Isoparametric submanifolds admitting a reflective focal...

78
. . Isoparametric submanifolds admitting a reflective focal submanifold in symmetirc spaces of non-compact type Naoyuki Koike Tokyo University of Science [email protected] Workshop on the Isoparametric Theory Beijing Normal University June 3, 2019

Transcript of Isoparametric submanifolds admitting a reflective focal...

Page 1: Isoparametric submanifolds admitting a reflective focal ...math0.bnu.edu.cn/~yanwenjiao/wit/download/slides/Koike.pdf · Isoparametric submanifolds admitting a re ective focal submanifold

.

......

Isoparametric submanifolds admitting

a reflective focal submanifold

in symmetirc spaces of non-compact type

Naoyuki Koike

Tokyo University of Science

[email protected]

Workshop on the Isoparametric Theory

Beijing Normal University

June 3, 2019

Page 2: Isoparametric submanifolds admitting a reflective focal ...math0.bnu.edu.cn/~yanwenjiao/wit/download/slides/Koike.pdf · Isoparametric submanifolds admitting a re ective focal submanifold

Content

1. Introduction

2. Isoparametric submanifold and complex equifocal

submanifold

3. ∞-dimensional isoparametric submanifold

submanifold

4. ∞-dim. anti-Kaehler isoparametric submanifold

5. Outline of the proofs of results

Page 3: Isoparametric submanifolds admitting a reflective focal ...math0.bnu.edu.cn/~yanwenjiao/wit/download/slides/Koike.pdf · Isoparametric submanifolds admitting a re ective focal submanifold

1. Introduction

Page 4: Isoparametric submanifolds admitting a reflective focal ...math0.bnu.edu.cn/~yanwenjiao/wit/download/slides/Koike.pdf · Isoparametric submanifolds admitting a re ective focal submanifold

Lift to Hilbert space

M ⊂ G/K

φ

M := (π ◦ φ)−1(M) ⊂ H0([0, 1], g)

lift G

π

G/K : a simply connected symmetric space of compact type

.Theorem A.1(Terng-Thorbergsson, 1995)..

...... M : equifocal ⇐⇒ M : isoparametric

Page 5: Isoparametric submanifolds admitting a reflective focal ...math0.bnu.edu.cn/~yanwenjiao/wit/download/slides/Koike.pdf · Isoparametric submanifolds admitting a re ective focal submanifold

Homogeneity of ∞-dim. isoparametric submanifolds

• In 1999, Heintze-Liu proved the homogeneity theorem for

isoparametric submanifolds in a Hilbert space.

• In 2002, Christ proved the homogeneity theorem for an

equifocal submanifold M in G/K by applying Heintze-Liu’

theorem to M = (π ◦ φ)−1(M) ⊂ H0([0, 1], g).

In the proof, he used the fact that M is homogeneous by

a Banach Lie group action.

• In 2012, Gorodski-Heintze proved that the homogeneity in

Heintze-Liu’s theorem means the homogeneity by a Banach

Lie group action.

Page 6: Isoparametric submanifolds admitting a reflective focal ...math0.bnu.edu.cn/~yanwenjiao/wit/download/slides/Koike.pdf · Isoparametric submanifolds admitting a re ective focal submanifold

Homogeneity of ∞-dim. isoparametric submanifolds

V : (seprable) Hilbert space

M(⊂ V ) : complete proper Fredholm submanifold

.Theorem A.2(Heintze-Liu, 1999)..

......

M : full irreducible isoparametric submanifold

of codimM ≥ 2 in V

=⇒ M : homogeneous (i.e., M = H · p (∃H ⊂ I(V )))

Remark H is given by

H := {F ∈ I(V ) |F (M) = M}.I(V ) is not a Banach Lie group.

Hence H also is not a Banach Lie group in general.

Page 7: Isoparametric submanifolds admitting a reflective focal ...math0.bnu.edu.cn/~yanwenjiao/wit/download/slides/Koike.pdf · Isoparametric submanifolds admitting a re ective focal submanifold

A Banach Lie group of isometries

Ib(V ) :=

F ∈ I(V )

∣∣∣∣∣∣∣∣∣∃ {Ft}t∈[0,1] : a one para transf . gr.

s.t.

• F1 = F

• the Killing vec. fd. ass. to

{Ft}t∈[0,1] is defined on V

idF

t 7→ Ft

XI(V )

X : the ass. vec. field of {Ft}t∈[0,1]

u

t 7→ Ft(u)

Xu I(V )V

Page 8: Isoparametric submanifolds admitting a reflective focal ...math0.bnu.edu.cn/~yanwenjiao/wit/download/slides/Koike.pdf · Isoparametric submanifolds admitting a re ective focal submanifold

A Banach Lie group of isometries

.Fact......... Ib(V ) is a Banach Lie group.

Proof

ϕ : Ib(V ) −→ ob(V ) ⊕ V (Banach space)

F 7→(dAt

dt

∣∣∣∣t=0

,dbt

dt

∣∣∣∣t=0

)(Ft(u) = At(u) + bt (F1 = F ))

D := {(LF (U), (ϕ ◦ L−1F )|LF (U))}F∈Ib(V ) gives

a Banach Lie group str. of Ib(V ), where U is

a suff. small nbd of id.

Remark Xu =dAt

dt

∣∣∣∣t=0

u +dbt

dt

∣∣∣∣t=0

(u ∈ V )

Page 9: Isoparametric submanifolds admitting a reflective focal ...math0.bnu.edu.cn/~yanwenjiao/wit/download/slides/Koike.pdf · Isoparametric submanifolds admitting a re ective focal submanifold

An example of an element of Ib(V )

Example 1 V := l∞ =

{(ai)

∞i=1 |

∞∑i=1

a2i < ∞

}

Ft(u) := At(u) + bt (u ∈ V )(At =

∞⊕k=1

(cos t

k− sin t

k

sin tk

cos tk

) )

Then the Killing vec. fd. X ass. to {Ft}t is given by

Xu = B(u) + b (u ∈ V )(B =

∞⊕k=1

(0 −1

k1k

0

) )

Since B is bounded, X is defined on V .

Hence we have F1 ∈ Ib(V ).

