IRFZ34N Datasheet -K

8
IRFZ34N V DSS = 55V R DS(on) = 0.040 I D = 26A The TO-220 package is universally preferred for all commercial-industrial applications at power dissipation levels to approximately 50 watts. The low thermal resistance and low package cost of the TO-220 contribute to its wide acceptance throughout the industry. Description Absolute Maximum Ratings Parameter Max. Units I D @ T C = 25°C Continuous Drain Current, V GS @ 10V 26 I D @ T C = 100°C Continuous Drain Current, V GS @ 10V 18 A I DM Pulsed Drain Current 100 P D @T C = 25°C Power Dissipation 56 W Linear Derating Factor 0.37 W/°C V GS Gate-to-Source Voltage ±20 V E AS Single Pulse Avalanche Energy 110 mJ I AR Avalanche Current 16 A E AR Repetitive Avalanche Energy 5.6 mJ dv/dt Peak Diode Recovery dv/dt 4.6 V/ns T J Operating Junction and -55 to + 175 T STG Storage Temperature Range °C Soldering Temperature, for 10 seconds 300 (1.6mm from case) Mounting torque, 6-32 or M3 screw. 10 lbf•in (1.1N•m) Thermal Resistance Parameter Min. Typ. Max. Units R θJC Junction-to-Case –––– –––– 2.7 R θCS Case-to-Sink, Flat, Greased Surface –––– 0.50 –––– °C/W R θJA Junction-to-Ambient –––– –––– 62 Advanced Process Technology Dynamic dv/dt Rating 175°C Operating Temperature Fast Switching Fully Avalanche Rated TO-220AB 2014-8-9 1 www.kersemi.com

description

CI

Transcript of IRFZ34N Datasheet -K

Page 1: IRFZ34N Datasheet -K

IRFZ34N

VDSS = 55V

RDS(on) = 0.040Ω

ID = 26A

The TO-220 package is universally preferred for all commercial-industrialapplications at power dissipation levels to approximately 50 watts. The lowthermal resistance and low package cost of the TO-220 contribute to its wideacceptance throughout the industry.

Description

Absolute Maximum Ratings

Parameter Max. UnitsID @ TC = 25°C Continuous Drain Current, V GS @ 10V 26ID @ TC = 100°C Continuous Drain Current, V GS @ 10V 18 AIDM Pulsed Drain Current 100PD @TC = 25°C Power Dissipation 56 W

Linear Derating Factor 0.37 W/°CVGS Gate-to-Source Voltage ±20 VEAS Single Pulse Avalanche Energy 110 mJIAR Avalanche Current 16 AEAR Repetitive Avalanche Energy 5.6 mJdv/dt Peak Diode Recovery dv/dt 4.6 V/nsTJ Operating Junction and -55 to + 175TSTG Storage Temperature Range °C

Soldering Temperature, for 10 seconds 300 (1.6mm from case)Mounting torque, 6-32 or M3 screw. 10 lbf•in (1.1N•m)

Thermal ResistanceParameter Min. Typ. Max. Units

RθJC Junction-to-Case –––– –––– 2.7RθCS Case-to-Sink, Flat, Greased Surface –––– 0.50 –––– °C/WRθJA Junction-to-Ambient –––– –––– 62

Advanced Process TechnologyDynamic dv/dt Rating175°C Operating TemperatureFast SwitchingFully Avalanche Rated

TO-220AB

2014-8-9 1 www.kersemi.com

Page 2: IRFZ34N Datasheet -K

IRFZ34N

Notes:

Parameter Min. Typ. Max. Units ConditionsIS Continuous Source Current MOSFET symbol

(Body Diode) showing theISM Pulsed Source Current integral reverse

(Body Diode) p-n junction diode.VSD Diode Forward Voltage ––– ––– 1.6 V TJ = 25°C, IS = 16A, VGS = 0V trr Reverse Recovery Time ––– 57 86 ns TJ = 25°C, IF = 16AQrr Reverse Recovery Charge ––– 130 200 nC di/dt = 100A/µs

ton Forward Turn-On Time

Repetitive rating; pulse width limited by max. junction temperature. ( See fig. 11 )

VDD = 25V, starting T J = 25°C, L = 610µH RG = 25Ω, IAS = 16A. (See Figure 12)

ISD ≤ 16 A, di/dt ≤ 420A/µs, V DD ≤ V(BR)DSS, TJ ≤ 175°C

Pulse width ≤ 300µs; duty cycle ≤ 2%.

Source-Drain Ratings and Characteristics

Electrical Characteristics @ TJ = 25°C (unless otherwise specified)

Parameter Min. Typ. Max. Units ConditionsV(BR)DSS Drain-to-Source Breakdown Voltage 55 ––– ––– V VGS = 0V, ID = 250µA∆V(BR)DSS/∆TJ Breakdown Voltage Temp. Coefficient ––– 0.052 ––– V/°C Reference to 25°C, I D = 1mARDS(ON) Static Drain-to-Source On-Resistance ––– ––– 0.040 Ω VGS = 10V, ID = 16AVGS(th) Gate Threshold Voltage 2.0 ––– 4.0 V VDS = VGS, ID = 250µAgfs Forward Transconductance 6.5 ––– ––– S VDS = 25V, ID = 16A

––– ––– 25 VDS = 55V, VGS = 0V––– ––– 250 VDS = 44V, VGS = 0V, TJ = 150°C

Gate-to-Source Forward Leakage ––– ––– 100 VGS = 20VGate-to-Source Reverse Leakage ––– ––– -100 VGS = -20V

