Isoperimetric inequalities for eigenvalues of triangles

56
Isoperimetric inequalities for eigenvalues of triangles Bartlomiej Siudeja Purdue University 19 September 2007 Bartlomiej Siudeja (Purdue University) Isoperimetric inequalities for eigenvalues 19 September 2007 1 / 15

Transcript of Isoperimetric inequalities for eigenvalues of triangles

Page 1: Isoperimetric inequalities for eigenvalues of triangles

Isoperimetric inequalities for eigenvalues oftriangles

Bartłomiej Siudeja

Purdue University

19 September 2007

Bartłomiej Siudeja (Purdue University) Isoperimetric inequalities for eigenvalues 19 September 2007 1 / 15

Page 2: Isoperimetric inequalities for eigenvalues of triangles

Outline

1 IntroductionNotation and classical resultsNew results

2 Symmetrization techniquesSteiner symmetrizationContinuous Steiner symmetrizationPolarization

3 ProofsFreitas’s lower boundImproved lower boundIsosceles trianglesCircular sectorsMonotonicity

Bartłomiej Siudeja (Purdue University) Isoperimetric inequalities for eigenvalues 19 September 2007 2 / 15

Page 3: Isoperimetric inequalities for eigenvalues of triangles

Introduction Notation and classical results

EigenvaluesLet D be an open set. Eigenvalues λi of the Dirichlet Laplacian on Dwill be called eigenvalues of D. They form a nondecreasing sequencesuch that 0 < λ1 < λ2.

Geometric quantitiesA - area of DR - inradiusL - perimeterd - diameterλD = λ1 - first eigenvalue of D

Trianglesh - altitude perpendicular to the longest sideγ - smallest angle

Bartłomiej Siudeja (Purdue University) Isoperimetric inequalities for eigenvalues 19 September 2007 3 / 15

Page 4: Isoperimetric inequalities for eigenvalues of triangles

Introduction Notation and classical results

EigenvaluesLet D be an open set. Eigenvalues λi of the Dirichlet Laplacian on Dwill be called eigenvalues of D. They form a nondecreasing sequencesuch that 0 < λ1 < λ2.

Geometric quantitiesA - area of DR - inradiusL - perimeterd - diameterλD = λ1 - first eigenvalue of D

Trianglesh - altitude perpendicular to the longest sideγ - smallest angle

Bartłomiej Siudeja (Purdue University) Isoperimetric inequalities for eigenvalues 19 September 2007 3 / 15

Page 5: Isoperimetric inequalities for eigenvalues of triangles

Introduction Notation and classical results

Classical isoperimetric inequalityAmong all domains with fixed area A, the ball minimizes perimeter L.

L2 ≥ 4πA.

Theorem (Faber-Krahn inequality)Among all domains with fixed area A, the ball minimizes the firsteigenvalue.

Pólya’s isoperimetric conjectureAmong all polygons P(n) with n sides and fixed area A, the regularpolygon R(n) minimizes the first eigenvalue.

λP(n)A ≥ λR(n)A.

(Proved for triangles and quadrilaterals.)

Bartłomiej Siudeja (Purdue University) Isoperimetric inequalities for eigenvalues 19 September 2007 4 / 15

Page 6: Isoperimetric inequalities for eigenvalues of triangles

Introduction Notation and classical results

Classical isoperimetric inequalityAmong all domains with fixed area A, the ball minimizes perimeter L.

L2 ≥ 4πA.

Theorem (Faber-Krahn inequality)Among all domains with fixed area A, the ball minimizes the firsteigenvalue.

Pólya’s isoperimetric conjectureAmong all polygons P(n) with n sides and fixed area A, the regularpolygon R(n) minimizes the first eigenvalue.

λP(n)A ≥ λR(n)A.

(Proved for triangles and quadrilaterals.)

Bartłomiej Siudeja (Purdue University) Isoperimetric inequalities for eigenvalues 19 September 2007 4 / 15

Page 7: Isoperimetric inequalities for eigenvalues of triangles

Introduction Notation and classical results

Classical isoperimetric inequalityAmong all domains with fixed area A, the ball minimizes perimeter L.

L2 ≥ 4πA.

Theorem (Faber-Krahn inequality)Among all domains with fixed area A, the ball minimizes the firsteigenvalue.

Pólya’s isoperimetric conjectureAmong all polygons P(n) with n sides and fixed area A, the regularpolygon R(n) minimizes the first eigenvalue.

λP(n)A ≥ λR(n)A.