Page 10: Isoparametric submanifolds admitting a reflective focal ...math0.bnu.edu.cn/~yanwenjiao/wit/download/slides/Koike.pdf · Isoparametric submanifolds admitting a re ective focal submanifold

An example of an element of I(V ) \ Ib(V )

Example 2 V := l∞

Ft(u) := At(u) + bt (u ∈ V )(At =

∞⊕k=1

(cos kt − sin kt

sin kt cos kt

) )

Then the Killing vec. fd. X ass. to {Ft}t is given by

Xu = Bu + b (u ∈ V )(B =

∞⊕k=1

(0 −k

k 0

) )

Since B is not bounded, X is not defined on V .

Hence we have F1 /∈ I(V ) \ Ib(V ).

Page 11: Isoparametric submanifolds admitting a reflective focal ...math0.bnu.edu.cn/~yanwenjiao/wit/download/slides/Koike.pdf · Isoparametric submanifolds admitting a re ective focal submanifold

An example of an element of I(V ) \ Ib(V )

u =

1[i+12

] = (1, 1, 2, 2, 3, 3, · · · ) ∈ l∞

B(u) = (−1, 1,−1, 1,−1, 1, · · · ) /∈ l∞

Hence X is not defined at u.

Page 12: Isoparametric submanifolds admitting a reflective focal ...math0.bnu.edu.cn/~yanwenjiao/wit/download/slides/Koike.pdf · Isoparametric submanifolds admitting a re ective focal submanifold

Homogeneity of ∞-dim. isoparametric submanifolds

M(⊂ V ) : complete proper Fredholm submanifold

.Theorem A.3(Gorodski-Heintze, 2012)..

......

M : full irreducible isoparametric submanifold

of codimM ≥ 2 in V

=⇒ M = Hb · p (∃Hb ⊂ Ib(V ))

Remark Hb = {F ∈ Ib(V ) |F (M) = M}

Page 13: Isoparametric submanifolds admitting a reflective focal ...math0.bnu.edu.cn/~yanwenjiao/wit/download/slides/Koike.pdf · Isoparametric submanifolds admitting a re ective focal submanifold

Homogeneity of equifocal submanifolds

G/K : simply connected symmetric space

of compact type

.Theorem A.4(Christ)..

......

M : full irreducible equifocal submanifold

of codimM ≥ 2 in G/K

=⇒ M : homogeneous (i.e., M = H ·p (∃H ⊂ I(G/K)))

Page 14: Isoparametric submanifolds admitting a reflective focal ...math0.bnu.edu.cn/~yanwenjiao/wit/download/slides/Koike.pdf · Isoparametric submanifolds admitting a re ective focal submanifold

Complexification and Lift to ∞-dim. anti-Kaheler space

M ⊂ G/Kextrinsic

complexification

MC ⊂ GC/KC

φ

MC := (π ◦ φ)−1(MC) ⊂ H0([0, 1], gC)

lift GC

π

G/K : symmetric space of non-compact type

.Theorem B.1(K, 2005)..

......

M : complex equifocal

⇐⇒ MC : anti-Kaehler isoparametric

Page 15: Isoparametric submanifolds admitting a reflective focal ...math0.bnu.edu.cn/~yanwenjiao/wit/download/slides/Koike.pdf · Isoparametric submanifolds admitting a re ective focal submanifold

Homogeneity of ∞-dim. anti-Kaehler isoparametric

submanifolds

V : ∞-dim. anti-Kaehler space

M(⊂ V ) : complete anti-Kaehler Fredholm submanifold

.Theorem B.2(K,2014)..

......

M : full irr. anti-Kaehler isoparametric submanifold of

codimM ≥ 2 with J-diagonalizable shape op. in V

=⇒ M : homogeneous (i.e., M = H · p (∃H ⊂ I(V )))

Remark H is given by

H := {F ∈ I(V ) |F (M) = M}.I(V ) is not a Banach Lie group.

Hence H also is not a Banach Lie group in general.

Page 16: Isoparametric submanifolds admitting a reflective focal ...math0.bnu.edu.cn/~yanwenjiao/wit/download/slides/Koike.pdf · Isoparametric submanifolds admitting a re ective focal submanifold

Homogeneity of ∞-dim. anti-Kaehler isoparametric

submanifolds

Ib(V ) :=

F ∈ I(V )

∣∣∣∣∣∣∣∣∣∃ {Ft}t∈[0,1] : a one para transf . gr.

s.t.

• F1 = F

• the hol. Killing v. fd. ass. to

{Ft}t∈[0,1] is defined on V

.Theorem B.3(K,2017)..

......

M : full irr. anti-Kaehler isoparametric submanifold of

codimM ≥ 2 with J-diagonalizable shape op. in V

=⇒ M : homogeneous (i.e., M = Hb · p (∃Hb ⊂ Ib(V )))

Remark Hb = {F ∈ Ib(V ) |F (M) = M}

Page 17: Isoparametric submanifolds admitting a reflective focal ...math0.bnu.edu.cn/~yanwenjiao/wit/download/slides/Koike.pdf · Isoparametric submanifolds admitting a re ective focal submanifold

Homogeneity of isoparametric submanifolds in sym. sp. of

non-cpt type

G/K : symmetric space of non-compact type

(∗C) For any unit normal vec. v of M ,

the nullity spaces of the complex focal radii

along the normal geodesic γv span

(TpM)C ∩ ((KerAv ∩ KerR(v))C)⊥.

.Theorem B.4(K,2018)..

......

M : full irreducible curvature-adapted isoparametric

Cω-submanifold of codimM ≥ 2 in G/K s.t. (∗C)=⇒ M : homogeneous (i.e., M = H ·p (∃H ⊂ I(G/K)))

(M : curv.-adapted & (∗C) ⇒ MC : has J-diag. shape op.)

Page 18: Isoparametric submanifolds admitting a reflective focal ...math0.bnu.edu.cn/~yanwenjiao/wit/download/slides/Koike.pdf · Isoparametric submanifolds admitting a re ective focal submanifold

Homogeneity of isoparametric submanifolds in sym. sp. of

non-cpt type

.Theorem B.5(K,2018)..

......

M : full irreducible isoparametric Cω-submanifold

of codimM ≥ 2 in G/K admitting

a reflective focal submanifold

=⇒ M : a principal orbit of a Hermann type action

Remark (i) Let H be a symmetric subgroup of G. Then the

natural action of H on G/K is called a Hermann type

action.

