana Dwarka March 28th, 2018

Transcript of Iterative Helmholtz Solversta.twi.tudelft.nl/users/vuik/talks/copper_2018_1.pdf · 2018-03-28 ·...

Page 1: Iterative Helmholtz Solversta.twi.tudelft.nl/users/vuik/talks/copper_2018_1.pdf · 2018-03-28 · Kees Vuik and Vandana Dwarka (TU Delft)15th Copper Mountain Conference On Iterative

Kees Vuik and Vandana Dwarka (TU Delft)15th Copper Mountain Conference On Iterative Methods March 28th, 2018 1 / 24

Iterative Helmholtz SolversAccuracy of iterative Helmholtz solutionsDelft University of Technology

Kees Vuik and Vandana Dwarka

March 28th, 2018

Page 2: Iterative Helmholtz Solversta.twi.tudelft.nl/users/vuik/talks/copper_2018_1.pdf · 2018-03-28 · Kees Vuik and Vandana Dwarka (TU Delft)15th Copper Mountain Conference On Iterative

Outline

1 Aim and Impact

2 Introduction

3 Pollution

4 Our Approach

5 Conclusion

6 Next Up

Kees Vuik and Vandana Dwarka (TU Delft)15th Copper Mountain Conference On Iterative Methods March 28th, 2018 2 / 24

Page 3: Iterative Helmholtz Solversta.twi.tudelft.nl/users/vuik/talks/copper_2018_1.pdf · 2018-03-28 · Kees Vuik and Vandana Dwarka (TU Delft)15th Copper Mountain Conference On Iterative

Aim and Impact

• Alert solver developers to keep accuracy of solution in mind

• Research sharper error bounds

• Allows a priori theoretical error estimation

• Research pollution through spectral methods

• Pinpoint pollution in 2D and 3D

Kees Vuik and Vandana Dwarka (TU Delft) 15th Copper Mountain Conference On Iterative Methods March 28th, 2018 3 / 24

Page 4: Iterative Helmholtz Solversta.twi.tudelft.nl/users/vuik/talks/copper_2018_1.pdf · 2018-03-28 · Kees Vuik and Vandana Dwarka (TU Delft)15th Copper Mountain Conference On Iterative

Introduction - The Helmholtz Equation

• Homogeneous Helmholtz equation + BC’s

(−∇2 − k2) u(x) = 0, x ∈ Ω ⊆ Rn

• k is the wave number: k = 2πλ

• Practical applications in seismic and medical imaging1

1Source: https://earthquake.usgs.gov/image &http://math.mit.edu/icg/resources/teaching/18.336-spring2014/

Kees Vuik and Vandana Dwarka (TU Delft) 15th Copper Mountain Conference On Iterative Methods March 28th, 2018 4 / 24

Page 5: Iterative Helmholtz Solversta.twi.tudelft.nl/users/vuik/talks/copper_2018_1.pdf · 2018-03-28 · Kees Vuik and Vandana Dwarka (TU Delft)15th Copper Mountain Conference On Iterative

Introduction - Analytical Model• Analytical 1D model problem

−d2u

dx2− k2 u = δ(x − L

2),

u(0) = 0, u(L) = 0,

x ∈ Ω = [0, L] ⊆ R,

• Sturm-Liouville + Green’s function ⇒ exact solution

G (x , L/2) =2

L

∞∑j=1

sin(jπL/2)

j2π2 − k2/L2sin(jπx/L)

λj = j2π2 − k2

k 6= jπ

Lj = 1, 2, 3, . . .