(Proved for triangles and quadrilaterals.)

Bartłomiej Siudeja (Purdue University) Isoperimetric inequalities for eigenvalues 19 September 2007 4 / 15

Page 8: Isoperimetric inequalities for eigenvalues of triangles

Introduction Notation and classical results

Known eigenvaluesballrectanglesannulicircular sectorsequilateral triangleright triangles with angles π/4 or π/6

Methods of obtaining lower boundsDomain monotonicity (larger domain→ smaller eigenvalue)Restricting to a subdomain (right isosceles triangle is a half of asquare)Special analytical casesSymmetrization

Bartłomiej Siudeja (Purdue University) Isoperimetric inequalities for eigenvalues 19 September 2007 5 / 15

Page 9: Isoperimetric inequalities for eigenvalues of triangles

Introduction Notation and classical results

Known eigenvaluesballrectanglesannulicircular sectorsequilateral triangleright triangles with angles π/4 or π/6

Methods of obtaining lower boundsDomain monotonicity (larger domain→ smaller eigenvalue)Restricting to a subdomain (right isosceles triangle is a half of asquare)Special analytical casesSymmetrization

Bartłomiej Siudeja (Purdue University) Isoperimetric inequalities for eigenvalues 19 September 2007 5 / 15

Page 10: Isoperimetric inequalities for eigenvalues of triangles

Introduction New results

Theorem (Freitas ’06)For arbitrary triangle T

λT ≥ π2(

4d2 +

d2

4A2

).

Theorem

λT ≥ π2(

4d2 + h2 +

d2 + h2

4A2

).

TheoremLet T be a triangle with fixed area A and smallest angle γ. Then theeigenvalue λT is decreasing with diameter d.

γ T

d

Bartłomiej Siudeja (Purdue University) Isoperimetric inequalities for eigenvalues 19 September 2007 6 / 15

Page 11: Isoperimetric inequalities for eigenvalues of triangles

Introduction New results

Theorem (Freitas ’06)For arbitrary triangle T

λT ≥ π2(

4d2 +

d2

4A2

).

Theorem

λT ≥ π2(

4d2 + h2 +

d2 + h2

4A2

).

TheoremLet T be a triangle with fixed area A and smallest angle γ. Then theeigenvalue λT is decreasing with diameter d.

γ T

d

Bartłomiej Siudeja (Purdue University) Isoperimetric inequalities for eigenvalues 19 September 2007 6 / 15

Page 12: Isoperimetric inequalities for eigenvalues of triangles

Introduction New results

Theorem (Freitas ’06)For arbitrary triangle T

λT ≥ π2(

4d2 +

d2

4A2

).

Theorem

λT ≥ π2(

4d2 + h2 +

d2 + h2

4A2

).

TheoremLet T be a triangle with fixed area A and smallest angle γ. Then theeigenvalue λT is decreasing with diameter d.

γ T

d

Bartłomiej Siudeja (Purdue University) Isoperimetric inequalities for eigenvalues 19 September 2007 6 / 15

Page 13: Isoperimetric inequalities for eigenvalues of triangles

Introduction New results

TheoremThe eigenvalue λT of an isosceles triangle T with area A and smallestangle γ is bigger then the eigenvalue of a sector with the same areaand angle.

γ T

TheoremGiven fixed area A, the eigenvalue of an isosceles triangle decreaseswhen the smallest angle γ increases.

The same is true for righttriangles.

Bartłomiej Siudeja (Purdue University) Isoperimetric inequalities for eigenvalues 19 September 2007 7 / 15

Page 14: Isoperimetric inequalities for eigenvalues of triangles

Introduction New results

TheoremThe eigenvalue λT of an isosceles triangle T with area A and smallestangle γ is bigger then the eigenvalue of a sector with the same areaand angle.

γ T

TheoremGiven fixed area A, the eigenvalue of an isosceles triangle decreaseswhen the smallest angle γ increases.

The same is true for righttriangles.

Bartłomiej Siudeja (Purdue University) Isoperimetric inequalities for eigenvalues 19 September 2007 7 / 15

Page 15: Isoperimetric inequalities for eigenvalues of triangles

Introduction New results

TheoremThe eigenvalue λT of an isosceles triangle T with area A and smallestangle γ is bigger then the eigenvalue of a sector with the same areaand angle.

γ T

TheoremGiven fixed area A, the eigenvalue of an isosceles triangle decreaseswhen the smallest angle γ increases. The same is true for righttriangles.

