Issues for Carbon dioxide Storage in India National Geophysical Research Institute, India...

41
Issues for Carbon dioxide Storage in India National Geophysical Research Institute, India Hyderabad-500 007, India Ph. 91-40-23434680 (Off.), 91-9849934935 (Mob.) Fax: 91-40-23434651 Dr. B. Kumar Project Adviser/Consultant Carbon Sequestration

Transcript of Issues for Carbon dioxide Storage in India National Geophysical Research Institute, India...

Page 1: Issues for Carbon dioxide Storage in India National Geophysical Research Institute, India Hyderabad-500 007, India Ph. 91-40-23434680 (Off.), 91-9849934935.

Issues for Carbon dioxide Storage in India

National Geophysical Research Institute, IndiaHyderabad-500 007, India

Ph. 91-40-23434680 (Off.), 91-9849934935 (Mob.)Fax: 91-40-23434651

E-mail: [email protected]

Dr. B. Kumar Project Adviser/Consultant

Carbon Sequestration

Page 2: Issues for Carbon dioxide Storage in India National Geophysical Research Institute, India Hyderabad-500 007, India Ph. 91-40-23434680 (Off.), 91-9849934935.

What is CO2 storage ?

CO2 storage/Carbon Sequestration is the placement of CO2 into a depository in such a way that it remains safely stored and not released to the atmosphere. The viable options are storage of CO2 into underground geological formations, oceans, terrestrial ecosystems and bio - sequestration.

Page 3: Issues for Carbon dioxide Storage in India National Geophysical Research Institute, India Hyderabad-500 007, India Ph. 91-40-23434680 (Off.), 91-9849934935.

Issues for CO2 Storage in India

• R&D Technologies

• Geology & Tectonics

• Protocols, Mechanisms & Forums - Kyoto Protocol; Clean development Mechanism (CDM); Carbon sequestration

Leadership Forum (CSLF); UN Framework Convention Treaty on Climate Changes (UNFCC), Asia Pacific Partnership on Clean Development and Climate (AP6) etc.

- India has signed the Kyoto Protocol in 2003 but is not obliged to reduce the emission by 2012 as the per capita emission is very low (~1 metric ton /year). India is a member of CSLF, CDM, AP6 and also stands by UNFCC.

• Safety & Environment

• Economics - The current cost estimates range from 20 to 80 US$/tCO2 for capturing the CO2

and 5 to 20 US$/tCO2 for transportation and storage

Page 4: Issues for Carbon dioxide Storage in India National Geophysical Research Institute, India Hyderabad-500 007, India Ph. 91-40-23434680 (Off.), 91-9849934935.

Ice cores indicate that in the past 420,000 years, the concentration of CO2 in the atmosphere has ranged from 180 to 280 parts per million by volume (ppmv). The current CO2 atmospheric concentration is ~375 ppmv; this dramatic increase is primarily the result of human combustion of fossil fuels (Modified after Falkowski and others, 2000).

Page 5: Issues for Carbon dioxide Storage in India National Geophysical Research Institute, India Hyderabad-500 007, India Ph. 91-40-23434680 (Off.), 91-9849934935.

Projected Temperatures for the 21st Century Are Significantly Higher Than at Any Time During the Last 1000 Years

www.clivar.org

Page 6: Issues for Carbon dioxide Storage in India National Geophysical Research Institute, India Hyderabad-500 007, India Ph. 91-40-23434680 (Off.), 91-9849934935.

Carbon dioxide emissions – 2002

Description : Carbon dioxide emissions: Anthropogenic carbon dioxide emissions stemming stemming out from the burning of fossil fuels, gas flaring and the production of production of cement

Source : UN Common Database (CDIAC)

Category : Environment

Year : 2002

Units : Giga Metric Tons

1.2

5. 8

Page 7: Issues for Carbon dioxide Storage in India National Geophysical Research Institute, India Hyderabad-500 007, India Ph. 91-40-23434680 (Off.), 91-9849934935.

Carbon dioxide emissions per capitaDescription : Carbon dioxide emissions per capita Anthropogenic carbon dioxide

emissions stemming from the burning of fossil fuels, gas flaring and the production of cement.