Kees Vuik and Vandana Dwarka (TU Delft) 15th Copper Mountain Conference On Iterative Methods March 28th, 2018 5 / 24

Page 6: Iterative Helmholtz Solversta.twi.tudelft.nl/users/vuik/talks/copper_2018_1.pdf · 2018-03-28 · Kees Vuik and Vandana Dwarka (TU Delft)15th Copper Mountain Conference On Iterative

Introduction - Numerical Model

• Discretization on Ω = [0, 1]

• Most used second-order finite difference with h = 1n

• k ≈ b2π/#gpwc ⇒ kh is the grid resolution

• Rule of thumb kh = 0.625

• We obtain a linear system Au = f

A =1

h2tridiag[−1 2− (kh)2 − 1],

λj =1

h2[2− 2 cos(jπh)− k2h2

],

j = 1, 2, 3, . . . , n − 1,

A ∈ R(n−1)×(n−1).

• A is real, symmetric, normal, indefinite, tridiagonal and sparse

Kees Vuik and Vandana Dwarka (TU Delft) 15th Copper Mountain Conference On Iterative Methods March 28th, 2018 6 / 24

Page 7: Iterative Helmholtz Solversta.twi.tudelft.nl/users/vuik/talks/copper_2018_1.pdf · 2018-03-28 · Kees Vuik and Vandana Dwarka (TU Delft)15th Copper Mountain Conference On Iterative

Introduction - Spectral Properties

• Near-null eigenvalues near intersection with origin

• The index where this happens for the analytical case is

λjmin= 0⇒ j2π2 ≈ k2π2,

⇒ jmin = bkπc or dk

πe.

• The index where this happens for the numerical case is

λjmin= 0⇒ 1

h2[2− 2 cos(jπh)] ≈ k2

⇒ jmin = round[arccos(1− κ2)

πh]

• Near-null eigenvalues ⇒ convergence issues ⇒ Deflation

• Near-null eigenvalues ⇒ accuracy issues ⇒ Pollution

• Our aim: study both cause and effect simultaneously

Kees Vuik and Vandana Dwarka (TU Delft) 15th Copper Mountain Conference On Iterative Methods March 28th, 2018 7 / 24

Page 8: Iterative Helmholtz Solversta.twi.tudelft.nl/users/vuik/talks/copper_2018_1.pdf · 2018-03-28 · Kees Vuik and Vandana Dwarka (TU Delft)15th Copper Mountain Conference On Iterative

Pollution - Introduction

• Numerical dispersion due to different numerical wave number

• Pollution error accumulates

• Non-accurate error estimates

• Total error is (Babuska, I., et al., 1997)‖u−u‖‖u‖ ≤ C1kh + C2k

3h2, kh < 1

• Phase error is∣∣∣k − k

∣∣∣ = O(k2h2)

• Error grows with k

• Set k3h2 < 1 or use higher-order discretization

Kees Vuik and Vandana Dwarka (TU Delft) 15th Copper Mountain Conference On Iterative Methods March 28th, 2018 8 / 24

Page 9: Iterative Helmholtz Solversta.twi.tudelft.nl/users/vuik/talks/copper_2018_1.pdf · 2018-03-28 · Kees Vuik and Vandana Dwarka (TU Delft)15th Copper Mountain Conference On Iterative

Pollution - Error Bound - I

• Take k = 2πλ , λ = 2π

ωn ⇒ k = ωn

• Second order FD scheme for (Runborg, O., 2012)

−uj+1 + 2uj − uj−1h2︸ ︷︷ ︸A

−ω2n

2h2uj

h2︸ ︷︷ ︸B

= 0

• Solution for exact ωn: u (x) = e iωnxj (1)

• Solution for numerical ωn: uj = e iωnxj (2)

• Substitute (1) into A & (2) into B

−uj+1 + 2uj − uj−1 = e iωnxj 2 [1− cos (ωnh)] (3)

• If n solves (3) then

2(1− cos (ωnh))

h2− ω2n2h2 = 0 (4)

Kees Vuik and Vandana Dwarka (TU Delft) 15th Copper Mountain Conference On Iterative Methods March 28th, 2018 9 / 24

Page 10: Iterative Helmholtz Solversta.twi.tudelft.nl/users/vuik/talks/copper_2018_1.pdf · 2018-03-28 · Kees Vuik and Vandana Dwarka (TU Delft)15th Copper Mountain Conference On Iterative