Bartłomiej Siudeja (Purdue University) Isoperimetric inequalities for eigenvalues 19 September 2007 7 / 15

Page 16: Isoperimetric inequalities for eigenvalues of triangles

Symmetrization techniques Steiner symmetrization

Definition of Steiner symmetrizationFix a line l and domain D.

Consider cross-sections of a domain Dperpendicular to l . The Steiner symmetrization of D is the domain D∗

formed by the cross-sections centered around l .

Action on triangles

l

preserves areadecreases perimeterdecreases the first eigenvalue

Bartłomiej Siudeja (Purdue University) Isoperimetric inequalities for eigenvalues 19 September 2007 8 / 15

Page 17: Isoperimetric inequalities for eigenvalues of triangles

Symmetrization techniques Steiner symmetrization

Definition of Steiner symmetrizationFix a line l and domain D. Consider cross-sections of a domain Dperpendicular to l .

The Steiner symmetrization of D is the domain D∗

formed by the cross-sections centered around l .

Action on triangles

l

preserves areadecreases perimeterdecreases the first eigenvalue

Bartłomiej Siudeja (Purdue University) Isoperimetric inequalities for eigenvalues 19 September 2007 8 / 15

Page 18: Isoperimetric inequalities for eigenvalues of triangles

Symmetrization techniques Steiner symmetrization

Definition of Steiner symmetrizationFix a line l and domain D. Consider cross-sections of a domain Dperpendicular to l . The Steiner symmetrization of D is the domain D∗

formed by the cross-sections centered around l .

Action on triangles

l

preserves areadecreases perimeterdecreases the first eigenvalue

Bartłomiej Siudeja (Purdue University) Isoperimetric inequalities for eigenvalues 19 September 2007 8 / 15

Page 19: Isoperimetric inequalities for eigenvalues of triangles

Symmetrization techniques Steiner symmetrization

Definition of Steiner symmetrizationFix a line l and domain D. Consider cross-sections of a domain Dperpendicular to l . The Steiner symmetrization of D is the domain D∗

formed by the cross-sections centered around l .

Action on triangles

l

preserves areadecreases perimeterdecreases the first eigenvalue

Bartłomiej Siudeja (Purdue University) Isoperimetric inequalities for eigenvalues 19 September 2007 8 / 15

Page 20: Isoperimetric inequalities for eigenvalues of triangles

Symmetrization techniques Steiner symmetrization

Definition of Steiner symmetrizationFix a line l and domain D. Consider cross-sections of a domain Dperpendicular to l . The Steiner symmetrization of D is the domain D∗

formed by the cross-sections centered around l .

Action on triangles

l

preserves areadecreases perimeterdecreases the first eigenvalue

Bartłomiej Siudeja (Purdue University) Isoperimetric inequalities for eigenvalues 19 September 2007 8 / 15

Page 21: Isoperimetric inequalities for eigenvalues of triangles

Symmetrization techniques Continuous Steiner symmetrization

Definition of continuous Steiner symmetrization

Let 0 ≤ t ≤ 1 be a time parameter. Let D0 equal to initial domain D,and D1 equal to the Steiner symmetrization D∗.

For 0 < t < 1 wedefine a continuous Steiner symmetrization as a domain formed by thecross-sections at time t (partially shifted proportionally to t).

Action on triangles

Dt

D = D0 D1 = D∗

As t increases:area remains fixedperimeter decreasesthe first eigenvaluedecreases

Bartłomiej Siudeja (Purdue University) Isoperimetric inequalities for eigenvalues 19 September 2007 9 / 15

Page 22: Isoperimetric inequalities for eigenvalues of triangles

Symmetrization techniques Continuous Steiner symmetrization

Definition of continuous Steiner symmetrization

Let 0 ≤ t ≤ 1 be a time parameter. Let D0 equal to initial domain D,and D1 equal to the Steiner symmetrization D∗. For 0 < t < 1 wedefine a continuous Steiner symmetrization as a domain formed by thecross-sections at time t (partially shifted proportionally to t).

Action on triangles

DtD = D0 D1 = D∗

As t increases:area remains fixedperimeter decreasesthe first eigenvaluedecreases

Bartłomiej Siudeja (Purdue University) Isoperimetric inequalities for eigenvalues 19 September 2007 9 / 15

Page 23: Isoperimetric inequalities for eigenvalues of triangles

Symmetrization techniques Continuous Steiner symmetrization

Definition of continuous Steiner symmetrization

Let 0 ≤ t ≤ 1 be a time parameter. Let D0 equal to initial domain D,and D1 equal to the Steiner symmetrization D∗. For 0 < t < 1 wedefine a continuous Steiner symmetrization as a domain formed by thecross-sections at time t (partially shifted proportionally to t).