(ii) Principal orbits of a Hermann type action are

curvature-adapted isoparametric submanifolds.

Page 19: Isoparametric submanifolds admitting a reflective focal ...math0.bnu.edu.cn/~yanwenjiao/wit/download/slides/Koike.pdf · Isoparametric submanifolds admitting a re ective focal submanifold

Homogeneity of isoparametric submanifolds in sym. sp. of

non-cpt type

.Question..

......

Can we delete the assumption of the real anlayticity

of M in Theorem B.4?

(∗R) For any unit normal vec. v of M , the nullity spaces

of the focal radii along γv span TpM .

.Theorem B.6(K,2018)..

......

M : full irreducible curvature-adapted isoparametric

C∞-submanifold of codimM ≥ 3 in G/K s.t. (∗R)=⇒ M : homogeneous (i.e., M = H ·p (∃H ⊂ I(G/K)))

(M : a principal orbit of the isotropy action of G/K)

Page 20: Isoparametric submanifolds admitting a reflective focal ...math0.bnu.edu.cn/~yanwenjiao/wit/download/slides/Koike.pdf · Isoparametric submanifolds admitting a re ective focal submanifold

Homogeneity of isoparametric submanifolds in sym. sp. of

non-cpt type

We proved this theorem by constructing a Tits building

associtaed to M and using

Burns-Spatzier’s theorem (1987).

Page 21: Isoparametric submanifolds admitting a reflective focal ...math0.bnu.edu.cn/~yanwenjiao/wit/download/slides/Koike.pdf · Isoparametric submanifolds admitting a re ective focal submanifold

2. Isoparametric submanifold andcomplex equifocal submanifold

Page 22: Isoparametric submanifolds admitting a reflective focal ...math0.bnu.edu.cn/~yanwenjiao/wit/download/slides/Koike.pdf · Isoparametric submanifolds admitting a re ective focal submanifold

Equifocal submanifold

G/K : symmetric space of compact type

M(⊂ G/K) : compact submanifold

.Def(Equifocal submanifold)..

......

M : equifocal submanifold

⇐⇒def

• M is a submanifold with flat section

• The normal holonomy gr. of M is trivial

• For each parallel normal vec. fd. v,

the focal radii along γvp is independent

of p ∈ M

Page 23: Isoparametric submanifolds admitting a reflective focal ...math0.bnu.edu.cn/~yanwenjiao/wit/download/slides/Koike.pdf · Isoparametric submanifolds admitting a re ective focal submanifold

Isoparametric submanifold

(M, g) : complete Riemannian manifold

M(⊂ M) : complete submanifold

.Def(Isoparametric submanifold in Heintze-Liu-Olmos-sense)..

......

M : isoparametric submanifold with flat section

⇐⇒def

• M is a submanifold with flat section

• The normal holonomy gr. of M is trivial

• Sufficciently close parallel submanifolds of M

are of CMC w.r.t. the radial direction

In this talk, we call this submanifold

“isoparametic submanifold” for simplicity.

Page 24: Isoparametric submanifolds admitting a reflective focal ...math0.bnu.edu.cn/~yanwenjiao/wit/download/slides/Koike.pdf · Isoparametric submanifolds admitting a re ective focal submanifold

Isoparametric submanifold

Mηv(M)

v

the radial directions

p

the section of M thr. p

Page 25: Isoparametric submanifolds admitting a reflective focal ...math0.bnu.edu.cn/~yanwenjiao/wit/download/slides/Koike.pdf · Isoparametric submanifolds admitting a re ective focal submanifold

Equifocality and isoparametricness

.Proposition 2.1(Heintze-Liu-Olmos,2006)...

......

Assume that M is compact. Then

M : equifocal ⇐⇒ M : isoparametric

Page 26: Isoparametric submanifolds admitting a reflective focal ...math0.bnu.edu.cn/~yanwenjiao/wit/download/slides/Koike.pdf · Isoparametric submanifolds admitting a re ective focal submanifold

Complex focal radius

G/K : symmetirc space of non-compact type

GC/KC : the complexification of G/K

M(⊂ G/K) : Cω-submanifold in G/K

MC(⊂ GC/KC) : the complexification of

M(⊂ G/K)

γv : the normal geodesic of M of direction

v(∈ T⊥p M) (‖v‖ = 1)

γCv : the complexification of γv

Page 27: Isoparametric submanifolds admitting a reflective focal ...math0.bnu.edu.cn/~yanwenjiao/wit/download/slides/Koike.pdf · Isoparametric submanifolds admitting a re ective focal submanifold

Complex focal radius

.Def(Complex focal radius)..

......

z0 = s0 + t0√−1 : complex focal radius along γv

⇐⇒def

γC(z0) : a focal point of MC along s 7→ γC(sz0)

Page 28: Isoparametric submanifolds admitting a reflective focal ...math0.bnu.edu.cn/~yanwenjiao/wit/download/slides/Koike.pdf · Isoparametric submanifolds admitting a re ective focal submanifold

Complex focal radius

G/K

γvM

v

Jv

MC

γCv

x

γCv (sz0) = γss0v+st0Jv(1)

orγv γv

xx

γCv (z0)

γCv (z0)

γCv (z0)

GC/KC

Page 29: Isoparametric submanifolds admitting a reflective focal ...math0.bnu.edu.cn/~yanwenjiao/wit/download/slides/Koike.pdf · Isoparametric submanifolds admitting a re ective focal submanifold

Complex equifocal submanifold

G/K : symmetric space of non-compact type

M(⊂ G/K) : complete Cω-submanifold

.Def(Complex equifocal submanifoldi)..

......

M : complex equifocal

⇐⇒def

• M is a submanifold with flat section

• The normal holonomy gr. of M is trivial

• For each parallel normal vec. fd. v,

the complex focal radii along γvp is

independent of p ∈ M

Page 30: Isoparametric submanifolds admitting a reflective focal ...math0.bnu.edu.cn/~yanwenjiao/wit/download/slides/Koike.pdf · Isoparametric submanifolds admitting a re ective focal submanifold

Complex equifocality and isoparametricness

M : submanifold in a Riemannian manifold.Def(Curvature-adapted)..

......