Pollution - Error Bound - II

• Expand cosine, substitute in (4) and divide by ω2

n2 − n2 +O(ω2h2) = 0

• Error due to different wave speed n is

|n − n| = O(ω2h2), for n ≈ n

• Error due to dispersion∣∣e iωnxj − e iωnxj∣∣ =

∣∣∣1− e i(n−n)xj∣∣∣ ≤ Cω |n − n| ≤ Cω3h2

• Total error for the model problem

Rel. err. =‖u − u‖‖u‖

≤ C1kh + C2k3h2, kh < 1

Kees Vuik and Vandana Dwarka (TU Delft) 15th Copper Mountain Conference On Iterative Methods March 28th, 2018 10 / 24

Page 11: Iterative Helmholtz Solversta.twi.tudelft.nl/users/vuik/talks/copper_2018_1.pdf · 2018-03-28 · Kees Vuik and Vandana Dwarka (TU Delft)15th Copper Mountain Conference On Iterative

Pollution - Error

Relative error between exact and numerical solution for kh = 0.625

k n Rel. error k3h2

100 160 0.5770 39200 320 1.9347 78300 480 4.2584 117400 640 1.1925 156500 800 0.9783 195

k n Rel. error k3h2

102 164 62.0447 39139 224 3.8516 53212 332 1.1111 80312 500 38.5703 121485 776 172.9903 189

• Large and unregular error

• k3h2 bound is not sharp

Kees Vuik and Vandana Dwarka (TU Delft) 15th Copper Mountain Conference On Iterative Methods March 28th, 2018 11 / 24

Page 12: Iterative Helmholtz Solversta.twi.tudelft.nl/users/vuik/talks/copper_2018_1.pdf · 2018-03-28 · Kees Vuik and Vandana Dwarka (TU Delft)15th Copper Mountain Conference On Iterative

Pollution - 1D

Exact and numerical solution for k = 100 (L) and k = 102 (R)

Kees Vuik and Vandana Dwarka (TU Delft) 15th Copper Mountain Conference On Iterative Methods March 28th, 2018 12 / 24

Page 13: Iterative Helmholtz Solversta.twi.tudelft.nl/users/vuik/talks/copper_2018_1.pdf · 2018-03-28 · Kees Vuik and Vandana Dwarka (TU Delft)15th Copper Mountain Conference On Iterative

Pollution - Dispersion Correction

• Accuracy comes with uneconomical linear systems

• Recall phase error is∣∣∣k − k

∣∣∣ = O(k2h2)

• Dispersion correction by setting (Babuska, I., et al., 1997)

k =

√2(1− cos (kh))

h2

• Construct matrix A using k instead of k

• Correction with k possible in 1D

• In higher dimensions infinite directions

Kees Vuik and Vandana Dwarka (TU Delft) 15th Copper Mountain Conference On Iterative Methods March 28th, 2018 13 / 24

Page 14: Iterative Helmholtz Solversta.twi.tudelft.nl/users/vuik/talks/copper_2018_1.pdf · 2018-03-28 · Kees Vuik and Vandana Dwarka (TU Delft)15th Copper Mountain Conference On Iterative

Pollution - Error

Relative error and index jmin, jmin of the smallest analytical andnumerical eigenvalue for kh = 0.625 using k (L) and k (R)

k jmin jmin Rel. error

100 32 32 0.5770200 64 65 1.9347300 95 97 4.2584400 127 129 1.1925500 159 162 0.9783

k jmin jmin Rel. error

98 32 32 0.0685197 64 64 0.0681295 95 95 0.0680394 127 127 0.0678492 159 159 0.0680

• Pollution if kernel misaligned

• Spectral effect of k on kernel

• Sign of smallest eigenvalue also matters

Kees Vuik and Vandana Dwarka (TU Delft) 15th Copper Mountain Conference On Iterative Methods March 28th, 2018 14 / 24