Action on triangles

DtD = D0 D1 = D∗ As t increases:area remains fixedperimeter decreasesthe first eigenvaluedecreases

Bartłomiej Siudeja (Purdue University) Isoperimetric inequalities for eigenvalues 19 September 2007 9 / 15

Page 24: Isoperimetric inequalities for eigenvalues of triangles

Symmetrization techniques Polarization

Definition of polarizationFix a domain D and a line l . This line splits the space into twohalf-spaces H1 and H2. Let D′ be a reflection of D about l . Thepolarization DP of a set D consists of D ∩ H1, D′ ∩ H1 and any pointfrom (D ∪ D′) ∩ H2 such that its reflection is already included.

Action on triangles

D′

D

DP

l

preserves areadecreases perimeterdecreases the firsteigenvalue

Bartłomiej Siudeja (Purdue University) Isoperimetric inequalities for eigenvalues 19 September 2007 10 / 15

Page 25: Isoperimetric inequalities for eigenvalues of triangles

Symmetrization techniques Polarization

Definition of polarizationFix a domain D and a line l . This line splits the space into twohalf-spaces H1 and H2. Let D′ be a reflection of D about l . Thepolarization DP of a set D consists of D ∩ H1, D′ ∩ H1 and any pointfrom (D ∪ D′) ∩ H2 such that its reflection is already included.

Action on triangles

D′

D

DP

l

preserves areadecreases perimeterdecreases the firsteigenvalue

Bartłomiej Siudeja (Purdue University) Isoperimetric inequalities for eigenvalues 19 September 2007 10 / 15

Page 26: Isoperimetric inequalities for eigenvalues of triangles

Symmetrization techniques Polarization

Definition of polarizationFix a domain D and a line l . This line splits the space into twohalf-spaces H1 and H2. Let D′ be a reflection of D about l . Thepolarization DP of a set D consists of D ∩ H1, D′ ∩ H1 and any pointfrom (D ∪ D′) ∩ H2 such that its reflection is already included.

Action on triangles

D′

D

DP

l

preserves areadecreases perimeterdecreases the firsteigenvalue

Bartłomiej Siudeja (Purdue University) Isoperimetric inequalities for eigenvalues 19 September 2007 10 / 15

Page 27: Isoperimetric inequalities for eigenvalues of triangles

Proofs Freitas’s lower bound

Alternative proof of Freitas’s bound

A C

B

T

l1

l2αα

l3α

α

Steps1. Steiner symmetrization with respect to l1.

Bartłomiej Siudeja (Purdue University) Isoperimetric inequalities for eigenvalues 19 September 2007 11 / 15

Page 28: Isoperimetric inequalities for eigenvalues of triangles

Proofs Freitas’s lower bound

Alternative proof of Freitas’s bound

A C

B

T

l1

l2αα

l3α

α

Steps2. Polarization with respect to l2.

Bartłomiej Siudeja (Purdue University) Isoperimetric inequalities for eigenvalues 19 September 2007 11 / 15

Page 29: Isoperimetric inequalities for eigenvalues of triangles

Proofs Freitas’s lower bound

Alternative proof of Freitas’s bound

A C

B

T

l1

l2αα

l3α

α

Steps2. Polarization with respect to l2.

Bartłomiej Siudeja (Purdue University) Isoperimetric inequalities for eigenvalues 19 September 2007 11 / 15

Page 30: Isoperimetric inequalities for eigenvalues of triangles

Proofs Freitas’s lower bound

Alternative proof of Freitas’s bound

A C

B

T

l1

l2αα

l3α

α

Steps3. Polarization with respect to l3.

Bartłomiej Siudeja (Purdue University) Isoperimetric inequalities for eigenvalues 19 September 2007 11 / 15

Page 31: Isoperimetric inequalities for eigenvalues of triangles

Proofs Freitas’s lower bound

Alternative proof of Freitas’s bound

A C

B

T

l1

l2αα

l3α

α

Steps3. Polarization with respect to l3.