M : curvature-adapted

⇐⇒def

for any v ∈ T⊥M , [Av, R(v)] = 0

(Av : shape operator, R(v) := R(·, v)v)

.Proposition 2.2(K,2005)...

......

Assume that M is curvature-adapted. Then

M : complex equifocal ⇐⇒ M : isoparametric

Page 31: Isoparametric submanifolds admitting a reflective focal ...math0.bnu.edu.cn/~yanwenjiao/wit/download/slides/Koike.pdf · Isoparametric submanifolds admitting a re ective focal submanifold

3. ∞-dim. isoparametric submanifold

Page 32: Isoparametric submanifolds admitting a reflective focal ...math0.bnu.edu.cn/~yanwenjiao/wit/download/slides/Koike.pdf · Isoparametric submanifolds admitting a re ective focal submanifold

Proper Fredholm submanifold

(V, 〈 , 〉) : (∞-dim. separable) Hilbert space

M(⊂ V ) : immersed submanifold of finite codimension

A : the shape tensor of M

.Def(Proper Fredholm submanifold)..

......

M : proper Fredholm

⇐⇒def

{• exp⊥ |B⊥

1 (M) : proper

• exp⊥∗u : Fredholm operator (∀u ∈ M)

Page 33: Isoparametric submanifolds admitting a reflective focal ...math0.bnu.edu.cn/~yanwenjiao/wit/download/slides/Koike.pdf · Isoparametric submanifolds admitting a re ective focal submanifold

∞-dimensional isoparametric submanifold

M(⊂ V ) : proper Fredholm submanifold

.Def(∞-dim. isoparametric submanifold)..

......

M(⊂ V ) : isoparametric

⇐⇒def

• The normal holonomy group of M is trivial

• For any parallel normal vec. fd. v of M ,

the eignvalues of Avpis independent of

p ∈ M with considered the multiplicites

Page 34: Isoparametric submanifolds admitting a reflective focal ...math0.bnu.edu.cn/~yanwenjiao/wit/download/slides/Koike.pdf · Isoparametric submanifolds admitting a re ective focal submanifold

Principal curvature and curvature distribution

M(⊂ V ) : isoparametric submanifold

{Av | v ∈ T⊥p M} : a commuting family of

symmetric operators

TpM = Ep0 ⊕

(⊕i∈I

Epi

) (Ep

0 := ∩v∈T⊥

p MKerAv

)(

the common eigenspace decomposition

of {Av | v ∈ T⊥p M}

)For each v ∈ T⊥

p M ,

λpi (v) ⇐⇒

defAv|Ep

i= λp

i (v) · id

Then λpi : v 7→ λp

i (v) is linear, that is, λpi ∈ (T⊥

p M)∗.

Page 35: Isoparametric submanifolds admitting a reflective focal ...math0.bnu.edu.cn/~yanwenjiao/wit/download/slides/Koike.pdf · Isoparametric submanifolds admitting a re ective focal submanifold

Principal curvature and curvature distribution

.Def(principal curvature, curvature distribution)..

......

λi ∈ Γ((T⊥M)∗) ⇐⇒def

(λi)p := λpi (p ∈ M)

principal curvature

ni ∈ Γ(T⊥M) ⇐⇒def

λi(·) = 〈ni, ·〉curvature normal

Ei (a subbundle of TM) ⇐⇒def

Ei := qp∈M

Epi

curvature distribution

lpi ⊂ T⊥p M ⇐⇒

deflpi := (λi)

−1p (1)

focal hyperplane

Page 36: Isoparametric submanifolds admitting a reflective focal ...math0.bnu.edu.cn/~yanwenjiao/wit/download/slides/Koike.pdf · Isoparametric submanifolds admitting a re ective focal submanifold

Focal radii and Focal hyperplanes

M ⊂ G/K

φ

M := (π ◦ φ)−1(M) ⊂ H0([0, 1], g)

liftG

π

u ∈ (π ◦ φ)−1(p)

γv : the normal geodesic of M with γ′(0) = v

γvLu

: the normal geodesic of M with γ′(0) = vLu

equifocal

isoparametric

rank two

Page 37: Isoparametric submanifolds admitting a reflective focal ...math0.bnu.edu.cn/~yanwenjiao/wit/download/slides/Koike.pdf · Isoparametric submanifolds admitting a re ective focal submanifold

Focal radii and focal hyperplanes

u = γvLu(0)

γvLu(s1)

γvLu(s2)

γvLu(s3) γvL

u(s4)

γvLu(s5)

γvLu(s6)

T⊥u M(≈ R2)

Page 38: Isoparametric submanifolds admitting a reflective focal ...math0.bnu.edu.cn/~yanwenjiao/wit/download/slides/Koike.pdf · Isoparametric submanifolds admitting a re ective focal submanifold

4. ∞-dim. anti-Kaehler isoparametricsubmanifold

Page 39: Isoparametric submanifolds admitting a reflective focal ...math0.bnu.edu.cn/~yanwenjiao/wit/download/slides/Koike.pdf · Isoparametric submanifolds admitting a re ective focal submanifold

∞-dim. anti-Kaehler space

V : ∞-dim. topological (real) vector space

〈 , 〉 : continuous non-deg. sym. bilinear form of V

J : continuous linear op. of V satisfying

J2 = −id, 〈JX, JY 〉 = −〈X,Y 〉 (∀X,Y ∈ V )

.Def(∞-dim. anti-Kaehler space)..

......

(V, 〈 , 〉, J) : anti-Kaehler space

⇐⇒def

∃ V = V1 ⊕ V+

s.t.

• 〈 , 〉|V−×V− : negative defnite

• 〈 , 〉|V+×V+ : positive definite

• 〈 , 〉|V−×V+ = 0, JV− = V+

• (V, 〈 , 〉V±) : Hilbert space

(〈 , 〉V± := −π∗V−

〈 , 〉 + π∗V+

〈 , 〉)

Page 40: Isoparametric submanifolds admitting a reflective focal ...math0.bnu.edu.cn/~yanwenjiao/wit/download/slides/Koike.pdf · Isoparametric submanifolds admitting a re ective focal submanifold

Anti-Kaehler Fredholm submanifold

(V, 〈 , 〉, J) : ∞-dim. anti-Kaehler space

M(⊂ V ) : anti-Kaehler submanifold

(i.e., J(TM) = TM)

A : the shape tensor of M

.Def(Anti-Kaehler Fredholm submanifold)..