Source : UN Common Database (CDIAC)Category : EnvironmentRanking : 54 (2002)

Unit of measurement: Metric tons per capita

INDIA

(Tons CO2 per person)

India has signed and ratified the Kyoto Protocol in 2003 but is not obliged to cut emissions up to 2012. India is also a member of CSLF,CDM, AP6 & stands by UNFCC.

Page 8: Issues for Carbon dioxide Storage in India National Geophysical Research Institute, India Hyderabad-500 007, India Ph. 91-40-23434680 (Off.), 91-9849934935.

Physical and geochemical processes that enhance storage security

Geological Storage

• Deep underground formations• Depleted oil and gas reservoirs• Coal beds• Deep Saline formations

Industrially generated CO2 is pumped into deep under ground formations and dissolves in the native formation fluids. Some of the dissolved CO2 would chemically react and become part of solid mineral/ coal matrix. Once dissolved or reacted to form minerals, CO2 is no longer buoyant andwould not rise to the ground surface.

Page 9: Issues for Carbon dioxide Storage in India National Geophysical Research Institute, India Hyderabad-500 007, India Ph. 91-40-23434680 (Off.), 91-9849934935.

I Hydrodynamic Trapping

• Closed Stratigraphic Trapping

II Geochemical

• Solubility Traps• Ionic Traps• Mineral Traps

Solubility Trapping

CO2 (gaseous) + H2O

Ionic Trapping

H2CO3 (aqueous) + OH

HCO3 (aqueous) + OH

Mineral Trapping

CO3 (aqueous) + Ca++

H2CO3 (aqueous)

H2CO3 (aqueous)

HCO3 (aqueous)

CaCO3 (solid)

CO2 Trapping Mechanisms

Page 10: Issues for Carbon dioxide Storage in India National Geophysical Research Institute, India Hyderabad-500 007, India Ph. 91-40-23434680 (Off.), 91-9849934935.

Storage expressed as a combination of physical and geochemical trapping. The level of security is proportional to distance from the origin. Dashed lines are examples of million-year pathways

Storage Security Mechanisms and Changes Over Time

When the CO2 is injected, it forms a bubble

around the injection well, displacing the mobile water laterally and vertically within the injection horizon.

The interactions between the water and CO2

phase allow geochemical trapping mechanisms to take effect.

Over time, CO2 that is not immobilized by

residual CO2 trapping can react with in situ fluid

to form carbonic acid i.e., H2CO3 called solubility

trapping that dominates from tens to hundreds of years.

Dissolved CO2 can eventually react with

reservoir minerals if an appropriate mineralogy is encountered to form carbon-bearing ionic species i.e., HCO3

– and CO32– called ionic

trapping which dominates from hundreds to thousands of years.

Further breakdown of these minerals could precipitate new carbonate minerals that would fix injected CO2

in its most secure state i.e., mineral trapping which dominates over thousands to millions of years.

Source: IPCC Report

Page 11: Issues for Carbon dioxide Storage in India National Geophysical Research Institute, India Hyderabad-500 007, India Ph. 91-40-23434680 (Off.), 91-9849934935.

Potential CO2 storage reservoirs

CO2 Stored in Geological Formations

POWER PLANT

CO

2

Page 12: Issues for Carbon dioxide Storage in India National Geophysical Research Institute, India Hyderabad-500 007, India Ph. 91-40-23434680 (Off.), 91-9849934935.

CO2 sequestration in depleted oil/gas reservoirs can

enhance production of oil/gas.

Enhanced Oil Recovery (EOR) can be either miscible or immiscible depending primarily on the pressure of the injection gas into the reservoir.

Miscible phase: CO2-EOR, the CO2 mixes with the crude oil causing it to swell

and reduce its viscosity, whilst also increasing or maintaining reservoir pressure. The combination of these processes enables more of the crude oil in the reservoir to flow freely to the production wells from which it can be recovered.

Immiscible phase: CO2-EOR, the CO2 is used to re-pressure the reservoir and

as a sweep gas, to move the oil towards the production well.

CO2 enhanced oil recovery

Page 13: Issues for Carbon dioxide Storage in India National Geophysical Research Institute, India Hyderabad-500 007, India Ph. 91-40-23434680 (Off.), 91-9849934935.