Bartłomiej Siudeja (Purdue University) Isoperimetric inequalities for eigenvalues 19 September 2007 11 / 15

Page 32: Isoperimetric inequalities for eigenvalues of triangles

Proofs Freitas’s lower bound

Alternative proof of Freitas’s bound

A C

B

T

l1

l2αα

l3α

α

Steps4. The same procedure on the other side

Bartłomiej Siudeja (Purdue University) Isoperimetric inequalities for eigenvalues 19 September 2007 11 / 15

Page 33: Isoperimetric inequalities for eigenvalues of triangles

Proofs Freitas’s lower bound

Alternative proof of Freitas’s bound

A C

B

T

l1

l2αα

l3α

α

Steps

5. λT ≥ λR = π2(

1a2 + 1

b2

)= π2

(4

d2 + d2

4A2

)Bartłomiej Siudeja (Purdue University) Isoperimetric inequalities for eigenvalues 19 September 2007 11 / 15

Page 34: Isoperimetric inequalities for eigenvalues of triangles

Proofs Improved lower bound

Improved lower bound using rectangles

l1

l2

StepsStart with an already symmetrized triangle.

Steiner symmetrization with respect to the longest side.Steiner symmetrization with respect to the altitude.

λT ≥ λR = π2(

1a2 + 1

b2

)= π2

(4

d2+h2 + d2+h2

4A2

)

Bartłomiej Siudeja (Purdue University) Isoperimetric inequalities for eigenvalues 19 September 2007 12 / 15

Page 35: Isoperimetric inequalities for eigenvalues of triangles

Proofs Improved lower bound

Improved lower bound using rectangles

l1

l2

StepsStart with an already symmetrized triangle.Steiner symmetrization with respect to the longest side.

Steiner symmetrization with respect to the altitude.

λT ≥ λR = π2(

1a2 + 1

b2

)= π2

(4

d2+h2 + d2+h2

4A2

)

Bartłomiej Siudeja (Purdue University) Isoperimetric inequalities for eigenvalues 19 September 2007 12 / 15

Page 36: Isoperimetric inequalities for eigenvalues of triangles

Proofs Improved lower bound

Improved lower bound using rectangles

l1

l2

StepsStart with an already symmetrized triangle.Steiner symmetrization with respect to the longest side.Steiner symmetrization with respect to the altitude.

λT ≥ λR = π2(

1a2 + 1

b2

)= π2

(4

d2+h2 + d2+h2

4A2

)

Bartłomiej Siudeja (Purdue University) Isoperimetric inequalities for eigenvalues 19 September 2007 12 / 15

Page 37: Isoperimetric inequalities for eigenvalues of triangles

Proofs Improved lower bound

Improved lower bound using rectangles

l1

l2

StepsStart with an already symmetrized triangle.Steiner symmetrization with respect to the longest side.Steiner symmetrization with respect to the altitude.

λT ≥ λR = π2(

1a2 + 1

b2

)= π2

(4

d2+h2 + d2+h2

4A2

)Bartłomiej Siudeja (Purdue University) Isoperimetric inequalities for eigenvalues 19 September 2007 12 / 15

Page 38: Isoperimetric inequalities for eigenvalues of triangles

Proofs Isosceles triangles

Symmetrization into isosceles triangles

d

γ

We want to fit a gray triangle with area A inside a red one with areaA + ε. Then by the scaling property we can take a limit ε→ 0. Thisshows that given area A and the smallest angle γ, the eigenvaluedecreases with diameter.

Bartłomiej Siudeja (Purdue University) Isoperimetric inequalities for eigenvalues 19 September 2007 13 / 15

Page 39: Isoperimetric inequalities for eigenvalues of triangles

Proofs Isosceles triangles

Symmetrization into isosceles triangles

d

γ

We need to define a sequence of polarizations with respect to certainbisectors.

Bartłomiej Siudeja (Purdue University) Isoperimetric inequalities for eigenvalues 19 September 2007 13 / 15

Page 40: Isoperimetric inequalities for eigenvalues of triangles

Proofs Isosceles triangles

Symmetrization into isosceles triangles

d

γ

We need to define a sequence of polarizations with respect to certainbisectors.

Bartłomiej Siudeja (Purdue University) Isoperimetric inequalities for eigenvalues 19 September 2007 13 / 15

Page 41: Isoperimetric inequalities for eigenvalues of triangles

Proofs Isosceles triangles

Symmetrization into isosceles triangles

d

γ

We need to define a sequence of polarizations with respect to certainbisectors.

Bartłomiej Siudeja (Purdue University) Isoperimetric inequalities for eigenvalues 19 September 2007 13 / 15

Page 42: Isoperimetric inequalities for eigenvalues of triangles

Proofs Isosceles triangles

Symmetrization into isosceles triangles

d

γ

We need to define a sequence of polarizations with respect to certainbisectors.