......

M : anti-Kaehler Fredholm

⇐⇒def

∀ v ∈ T⊥M, Av : a compact op. w.r.t. 〈 , 〉V±

Remark

M : anti-Kaehler Fredholm ⇒ exp⊥ : Fredholm map

Page 41: Isoparametric submanifolds admitting a reflective focal ...math0.bnu.edu.cn/~yanwenjiao/wit/download/slides/Koike.pdf · Isoparametric submanifolds admitting a re ective focal submanifold

J-eigenvalues and J-eigenvectors

M(⊂ V ) : anti-Kaehler Fredholm submanifold

.Def(J -eigenvalue)..

......

z = a + b√−1 : J-eigenvalue of Av

⇐⇒def

∃X( 6= 0) ∈ TpM s.t. AvX = aX + bJX

Also X is called J-eigenvector of Av.

Page 42: Isoparametric submanifolds admitting a reflective focal ...math0.bnu.edu.cn/~yanwenjiao/wit/download/slides/Koike.pdf · Isoparametric submanifolds admitting a re ective focal submanifold

Anti-Kaehler isoparametric submanifold

M(⊂ V ) : anti-Kaehler Fredholm submanifold

.Def(∞-dim. anti-Kaehler isoparametric submanifold)..

......

M(⊂ V ) : anti-Kaehler isoparametric

⇐⇒def

• The normal holonomy group of M is trivial

• For any parallel normal vec. fd. v of M ,

the J-eignvalues of Avpis independent of

p ∈ M with considered the multiplicites

Page 43: Isoparametric submanifolds admitting a reflective focal ...math0.bnu.edu.cn/~yanwenjiao/wit/download/slides/Koike.pdf · Isoparametric submanifolds admitting a re ective focal submanifold

AK isoparametric submfd with J-diag. shape op.

M(⊂ V ) : anti-Kaehler isoparametric submanifold

.Def(J -diagonalizable shape operator)..

......

M has J-diagonalizable shape operators

⇐⇒def

For any normal vec. v of M ,

there exists an orthonormal base

consisting of the J-eignvectors of Av

Page 44: Isoparametric submanifolds admitting a reflective focal ...math0.bnu.edu.cn/~yanwenjiao/wit/download/slides/Koike.pdf · Isoparametric submanifolds admitting a re ective focal submanifold

Complex principal curvature, complex curvature distribution

M(⊂ V ) : anti-Kaehler isoparametric submanifold

with J-diagonalizable shape operators

{Av | v ∈ T⊥p M} : a commuting family of

J-diagonalizable operators,

TpM = Ep0 ⊕

(⊕i∈I

Epi

) (Ep

0 := ∩v∈T⊥

p MKerAv

)(

the common J − eigenspace decomposition

of {Av | v ∈ T⊥p M}

)For each v ∈ T⊥

p M ,

λpi (v) ⇐⇒

defAv|Ep

i= Re(λp

i (v))id + Im(λpi (v))Jp

Then λpi : v 7→ λp

i (v) is complex linear, that is,

λpi ∈ (T⊥

p M)∗C .

Page 45: Isoparametric submanifolds admitting a reflective focal ...math0.bnu.edu.cn/~yanwenjiao/wit/download/slides/Koike.pdf · Isoparametric submanifolds admitting a re ective focal submanifold

Complex principal curvature, complex curvature distribution

.Def(complex curvature distribution)..

......

λi ∈ Γ((T⊥M)∗C) ⇐⇒def

(λi)p := λpi (p ∈ M)

complex principal curvature

ni ∈ Γ(T⊥M) ⇐⇒def

λi(·) = 〈ni, ·〉 −√−1〈Jni, ·〉

complex curvature normal

Ei (a subbundle of TM) ⇐⇒def

Ei := qp∈M

Epi

complex curvature distribution

lpi ⊂ T⊥p M ⇐⇒

deflpi := (λi)

−1p (1)

complex focal hyperplane

Page 46: Isoparametric submanifolds admitting a reflective focal ...math0.bnu.edu.cn/~yanwenjiao/wit/download/slides/Koike.pdf · Isoparametric submanifolds admitting a re ective focal submanifold

Complex focal radii and complex focal hyperplanes

M ⊂ G/K

extrinsiccomplexification

MC ⊂ GC/KC

φ

MC := (π ◦ φ)−1(MC) ⊂ H0([0, 1], gC)

lift GC

π

γv : the normal geodesic of MC with γ′(0) = v

γvLu

: the normal geodesic of MC with γ′vLu(0) = vL

u

u ∈ (π ◦ φ)−1(p)

curvature-adapted

s.t. (∗C)

anti-Kaeh. isopara.

with J-diag. shape op.

isoparametric

Page 47: Isoparametric submanifolds admitting a reflective focal ...math0.bnu.edu.cn/~yanwenjiao/wit/download/slides/Koike.pdf · Isoparametric submanifolds admitting a re ective focal submanifold

Complex focal radii and complex focal hyperplanes

l1

l3

l4

T⊥u MC(≈ C2)

l2l1

γCvLu(≈ C)

γCvLu(√−1R)

γCvLu(R)

γCvLu(z1)

T⊥u MC(≈ C2)

Page 48: Isoparametric submanifolds admitting a reflective focal ...math0.bnu.edu.cn/~yanwenjiao/wit/download/slides/Koike.pdf · Isoparametric submanifolds admitting a re ective focal submanifold

5. Outline of the proof of results

Page 49: Isoparametric submanifolds admitting a reflective focal ...math0.bnu.edu.cn/~yanwenjiao/wit/download/slides/Koike.pdf · Isoparametric submanifolds admitting a re ective focal submanifold

Recall Theorem B.2.

.Theorem B.2(K,2014)..

......

M : full irr. anti-Kaehler isoparametric submanifold of

codimM ≥ 2 with J-diagonalizable shape op. in V

=⇒ M : homogeneous (i.e., M = H · p (∃H ⊂ I(V )))

We proved this theorem by refering the proof of

E. Heintze and X. Liu, Ann. of Math. 149, (1999).

Page 50: Isoparametric submanifolds admitting a reflective focal ...math0.bnu.edu.cn/~yanwenjiao/wit/download/slides/Koike.pdf · Isoparametric submanifolds admitting a re ective focal submanifold

Outline of the proof of Theorem B.2

Proof of Theorem B.2.