• In India, the Oil & Natural Gas Corp. (ONGC) has proposed CO2-EOR for Ankleshwar Oil Field in Western India. •The CO2 is planned to be injected @ 600,000m3/d and is sourced from ONGC gas processing complex at Hazira. •The experimental and modeling studies have indicated an incremental oil recovery of ~ 4 % over the project life of 35 years besides the potential to sequester 5 to 10 million tons of CO2

CO2 Injector

CO2 Pipeline from Hazira Plant

First row of oil Producer.To be closed after reaching GOR of 500 v/v

Second row of oil Producer. To be continued on production till GOR reaches 500 v/v

CO2 moves through formation mobilizing residual oil by swelling, vaporization and reduction in residual oil saturation

Ankleshwar Sands S3+4 : 69.33 MMt

Waterflood Recovery : 54%Envisaged Tertiary Recovery : 5-7%

After, Suresh Kumar, Abstract, IWCCS-07

Page 14: Issues for Carbon dioxide Storage in India National Geophysical Research Institute, India Hyderabad-500 007, India Ph. 91-40-23434680 (Off.), 91-9849934935.

• It is one amongst the largest ongoing projects for CCS in the world.

• The Encana Cooperation has been injecting 5,000 tonnes of CO2 per day into in the Weyburn oil field for the dual purpose of enhancing oil recovery and the CO2 storage while increasing the field’s production by an additional 10,000 barrels per day.

• About 30 million tones of CO2 will be injected and permanently stored over the life of project producing at least 130 million barrels of incremental recovered oil.

Weyburn–Midale CO2 Monitoring and Storage Project, Canada

Injection of CO2 in the Oil Producing Formations of the Weyburn Field

After, EERC, North Dakota.

Page 15: Issues for Carbon dioxide Storage in India National Geophysical Research Institute, India Hyderabad-500 007, India Ph. 91-40-23434680 (Off.), 91-9849934935.

Enhanced Coalbed Methane Recovery (ECBM)

Coal beds typically contain large amounts of methane rich gas that is adsorbed onto the surface of the coal. The injected CO2 efficiently displaces methane as it has greater affinity to the coal than methane.

CO2 enhanced coal bed methaneproduction

Page 16: Issues for Carbon dioxide Storage in India National Geophysical Research Institute, India Hyderabad-500 007, India Ph. 91-40-23434680 (Off.), 91-9849934935.

Density of CO2 and CH4 as a function of pressure for various Temperatures based on data from Vargaftik et al. (1996).

Page 17: Issues for Carbon dioxide Storage in India National Geophysical Research Institute, India Hyderabad-500 007, India Ph. 91-40-23434680 (Off.), 91-9849934935.

The Coal Bed Methane Potential of India : ~ 1000 bcm

DGH, Annual Report, 2005-06

Page 18: Issues for Carbon dioxide Storage in India National Geophysical Research Institute, India Hyderabad-500 007, India Ph. 91-40-23434680 (Off.), 91-9849934935.

• Saline aquifers at depths of ≥ 800 m provide a suitable alternative for the storage of CO2.

• The high porosity and permeability of the aquifer sands along with low porosity cap rocks such as shales provide favorable conditions for CO2 storage.

• The CO2 can be stored in the miscible and/or mineral phase.

• With time, CO2 gets dissolved in the brines and reacts with the pore

fluids/minerals to form geologically stable carbonates.

CO2 Storage in Deep Saline Aquifers

ICOSAR Bulletin, Vol. 2

Studies in India

• The Department of Science & Technology , India has initiated studies aiming at identification of deep underground saline aquifers and their suitability for CO2 sequestration in Sedimentary basins of India namely Ganga, Rajasthan and Vindhyan basins.

• The Central Ground Water Board and Geological Survey of India have established the presence of saline aquifers up to depths of ≥ 300m below ground level in the Ganga basin.

• Deep Resistivity studies carried out at 9 sites around New Delhi have shown the presence of saline aquifers at depths of 800m and beyond, around Palwal and Tumsara.