Bartłomiej Siudeja (Purdue University) Isoperimetric inequalities for eigenvalues 19 September 2007 13 / 15

Page 43: Isoperimetric inequalities for eigenvalues of triangles

Proofs Isosceles triangles

Symmetrization into isosceles triangles

d

γ

We need to define a sequence of polarizations with respect to certainbisectors.

Bartłomiej Siudeja (Purdue University) Isoperimetric inequalities for eigenvalues 19 September 2007 13 / 15

Page 44: Isoperimetric inequalities for eigenvalues of triangles

Proofs Isosceles triangles

Symmetrization into isosceles triangles

d

γ

We need to define a sequence of polarizations with respect to certainbisectors.

Bartłomiej Siudeja (Purdue University) Isoperimetric inequalities for eigenvalues 19 September 2007 13 / 15

Page 45: Isoperimetric inequalities for eigenvalues of triangles

Proofs Isosceles triangles

Symmetrization into isosceles triangles

d

γ

We need to define a sequence of polarizations with respect to certainbisectors.

Bartłomiej Siudeja (Purdue University) Isoperimetric inequalities for eigenvalues 19 September 2007 13 / 15

Page 46: Isoperimetric inequalities for eigenvalues of triangles

Proofs Isosceles triangles

Symmetrization into isosceles triangles

d

γ

The reversed sequence of reflections gives a valid sequence ofpolarizations.

Bartłomiej Siudeja (Purdue University) Isoperimetric inequalities for eigenvalues 19 September 2007 13 / 15

Page 47: Isoperimetric inequalities for eigenvalues of triangles

Proofs Circular sectors

Symmetrization into circular sector

Bartłomiej Siudeja (Purdue University) Isoperimetric inequalities for eigenvalues 19 September 2007 14 / 15

Page 48: Isoperimetric inequalities for eigenvalues of triangles

Proofs Circular sectors

Symmetrization into circular sector

Bartłomiej Siudeja (Purdue University) Isoperimetric inequalities for eigenvalues 19 September 2007 14 / 15

Page 49: Isoperimetric inequalities for eigenvalues of triangles

Proofs Circular sectors

Symmetrization into circular sector

Bartłomiej Siudeja (Purdue University) Isoperimetric inequalities for eigenvalues 19 September 2007 14 / 15

Page 50: Isoperimetric inequalities for eigenvalues of triangles

Proofs Circular sectors

Symmetrization into circular sector

Bartłomiej Siudeja (Purdue University) Isoperimetric inequalities for eigenvalues 19 September 2007 14 / 15

Page 51: Isoperimetric inequalities for eigenvalues of triangles

Proofs Circular sectors

Symmetrization into circular sector

Bartłomiej Siudeja (Purdue University) Isoperimetric inequalities for eigenvalues 19 September 2007 14 / 15

Page 52: Isoperimetric inequalities for eigenvalues of triangles

Proofs Circular sectors

Symmetrization into circular sector

Bartłomiej Siudeja (Purdue University) Isoperimetric inequalities for eigenvalues 19 September 2007 14 / 15

Page 53: Isoperimetric inequalities for eigenvalues of triangles

Proofs Circular sectors

Symmetrization into circular sector

Bartłomiej Siudeja (Purdue University) Isoperimetric inequalities for eigenvalues 19 September 2007 14 / 15

Page 54: Isoperimetric inequalities for eigenvalues of triangles

Proofs Monotonicity

Monotonicity for isosceles triangles

l1

l2

Continuous Steiner symmetrization with respect to l1.Continuous Steiner symmetrization with respect to l2.

Bartłomiej Siudeja (Purdue University) Isoperimetric inequalities for eigenvalues 19 September 2007 15 / 15

Page 55: Isoperimetric inequalities for eigenvalues of triangles

Proofs Monotonicity

Monotonicity for isosceles triangles

l1

l2

Continuous Steiner symmetrization with respect to l1.

Continuous Steiner symmetrization with respect to l2.

Bartłomiej Siudeja (Purdue University) Isoperimetric inequalities for eigenvalues 19 September 2007 15 / 15

Page 56: Isoperimetric inequalities for eigenvalues of triangles

Proofs Monotonicity

Monotonicity for isosceles triangles

l1

l2

Continuous Steiner symmetrization with respect to l1.Continuous Steiner symmetrization with respect to l2.

Bartłomiej Siudeja (Purdue University) Isoperimetric inequalities for eigenvalues 19 September 2007 15 / 15