{Ei}i∈I∪{0} : complex curvature distributions of M

γ : [0, 1] → M : geodesic in LEip

(LEip : the leaf of Ei through p)

(Step I) We construct a C∞-family {F γt }t∈[0,1] in I(V )

s.t.

{F γt (γ(0)) = γ(t)

(F γt )∗γ(0)|T⊥

γ(0)M = τ⊥

γ|[0,t]

(Step II) We show F γt (M) = M by using the assumption:

“M : full, irreducible and codimM ≥ 2”.

Page 51: Isoparametric submanifolds admitting a reflective focal ...math0.bnu.edu.cn/~yanwenjiao/wit/download/slides/Koike.pdf · Isoparametric submanifolds admitting a re ective focal submanifold

Outline of the proof of Theorem B.2

(Step III) We show that M = H ′ · p holds for some

subgroup H ′ of I(V ) satisfying

〈qγ

{F γt }t∈[0,1]〉 ⊂ H ′ ⊂ 〈q

γ{F γ

t }t∈[0,1]〉.Hence we have

M = H · p (H = {F ∈ I(V ) |F (M) = M}).

Page 52: Isoparametric submanifolds admitting a reflective focal ...math0.bnu.edu.cn/~yanwenjiao/wit/download/slides/Koike.pdf · Isoparametric submanifolds admitting a re ective focal submanifold

Outline of the proof of Theorem B.3

.Theorem B.3(K.2017)..

......

M : full irr. anti-Kaehler isoparametric Cω-submanifold

of codimM ≥ 2 with J-diagonalizable shape op. in V

=⇒ M : homogeneous (i.e., M = Hb · p (∃ Hb ⊂ Ib(V )))

Remark Hb = {F ∈ Ib(V ) |F (M) = M}

We proved this theorem by refering the proof of

Gorodski and Heintze, J. Fixed Point Theory Appl. 11 (2012).

Page 53: Isoparametric submanifolds admitting a reflective focal ...math0.bnu.edu.cn/~yanwenjiao/wit/download/slides/Koike.pdf · Isoparametric submanifolds admitting a re ective focal submanifold

Outline of the proof of Theorem B.3

w ∈ (Ei)p (i ∈ I)

γw : [0, 1] → LEip : the geodesic in LEi

p s.t. γ′w(0) = w

Fwt := F γw

t (Fwt (u) = Aw

t (u) + bwt )

Xw ∈ X (U) ⇐⇒def

(Xw)u :=d

dtFwt (u)

∣∣∣∣t=0

(u ∈ U)(U :=

{u ∈ V

∣∣∣∣ d

dtFwt (u)

∣∣∣∣t=0

is defined

})Remark U is dense in V .

Γw : U → TpM homogeneous structure

⇐⇒def

Γw(u) :=

(d

dtAw

t (u)

∣∣∣∣t=0

)TpM

(u ∈ U)

Page 54: Isoparametric submanifolds admitting a reflective focal ...math0.bnu.edu.cn/~yanwenjiao/wit/download/slides/Koike.pdf · Isoparametric submanifolds admitting a re ective focal submanifold

Outline of the proof of Theorem B.3

Proof of Theorem B.3.

Fwt (u) = Aw

t (u) + bwt (u ∈ V )

(Xw)u = ddt

∣∣∣t=0

Fwt (u) =

(ddt

∣∣∣t=0

Awt

)(u) +

dbwtdt

∣∣∣t=0

Xw is defined on V

⇔d

dt

∣∣∣∣t=0

Awt is defined continuosly on V

⇔ Γw is defined continuosly on V (U = V )

⇔ supu∈U s.t. ‖u‖=1

‖Γw(u)‖ < ∞

(‖ · ‖ : the norm defined by 〈 , 〉V±)

Page 55: Isoparametric submanifolds admitting a reflective focal ...math0.bnu.edu.cn/~yanwenjiao/wit/download/slides/Koike.pdf · Isoparametric submanifolds admitting a re ective focal submanifold

Outline of the proof of Theorem B.3

By long deliacte discusion, we can show

supw∈∪i∈I(Ei)p s.t. ‖w‖=1

supu∈U s.t. ‖u‖=1

‖Γw(u)‖ < C < ∞.

Hence we can derive the followings:

Xw

(w ∈ ∪

i∈I(Ei)p

)are defined continuously on V ,

that is, Fwt ∈ Ib(V )

(w ∈ ∪

p∈M∪i∈I

(Ei)p

).

Furthermore, we can show the following:

H ′b · p = M(

H ′b := qp∈M q

w{Fw

t }t∈[0,1] ⊂ Ib(V )).

Page 56: Isoparametric submanifolds admitting a reflective focal ...math0.bnu.edu.cn/~yanwenjiao/wit/download/slides/Koike.pdf · Isoparametric submanifolds admitting a re ective focal submanifold

Recall Theorem B.4.

.Theorem B.4(K,2018)..

......

M : full irreducible curvature-adapted isoparametric

Cω-submanifold of codimM ≥ 2 in G/K s.t. (∗C)=⇒ M : homogeneous (i.e., M = H ·p (∃H ⊂ I(G/K)))

(∗C) For any unit normal vec. v of M ,

the nullity spaces of the complex focal radii

along the normal geodesic γv span

(TpM)C ∩ ((KerAv ∩ KerR(v))C)⊥.

Page 57: Isoparametric submanifolds admitting a reflective focal ...math0.bnu.edu.cn/~yanwenjiao/wit/download/slides/Koike.pdf · Isoparametric submanifolds admitting a re ective focal submanifold

Outline of the proof of Theorem B.4

M ⊂ G/Kextrinsic

complexification

MC ⊂ GC/KC

φ

MC := (π ◦ φ)−1(MC) ⊂ H0([0, 1], gC)

lift GC

π

G/K : symmetric space of non-compact type

V := H0([0, 1], gC)

Page 58: Isoparametric submanifolds admitting a reflective focal ...math0.bnu.edu.cn/~yanwenjiao/wit/download/slides/Koike.pdf · Isoparametric submanifolds admitting a re ective focal submanifold

Outline of the proof of Theorem B.4

Outline of the proof of Theorem B.4.