Page 19: Issues for Carbon dioxide Storage in India National Geophysical Research Institute, India Hyderabad-500 007, India Ph. 91-40-23434680 (Off.), 91-9849934935.

Seismic reflection data prior to sequestration

After 2 million tonnes of CO2 injection, showing amplitudes of high reflection corresponding to CO2

saturated rocks.

Storage of CO2 in Saline Aquifer (Sleipner Project)

• Utsira Aquifer is located 800 m below the bed in the North Sea.• ~I million tonnes of CO2 injected per year since 1996• CO2 separated from Natural Gas produced from Sleipner West is injected in the Utsira aquifer

Characteristics of the Utsira Sand

• Mio-Pliocene age.• High porosity sand (21-37%) capped with low porosity shale.• Estimated to be capable of storing 600,000 MT of CO2 .

Page 20: Issues for Carbon dioxide Storage in India National Geophysical Research Institute, India Hyderabad-500 007, India Ph. 91-40-23434680 (Off.), 91-9849934935.

Stratigraphy of Hunton Aquifer

• Devonian-Silurian carbonates of the “Hunton Aquifer” contain a number of highly porous intervals.• Favorable sequestration attributes of the Hunton aquifer include; relatively high porosity (up to 15%), permeability, lateral continuity over a multistate area, thickness (up to 2000+feet) and confinement of the aquifer intervals between two aquitard intervals.

• Estimated CO2 sequestration volumes range up to 42 billion tons (726 trillion cubic feet).

CO2 sequestration in Onshore Hunton Aquifer

After MIDCARB Project

Page 21: Issues for Carbon dioxide Storage in India National Geophysical Research Institute, India Hyderabad-500 007, India Ph. 91-40-23434680 (Off.), 91-9849934935.

Objective

Evaluation of Basalt Formations of India for environmentally safe and irreversible long time storage of CO2.

‘Geological CO2 Sequestration in Basalt Formations

of India: A Pilot Study’

Page 22: Issues for Carbon dioxide Storage in India National Geophysical Research Institute, India Hyderabad-500 007, India Ph. 91-40-23434680 (Off.), 91-9849934935.

Deccan Basalts cover an area of 500x103 sq. km. and form one of the largest flood eruptions in the world.

Composed of typically 48 flows.

The thickness of basalts varies from few hundreds of meters to > 1.5 km.

Basalts provide solid cap rocks and thus high level of integrity for CO2 storage.

Basalts react with CO2 and convert the CO2 into the mineral carbonates that means high level of security.

Intertrappeans between basalt flows provide major porosity and permeability along with vescicular, brecciated zones with in the flows.

Tectonically the traps are considered to be stable.

Geophysical studies have revealed presence of thick Mesozoic and Gondwana sediments below the Deccan Traps.

Why Basalts are attractive proposition for CO2 sequestration ?

Page 23: Issues for Carbon dioxide Storage in India National Geophysical Research Institute, India Hyderabad-500 007, India Ph. 91-40-23434680 (Off.), 91-9849934935.

The most common flow type of the Deccan Trap and Columbia River Basalt is the Pahoeho sheet flows. Due to the lesser viscosity and less strain it forms large horizontal sheets.

Both Deccan Flood Basalts and Columbia River Basalts are tholeiitic (cinopyroxene and plagioclase) in nature and the eruptions are of fissure type.

Both are continental basalts. Columbia River Basalt is fully continental and Deccan Traps are partly continental.

Both the basaltic flows have traveled as much as 300 to 500 km from their sources.

Chemical composition of both the basalts are similar .

Deccan basalts vs Columbia River basalts

Page 24: Issues for Carbon dioxide Storage in India National Geophysical Research Institute, India Hyderabad-500 007, India Ph. 91-40-23434680 (Off.), 91-9849934935.

Major Flood Basalt Provinces

Name Volume Age Locality

CRB (1.7x105 km3) Miocene NW US

Keeweenawan (4x105 km3) Precambrian Superior area

Deccan (106 km3) Cret.-Eocene India

Parana (area > 106 km2) early Cret. Brazil

Karroo (2x106 km3?) early Jurassic S. Africa

Page 25: Issues for Carbon dioxide Storage in India National Geophysical Research Institute, India Hyderabad-500 007, India Ph. 91-40-23434680 (Off.), 91-9849934935.