Page 15: Iterative Helmholtz Solversta.twi.tudelft.nl/users/vuik/talks/copper_2018_1.pdf · 2018-03-28 · Kees Vuik and Vandana Dwarka (TU Delft)15th Copper Mountain Conference On Iterative

Our Approach - Introduction

• Primary literature focus on differences k and k

• Not much literature on role of eigenvalues

• Our aim: shed light on role of near nullspace eigenvalue(s)

• Main hypothesis: the accuracy of the near nullspace numericaleigenvalues are related to the pollution

• We propose an error bound incorporating the eigenvalues

Kees Vuik and Vandana Dwarka (TU Delft) 15th Copper Mountain Conference On Iterative Methods March 28th, 2018 15 / 24

Page 16: Iterative Helmholtz Solversta.twi.tudelft.nl/users/vuik/talks/copper_2018_1.pdf · 2018-03-28 · Kees Vuik and Vandana Dwarka (TU Delft)15th Copper Mountain Conference On Iterative

Our Approach - Spectral Properties

• We use eigenvalues to obtain theoretical sharper bound

• Total error now becomes

‖u − u‖‖u‖

√(2π2

31

λ2jmin

+ π2

2λjmin2

)‖u‖

• Error grows with discrepancy between λjminand λjmin

.

• As k increases ⇒ jmin 6= jmin

Kees Vuik and Vandana Dwarka (TU Delft) 15th Copper Mountain Conference On Iterative Methods March 28th, 2018 16 / 24

Page 17: Iterative Helmholtz Solversta.twi.tudelft.nl/users/vuik/talks/copper_2018_1.pdf · 2018-03-28 · Kees Vuik and Vandana Dwarka (TU Delft)15th Copper Mountain Conference On Iterative

Our Approach - New Upper BoundConstruction of upper bound:

1 Orthonormalize basis and evaluate at discrete points2 Rewrite error as

‖u − u‖ =

∥∥∥∥∥∥2n∑

j=1

sin(jπx ′)

(1

λj− 1

λj

)∥∥∥∥∥∥ ,=

√√√√4n∑

j=1

sin(jπx ′)2

(1

λj− 1

λj

)2

3 Compute λjminand λjmin

4 Find recursive relation for ratio’s between eigenvalues5 Express and bound sum in terms of ratio

‖u − u‖ ≤

√√√√√2π2

3

1

λ2jmin

+π2

2λjmin2

Kees Vuik and Vandana Dwarka (TU Delft) 15th Copper Mountain Conference On Iterative Methods March 28th, 2018 17 / 24

Page 18: Iterative Helmholtz Solversta.twi.tudelft.nl/users/vuik/talks/copper_2018_1.pdf · 2018-03-28 · Kees Vuik and Vandana Dwarka (TU Delft)15th Copper Mountain Conference On Iterative

Our Approach - Preliminary Results

Relative error and new bound (E) for kh = 0.625

k n Rel. error E

100 160 0.5770 5.0369200 320 1.9347 3.2117300 480 4.2584 4.7559400 640 1.1925 1.4373500 800 0.9783 1.7980

k n Rel. error E

102 164 62.0447 67.9444139 224 3.8516 4.6088212 332 1.1111 1.7703312 500 38.5703 43.0448485 776 172.9903 191.9262

• New bound (E) sharper

• Allows detailed study of error in terms of spectrum

• Connect results to convergence

Kees Vuik and Vandana Dwarka (TU Delft) 15th Copper Mountain Conference On Iterative Methods March 28th, 2018 18 / 24

Page 19: Iterative Helmholtz Solversta.twi.tudelft.nl/users/vuik/talks/copper_2018_1.pdf · 2018-03-28 · Kees Vuik and Vandana Dwarka (TU Delft)15th Copper Mountain Conference On Iterative