By the assumption for M ,

MC : full irr. anti-Kaehler isoparametric Cω-submfd of

codimM ≥ 2 with J-diagonalizable shape op. in V

By Theorem B.3,

MC : homogeneous

(i.e., MC = Hb · p (∃ Hb ⊂ Ib(V ))).

Without loss of generailty, we may assume MC = Hb · 0.

Page 59: Isoparametric submanifolds admitting a reflective focal ...math0.bnu.edu.cn/~yanwenjiao/wit/download/slides/Koike.pdf · Isoparametric submanifolds admitting a re ective focal submanifold

Outline of the proof of Theorem B.4

Since H1([0, 1], GC) acts on V isometrically,

we can regard as H1([0, 1], GC) ⊂ I(V ).

By delicate long disccussion, we can show

Hb ⊂ H1([0, 1], GC),

where we use the fact that Hb is a Banach Lie group.

H ′ := 〈{(h(0), h(1)) |h ∈ Hb}〉0 (⊂ GC × GC)

Then we can show

H ′ · (e, e) = π−1(MC).

Page 60: Isoparametric submanifolds admitting a reflective focal ...math0.bnu.edu.cn/~yanwenjiao/wit/download/slides/Koike.pdf · Isoparametric submanifolds admitting a re ective focal submanifold

Outline of the proof of Theorem B.4

H ′R := 〈(H ′ ∩ (G × G))0 ∪ ({e} × K)〉0

Then we can show

H ′R · e = π−1(MC) ∩ (G × G).

H ′′R := {g ∈ G | ({g} × K) ∩ H ′

R 6= ∅}

Then we can show

H ′′R · (eK) = M .

Page 61: Isoparametric submanifolds admitting a reflective focal ...math0.bnu.edu.cn/~yanwenjiao/wit/download/slides/Koike.pdf · Isoparametric submanifolds admitting a re ective focal submanifold

Recall Theorem B.5

.Theorem B.5(K,2018)..

......

M : full irreducible isoparametric Cω-submanifold

of codimM ≥ 2 in G/K admitting

a reflective focal submanifold

=⇒ M : a principal orbit of a Hermann type action

Page 62: Isoparametric submanifolds admitting a reflective focal ...math0.bnu.edu.cn/~yanwenjiao/wit/download/slides/Koike.pdf · Isoparametric submanifolds admitting a re ective focal submanifold

Outline of the proof of Theorem B.5

Proof

M admits a reflective focal submanifold

⇓M is curvature-adapted and satisfies (∗C)

⇓ Theorem B.4

M is homogeneous

⇓ ∃ reflective f. s.

M is a principal orbit of Hermann type action

Page 63: Isoparametric submanifolds admitting a reflective focal ...math0.bnu.edu.cn/~yanwenjiao/wit/download/slides/Koike.pdf · Isoparametric submanifolds admitting a re ective focal submanifold

Recall Theorem B.6

.Theorem B.6(K,2018)..

......

M : full irreducible curvature-adapted isoparametric

C∞-submanifold of codimM ≥ 3 in G/K s.t. (∗R)=⇒ M : homogeneous (i.e., M = H · p (∃H ⊂ I(G/K))

(∗R) For any unit normal vec. v of M , the nullity spaces

of the focal radii along γv span TpM .

Page 64: Isoparametric submanifolds admitting a reflective focal ...math0.bnu.edu.cn/~yanwenjiao/wit/download/slides/Koike.pdf · Isoparametric submanifolds admitting a re ective focal submanifold

Topological Tits building

∆ = (V,S) : r-dim. simplicial complex

A := {Aλ}λ∈Λ family of subcomplexes of ∆

O : Hausdorff topology of VB := (∆,A,O) is called a topological Tits building

if the following conditions (B1)∼(B6) hold:

(B1) Each (r − 1)-dim. simplex of ∆ is contained in at least

three chambers.

(B2) Each (r − 1)-dim. simplex in a subcomplex Aλ are

contained in exactly two chambers of Aλ.

Page 65: Isoparametric submanifolds admitting a reflective focal ...math0.bnu.edu.cn/~yanwenjiao/wit/download/slides/Koike.pdf · Isoparametric submanifolds admitting a re ective focal submanifold

Topological Tits building

(B3) Any two simplices of ∆ are contained in some Aλ.

(B4) If two subcomplexes Aλ1 and Aλ2 share a chamber,

then there is an isomorphism of Aλ1 onto Aλ2 fixing

Aλ1 ∩ Aλ2 pointwisely.

(B5) Each apartment Aλ is a Coxeter complex.

(B6) For k ∈ {1, · · · , r},Sk := {(x1, · · · , xk+1) ∈ Vk+1 | |x1 · · ·xk+1| ∈ Sk}

is closed in (Vk+1,Ok+1).

If Aλ is finite (resp. infinite), then B is said to be

spherical type (resp. affine type).

Page 66: Isoparametric submanifolds admitting a reflective focal ...math0.bnu.edu.cn/~yanwenjiao/wit/download/slides/Koike.pdf · Isoparametric submanifolds admitting a re ective focal submanifold

Outline of the proof of Theorem B.6

Outline of the proof of Theorem B.6.

(Step I) We construct a topological Tits building ass. to M .

Σp : the section of M through p(∈ M)

We can show that ∩p∈M

Σp is a one-point set.

∩p∈M

Σp = {p0}, b := d(p, p0)

Sm−1(b) : the sphere of radius b in Tp0(G/K)

(m = dimG/K)

Page 67: Isoparametric submanifolds admitting a reflective focal ...math0.bnu.edu.cn/~yanwenjiao/wit/download/slides/Koike.pdf · Isoparametric submanifolds admitting a re ective focal submanifold

Outline of the proof of Theorem B.6

Then we can construct a topological Tits building

BM = (4M := (VM ,SM), AM ,OM)

satisfying

(i) VM = exp−1p0

(F1 q · · · q Fl) (⊂ Sm−1(b))

(F1, · · · , Fl : focal submanifolds of M)

(ii) |4M | = Sm−1(b)

(iii) AM = {Ap}p∈M , |Ap| = Sm−1(b) ∩ exp−1p0

(Σp)

(iv) OM : the relative topology of Sm−1(b).