CO2 Storage in Basalt Formations

CO2 is injected in basalt formations above its critical temperature and pressure

Minimum depth800 m

Hydrodynamic Trapping

SolubilityTrapping Mineralisation

• Physico – chemical properties between those of liquid and gas.• Dense gas• Solubility approaching liquid phase• Diffusivity approaching gas phase

Supercritical CO2

Page 26: Issues for Carbon dioxide Storage in India National Geophysical Research Institute, India Hyderabad-500 007, India Ph. 91-40-23434680 (Off.), 91-9849934935.

Variation of CO2 density with depth, (based on the density data of Angus et al., 1973). Carbon dioxide density increases rapidly at approximately 800 m depth, when the CO2

reaches a supercritical state. Cubes represent the relative volume occupied by the CO2, and down to 800 m, this volume can be seen to dramatically decrease with depth. At depths below 1.5 km, the density and specific volume become nearly constant.

Page 27: Issues for Carbon dioxide Storage in India National Geophysical Research Institute, India Hyderabad-500 007, India Ph. 91-40-23434680 (Off.), 91-9849934935.

Induction Time for Calcite Precipitation

Lab. scale &geo-chemicalmodeling studies by PNNL, USA

Mineralization reactions in basalt formations

CO2(g) CO2(aq)CO2(aq) + H2O HCO3

- + H+

(Ca,Mg,Fe)x SiyOx+2y +2xH+ +(2y-x)H2O x(Ca,Mg,Fe)2+ + yH4SiO4(aq)

(Ca,Mg,Fe)2+ + HCO3- (Ca,Mg,Fe)CO3 + H+

Calcite deposition onbasalt

• Basalt is rich in Ca, Mg & Fe Silicates• Mineralisation reaction rate is fast on geological time scale• Mineralisation is appeared to be controlled by mixing behaviour of CO2 and not by kinetics of the reactions

Depth, (m) T, °C tp, d

800 35 964

900 38 822

1000 42 678

1100 48 534

1200 56 397

1300 67 275

Page 28: Issues for Carbon dioxide Storage in India National Geophysical Research Institute, India Hyderabad-500 007, India Ph. 91-40-23434680 (Off.), 91-9849934935.

Methodology

Site identification

Evaluation of available geological, geophysical and tectonic data to identify one or two areas in basalt formations of Western India with basalt thickness of 800 m. • Adsorbed soil gas surveys • Magnetotelluric studies • Drill location analysis • Identification of most suitable site, land acquisition and permission

Planning of ScheduleFor borehole drillingand CO2 injection

• Detailed engineering planning for borehole drilling, piping and cementing • Identification of vendors for drilling, casing, cementing of borehole, supply and injection of CO2 • Theoretical simulation and modeling • Pre-characterization of shallow surface soils and ground waters by geochemical & isotopic studies.• High-resolution seismic studies

Page 29: Issues for Carbon dioxide Storage in India National Geophysical Research Institute, India Hyderabad-500 007, India Ph. 91-40-23434680 (Off.), 91-9849934935.

Borehole drilling and

injection of CO2

• Drilling of 8-10’’ dia. borehole up to depth of 800 50 m• Borehole logging • Core sampling• Lining and cementing of borehole• Pre-injection modeling• Injection of ~ 100 tons of CO2 per day at a pressure

of 2000 psi for 10 days along with tracers

Post injection characterization,monitoring & modeling

• Drilling of 2’’ dia observation boreholes• Post injection characterization of soil and ground water• Monitoring, modeling and verification of mineralization• Document basalt formations of India as a geological sequestration option.

Page 30: Issues for Carbon dioxide Storage in India National Geophysical Research Institute, India Hyderabad-500 007, India Ph. 91-40-23434680 (Off.), 91-9849934935.
Page 31: Issues for Carbon dioxide Storage in India National Geophysical Research Institute, India Hyderabad-500 007, India Ph. 91-40-23434680 (Off.), 91-9849934935.

Significance

The Indian study will globally establish basalt formation as potential storage for CO2 by leveraging study carried out in Columbia River basalt group under US-Dept. of Environment.