Our Approach - Alternate Correction

• Use information from eigenvalues instead of k

• Solve system

Acu = f , where Ac = A + cI ,

c = −λjmin+ λjmin

,

• Note this correction also possible in higher dimensions

Kees Vuik and Vandana Dwarka (TU Delft) 15th Copper Mountain Conference On Iterative Methods March 28th, 2018 19 / 24

Page 20: Iterative Helmholtz Solversta.twi.tudelft.nl/users/vuik/talks/copper_2018_1.pdf · 2018-03-28 · Kees Vuik and Vandana Dwarka (TU Delft)15th Copper Mountain Conference On Iterative

Our Approach - Error

Relative error and index jmin, jmin of the smallest analytical andnumerical eigenvalue for kh = 0.625 using eigenvalue correction

k jmin jmin Rel. error

100 32 32 0.0747200 64 64 0.0946300 95 95 0.0344400 127 127 0.0213500 159 159 0.0100

• No pollution if kernel aligned

• Drawback: requires smallest analytical and numerical eigenvalue

• Use to study sharper pollution progression in 2D & 3D

Kees Vuik and Vandana Dwarka (TU Delft) 15th Copper Mountain Conference On Iterative Methods March 28th, 2018 20 / 24

Page 21: Iterative Helmholtz Solversta.twi.tudelft.nl/users/vuik/talks/copper_2018_1.pdf · 2018-03-28 · Kees Vuik and Vandana Dwarka (TU Delft)15th Copper Mountain Conference On Iterative

Our Approach - Dispersion Correction (2D)

Exact (L), Adjusted Numerical (C) and Unadjusted Numerical (R)Solution for k = 30 (Top) and k = 100 (Bottom)

Kees Vuik and Vandana Dwarka (TU Delft) 15th Copper Mountain Conference On Iterative Methods March 28th, 2018 21 / 24

Page 22: Iterative Helmholtz Solversta.twi.tudelft.nl/users/vuik/talks/copper_2018_1.pdf · 2018-03-28 · Kees Vuik and Vandana Dwarka (TU Delft)15th Copper Mountain Conference On Iterative

Conclusion

• Fast solvers may lead to inaccurate solutions

• Phase differences ’pollute’ the numerical solution

• Bound error using smallest eigenvalues

• For the first time: dispersion correction in 2D without increasingproblem size and/or switching to higher-order schemes.

• Relate error to convergence properties

Kees Vuik and Vandana Dwarka (TU Delft) 15th Copper Mountain Conference On Iterative Methods March 28th, 2018 22 / 24

Page 23: Iterative Helmholtz Solversta.twi.tudelft.nl/users/vuik/talks/copper_2018_1.pdf · 2018-03-28 · Kees Vuik and Vandana Dwarka (TU Delft)15th Copper Mountain Conference On Iterative

Next Up - Accelerated Convergence

Kees Vuik and Vandana Dwarka (TU Delft) 15th Copper Mountain Conference On Iterative Methods March 28th, 2018 23 / 24

Page 24: Iterative Helmholtz Solversta.twi.tudelft.nl/users/vuik/talks/copper_2018_1.pdf · 2018-03-28 · Kees Vuik and Vandana Dwarka (TU Delft)15th Copper Mountain Conference On Iterative

References

• Upcoming articleshttp://ta.twi.tudelft.nl/nw/users/vuik/pub_it_

helmholtz.html

• Further reading

D. Lahaye, J.M. Tang, and C. VuikModern Solvers for Helmholtz Problems.Birkhauser, 2017.

F. Ihlenburg, I. Babuska.Dispersion analysis and error estimation of Galerkin finite elementmethods for the Helmholtz equation.International Journal for Numerical Methods in Engineering,38(22):3745-3774, 1995.

I. Babuska, S. Sauter.Is the Pollution Effect of the FEM Avoidable for the Helmholtz EquationConsidering High Wave Numbers?SIAM Journal on Numerical Analysis, 34(6):23922423, 1997.

Kees Vuik and Vandana Dwarka (TU Delft) 15th Copper Mountain Conference On Iterative Methods March 28th, 2018 24 / 24