Page 68: Isoparametric submanifolds admitting a reflective focal ...math0.bnu.edu.cn/~yanwenjiao/wit/download/slides/Koike.pdf · Isoparametric submanifolds admitting a re ective focal submanifold

Outline of the proof of Theorem B.6

Σp

exp−1p0

(Σp)

M

F1

F2F1

F2F1 F2

p

Sm−1(b)

Aplaminate

M

Fi p

expp0(Ap)

lp1lp2lp3

expp0

v

p0

lp1lp2

lp3Tp0(G/K)

G/K

Page 69: Isoparametric submanifolds admitting a reflective focal ...math0.bnu.edu.cn/~yanwenjiao/wit/download/slides/Koike.pdf · Isoparametric submanifolds admitting a re ective focal submanifold

Outline of the proof of Theorem B.6

v

v′ApAp′

Sm−1(b)

(v := exp−1p0

(p), v′ := exp−1p0

(p′))

Page 70: Isoparametric submanifolds admitting a reflective focal ...math0.bnu.edu.cn/~yanwenjiao/wit/download/slides/Koike.pdf · Isoparametric submanifolds admitting a re ective focal submanifold

Outline of the proof of Theorem B.6

G′ : the topological automorphism group of BM

G′ a semi-simple Lie group by [Burns-Spatizier,1987]

G′0 : the identity component of G′

s : SM → SM ⇐⇒def

s(σ) = −σ (σ ∈ SM)

K′ := {g ∈ G′0 | g ◦ s = s ◦ g}

p′ := To′(G′0/K

′) =ident.

To(G/K)

G′ y VM −→hence

K′ y VM −→extension

K′ y p′

Page 71: Isoparametric submanifolds admitting a reflective focal ...math0.bnu.edu.cn/~yanwenjiao/wit/download/slides/Koike.pdf · Isoparametric submanifolds admitting a re ective focal submanifold

Outline of the proof of Theorem B.6

v

ApAp′

Sm−1(b)

σ

k′(σ)

k′ · v

Page 72: Isoparametric submanifolds admitting a reflective focal ...math0.bnu.edu.cn/~yanwenjiao/wit/download/slides/Koike.pdf · Isoparametric submanifolds admitting a re ective focal submanifold

Outline of the proof of Theorem B.6

(Step II) We show that K′ y p′ is orbit equivalent

to the s-representation of G/K.

(by using the discussion in Pge 444-445

of [Thorbergsson, 1991])

Hence it follows that

M ′ := exp−1o (M) is a principal orbit of

the s-representation of G/K.

Therefore it follows that

M is a principal orbit of the isotropy action of G/K.

Page 73: Isoparametric submanifolds admitting a reflective focal ...math0.bnu.edu.cn/~yanwenjiao/wit/download/slides/Koike.pdf · Isoparametric submanifolds admitting a re ective focal submanifold

Thank you for your attention!

Page 74: Isoparametric submanifolds admitting a reflective focal ...math0.bnu.edu.cn/~yanwenjiao/wit/download/slides/Koike.pdf · Isoparametric submanifolds admitting a re ective focal submanifold

Affine root system

Affine root system associeted to M

We define the affine root system (in the sense of

Macdonald) associtated to M as follows.

lpi := (λi)−1p (1) (⊂ T⊥

p M) (i ∈ I),

(T⊥p M)R := SpanR{(ni)p | i ∈ I}

(lpi )R := lpi ∩ (T⊥p M)R

Remark M : full ⇒ T⊥p M = SpanC{(ni)p | i ∈ I}

Page 75: Isoparametric submanifolds admitting a reflective focal ...math0.bnu.edu.cn/~yanwenjiao/wit/download/slides/Koike.pdf · Isoparametric submanifolds admitting a re ective focal submanifold

Affine root system associated to M

{(lpi )R | i ∈ I} is described as follows:

{(lpi )R | i ∈ I} = {(lpa,j)R | a = 1, · · · , k j ∈ Z}(• (lpa,j)R (j ∈ Z) are parallel.

• (lpa,i)R and (lpb,j)R (a 6= b) are not parallel.

).Fact...

......

4M := {((lpa,j)R, (na,0)x) | a = 1, · · · , k, j ∈ Z}is the affine root system (in the sense of Macdonald).

Page 76: Isoparametric submanifolds admitting a reflective focal ...math0.bnu.edu.cn/~yanwenjiao/wit/download/slides/Koike.pdf · Isoparametric submanifolds admitting a re ective focal submanifold

Affine root system associated to M

(lp1,−1)R

(lp1,0)R

(lp1,1)R

(lp1,2)R

(lp2,1)R (lp2,0)R (lp2,−1)R

(lp3,−1)R (lp3,0)R (lp3,1)R

(n1,0)p

(n2,0)p

(n3,0)p

0

Page 77: Isoparametric submanifolds admitting a reflective focal ...math0.bnu.edu.cn/~yanwenjiao/wit/download/slides/Koike.pdf · Isoparametric submanifolds admitting a re ective focal submanifold

Proof of supw1

supw2

‖Γw1w2‖ < ∞

(I) In case of 4M is of type (A), (D), (E),

a 6= b, 〈(na,i)p, (nb,j)p〉 = 0 =⇒ Γ(Ea,i)p(Eb,j)p = 0

(II) In case of 4M is of type (A), (D), (E),

a 6= b, 〈(na,i)p, (nb,j)p〉 6= 0

=⇒ ||Γwa,iwb,j|| ≤ ||wa,i|| · ||wb,j|| · ||(na,i)p||(∀wa,i ∈ (Ea,i)p, ∀wb,j ∈ (Eb,j)p)

(III) In general cases,

Γ(Ea,i)p(Ea,j)p ⊂ (E0)p⊕(Ea,2i−j)p⊕(Ea,2j−i)p⊕(Ea,(i+j)/2)p

Page 78: Isoparametric submanifolds admitting a reflective focal ...math0.bnu.edu.cn/~yanwenjiao/wit/download/slides/Koike.pdf · Isoparametric submanifolds admitting a re ective focal submanifold

Proof of supw1

supw2

‖Γw1w2‖ < ∞

By showing many other facts for Γ, we can show

supw

supu

||Γwu|| < ∞.