Page 32: Issues for Carbon dioxide Storage in India National Geophysical Research Institute, India Hyderabad-500 007, India Ph. 91-40-23434680 (Off.), 91-9849934935.

CO2Sequestration in Methane Hydrates Methane Hydrates are class of solids in which methane molecules occupy cages made up of hydrogen- bonded water molecules.

CO2 can also be stored as hydrates with simultaneous conversion of in situ methane hydrates into natural gas.

At temperatures below 10°C, there is a pressure range in which methane hydrate is unstable while CO2 hydrate is stable.

The heat released from the formation of CO2 gas hydrate is greater than that needed for CH4 hydrate dissociation:

CH4(H2O)n CH4 + nH2O; Hf = 54.49 KJ/mole CO2(H2O)n CO2 + nH2O ; Hf = 57.98 KJ/mole where n is the hydration number for CH4 hydrate and CO2

hydrate

n is dependent on pressure, temperature and the composition of the gas in the gas phase which implies that under certain pressure and temperature conditions, the replacement of CH4 in the hydrate with CO2 is thermodynamically possible.

After Gas Technology Institute, USA

Page 33: Issues for Carbon dioxide Storage in India National Geophysical Research Institute, India Hyderabad-500 007, India Ph. 91-40-23434680 (Off.), 91-9849934935.

Ocean SequestrationCO2 is soluble in ocean water, and oceans absorb and emit huge amounts of CO2 into the atmosphere through natural processes. Ocean Sequestration has huge potential as a carbon storage sink, however, enough R&D have to be carried out to understand about the physio-chemical processeswhich occur between seawater and pumped CO2.

Storage of CO2 in deep oceans has

been suggested as a means of reducing inputs of greenhouse gases to the atmosphere.

Page 34: Issues for Carbon dioxide Storage in India National Geophysical Research Institute, India Hyderabad-500 007, India Ph. 91-40-23434680 (Off.), 91-9849934935.

Terrestrial Sequestration

Terrestrial carbon sequestration is defined as either the net removal of CO2 from the atmosphere or the prevention of CO2 net emissions fromthe terrestrial ecosystems into the atmosphere. The following ecosystemsoffer significant opportunity for carbon sequestration:

• Forest lands• Agricultural lands• Biomass croplands• Deserts and degraded lands• Wetlands and peat lands -- Storage of C in soils and plants has the potential to offset CO2 emissions to the atmosphere in the coming decades while new ‘clean’ energy production and CO2 sequestration technologies are developed and deployed. What is needed is basic research to improve our fundamental understanding of natural phenomena controlling soil C sequestration and basic and applied R&D to bring new management and technology to the challenge.

Page 35: Issues for Carbon dioxide Storage in India National Geophysical Research Institute, India Hyderabad-500 007, India Ph. 91-40-23434680 (Off.), 91-9849934935.

Conceptual diagram of Photosynthetic conversion of carbon dioxide to biomass.

• The solar energy is collected using Fresnel lens devices/parabolic concentrator and a fibre optic light delivery system is used to stimulate biological organisms like cyanobacteria or micro-algae in a bio-generator to produce useful by-products from carbon dioxide.

• For uniform growth of the organisms, the distribution of photosynthetic photon flux light in the wavelength range of 400–700 nm needs to be delivered to the bioreactor.

• The photo-bioreactor system makes use of the natural process ‘photosynthesis’ to convert light, heat and carbon dioxide to useful products, such as carbohydrates, hydrogen and oxygen.

6CO2 (aq) + 6H2O(l)+ light + heat C6H12O6(aq) +6O2(g)

• Assuming that the carbon uptake rate of 1.5 g/day for the particular micro-organism, Synechocystis aquatilis, up to 2.2 ktonne C/year could be sequestered from the environment.

(After Energy Conv. and Manag.46 (2005) 403–420)

Bio-sequestration :

The concept of photosynthetic conversionto fix carbon dioxide using bacteria or micro-algae under a controlled environment.

Page 36: Issues for Carbon dioxide Storage in India National Geophysical Research Institute, India Hyderabad-500 007, India Ph. 91-40-23434680 (Off.), 91-9849934935.

Breakthrough Technologies

- Iron Fertilization implies the introduction of iron to the upper ocean to increase productivity of marine food chain which in turn increases CO2 sequestration from the atmosphere into the oceans. Marine plankton growth is enhanced by physically distributing the iron particles in other wise nutrient rich but iron deficient ocean water using suitable delivering systems based on biomaterials.

Iron Fertilization

Biomimetic Sequestration- It implies the use of a particular aspect of biological process for resolving a specific non biological problem. The Carbonic Anhydrase (CA) is used as a catalyst for the conversion of CO2 into bicarbonates and later to carbonates or amino acids.

Soil Productivity ?

Page 37: Issues for Carbon dioxide Storage in India National Geophysical Research Institute, India Hyderabad-500 007, India Ph. 91-40-23434680 (Off.), 91-9849934935.

Conclusions

- CO2 storage R&D is still in early stage in India and developing cost effective technologies for CCS are the major challenges to the scientist and researchers.

-The environmental risks involved in the storage of CO2 particularly in geological formations and oceans have to be evaluated in detail by monitoring and modeling in terms of long term stability.

- Funding mechanisms to support R&D projects for CCS have to be evaluated. 0.5% cess on power generation in the line of oil cess may be good enough to sustain the same. The cess can be operated by Energy Security Development Board, under the aegis of Ministry of Power.

‘If every country was to spend just 2-3% of their GDP, the impact of possible global climate change could be mitigated’ - R.K.Pachauri, Economic Times Corp. Excellence Award for 2006-07, New Delhi (29th Oct., 2007)

Page 38: Issues for Carbon dioxide Storage in India National Geophysical Research Institute, India Hyderabad-500 007, India Ph. 91-40-23434680 (Off.), 91-9849934935.

International Partners

FRANCE: Institut de Physique du Globe de ParisINDIA: National Geophysical Research InstituteRUSSIA: Vernadsky Institute of Geochemistry and Analytical Chemistry of the Russian Academy of SciencesCANADA: BioCap Canada

Semiarid Prairie Agricultural Research CentreNETHERLANDS: Wageningen Universiteit, Lab of Soil Science and GeologyNORWAY: Det Kongelige Olge - Og Energidepartement Institute for Energy Technology Norwegian University of Science & Technology Research Council of Norway, Hanshaugen SINTEF Petroleum Research

Page 39: Issues for Carbon dioxide Storage in India National Geophysical Research Institute, India Hyderabad-500 007, India Ph. 91-40-23434680 (Off.), 91-9849934935.

  Recommendations • Develop collaborative project

on geological sequestration of CO2

with US laboratories.

• Set up centers of excellence on geological sequestration of CO2

and carbon capture.

• Organize IInd Workshop on Carbon Sequestration during

January 2007.

Page 40: Issues for Carbon dioxide Storage in India National Geophysical Research Institute, India Hyderabad-500 007, India Ph. 91-40-23434680 (Off.), 91-9849934935.

Recommendations

• Carbon capture and storage research offers an opportunity to mitigate global concerns about climate change and sustainable future

• Suggested expansion of support to research and CO2 infrastructure from DST and other concerned sectors of economy, under the National Programme on CO2 Sequestration Research

• Establish Centre for Advanced Studies in India for CCS technology to lead R&D projects on Carbon Capture, Geological Sequestration of CO2, Monitoring, Modeling & Simulation studies and Clean Energy Development

• Organize a special session on India’s initiatives on Carbon Capture and Storage R & D during 2008 at an international event.

• Give more thrust to basalt pilot study using sub-basalt imaging techniques and establish baseline for concentration of CO2 in atmosphere and soil and dissolved inorganic carbon (DIC) in shallow aquifer.

• Facilitate inter and intra-networking between national and international projects on CCS technology.

• Indian CO2 Sequestration Applied Research Network to have institutional members and hold periodic meetings to develop an activity profile and framework for support.

• Develop new knowledge partners with multi-disciplinary and multi-stage collaborations for sustainable energy future.

Page 41: Issues for Carbon dioxide Storage in India National Geophysical Research Institute, India Hyderabad-500 007, India Ph. 91-40-23434680 (Off.), 91-9849934935.