Qg Total Gate Charge ––– ––– 34 ID = 16AQgs Gate-to-Source Charge ––– ––– 6.8 nC VDS = 44VQgd Gate-to-Drain ("Miller") Charge ––– ––– 14 VGS = 10V, See Fig. 6 and 13 td(on) Turn-On Delay Time ––– 7.0 ––– VDD = 28Vtr Rise Time ––– 49 ––– ID = 16Atd(off) Turn-Off Delay Time ––– 31 ––– RG = 18Ωtf Fall Time ––– 40 ––– RD = 1.8Ω, See Fig. 10

Between lead,6mm (0.25in.)from packageand center of die contact

Ciss Input Capacitance ––– 700 ––– VGS = 0VCoss Output Capacitance ––– 240 ––– pF VDS = 25VCrss Reverse Transfer Capacitance ––– 100 ––– ƒ = 1.0MHz, See Fig. 5

Intrinsic turn-on time is negligible (turn-on is dominated by L S+LD)

––– ––– 100

––– ––– 26A

nHLD Internal Drain Inductance ––– 4.5 –––

LS Internal Source Inductance ––– 7.5 –––

IDSS Drain-to-Source Leakage Current

IGSS

ns

µA

nA

2014-8-9 2 www.kersemi.com

Page 3: IRFZ34N Datasheet -K

Fig 3. Typical Transfer Characteristics Fig 4. Normalized On-ResistanceVs. Temperature

Fig 1. Typical Output Characteristics,TC = 25oC

Fig 2. Typical Output Characteristics,TC = 175oC

1

10

100

1000

0.1 1 10 100

I ,

Dra

in-to

-Sou

rce

Cur

rent

(A)

D

V , Drain-to-Source Voltage (V)DS

VGS TOP 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.5V

20µs PULSE WIDTH T = 25°CC A

4.5V

1

10

100

1000

0.1 1 10 100I

, D

rain

-to-S

ourc

e C

urre

nt (A

)D

V , Drain-to-Source Voltage (V)DS

VGS TOP 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.5V

A

4.5V

20µs PULSE WIDTH T = 175°CC

1

10

100

4 5 6 7 8 9 10

T = 25°CJ

GSV , Gate-to-Source Voltage (V)

DI ,

Dra

in-t

o-S

ourc

e C

urre

nt (A

)

A

V = 25V 20µs PULSE WIDTH

T = 175°CJ

DS

0.0

0.4

0.8

1.2

1.6

2.0

2.4

-60 -40 -20 0 20 40 60 80 100 120 140 160 180

JT , Junction Temperature (°C)

R

, D

rain

-to-S

ourc

e O

n R

esis

tanc

eD

S(o

n)(N

orm

aliz

ed)

V = 10V GSA

I = 26AD

IRFZ34N

2014-8-9 3 www.kersemi.com

Page 4: IRFZ34N Datasheet -K

Fig 7. Typical Source-Drain DiodeForward Voltage

Fig 8. Maximum Safe Operating Area

Fig 5. Typical Capacitance Vs.Drain-to-Source Voltage

Fig 6. Typical Gate Charge Vs.Gate-to-Source Voltage

0

200

400

600

800

1000

1200

1 10 100

C, C

apac

itanc

e (p

F)

DSV , Drain-to-Source Voltage (V)

A

V = 0V, f = 1MHzC = C + C , C SHORTEDC = CC = C + C

GSiss gs gd dsrss gdoss ds gdC iss

C oss

C rss

0

4

8

12

16

20

0 10 20 30 40

Q , Total Gate Charge (nC)G

V

, G

ate-

to-S

ourc

e V

olta

ge (V

)G

SA

FOR TEST CIRCUIT SEE FIGURE 13

V = 44V V = 28V

DSDS

I = 16AD

1

10

100

1000

0.4 0.8 1.2 1.6 2.0

T = 25°CJ

V = 0V GS

V , Source-to-Drain Voltage (V)

I

, Rev

erse

Dra

in C

urre

nt (A

)

SD

SD

A

T = 175°CJ

1

10

100

1000

1 10 100V , Drain-to-Source Voltage (V)DS

I ,

Dra

in C

urre

nt (A

)

OPERATION IN THIS AREA LIMITED BY R

D

DS(on)

10µs

100µs

1ms

10ms

A

T = 25°C T = 175°C Single Pulse

CJ

IRFZ34N

2014-8-9 4 www.kersemi.com

Page 5: IRFZ34N Datasheet -K

Fig 10a. Switching Time Test Circuit

VDS

10 VPulse Width ≤ 1 µsDuty Factor ≤ 0.1 %

Fig 9. Maximum Drain Current Vs.Case Temperature

Fig 10b. Switching Time Waveforms

RD

VGS

VDD

RG

D.U.T.

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

0

5

10

15

20

25

30

25 50 75 100 125 150 175

C

I , D

rain

Cur

rent

(Am

ps)

D

T , Case Temperature (°C)

A

0.01

0.1

1

10

0.00001 0.0001 0.001 0.01 0.1 1

t , Rectangular Pulse Duration (sec)1

thJC

D = 0.50

0.010.02

0.05

0.10

0.20

SINGLE PULSE(THERMAL RESPONSE)

A

The

rmal

Res

pons

e (Z

)

P

t 2

1t

D M

N otes: 1 . D uty factor D = t / t

2. Pea k T = P x Z + T

1 2

J D M thJC C

IRFZ34N

2014-8-9 5 www.kersemi.com

Page 6: IRFZ34N Datasheet -K

Fig 12c. Maximum Avalanche EnergyVs. Drain Current

Fig 12a. Unclamped Inductive Test Circuit

Fig 12b. Unclamped Inductive Waveforms

Fig 13a. Basic Gate Charge Waveform Fig 13b. Gate Charge Test Circuit

10 V

10 V

0

50

100

150

200

250

25 50 75 100 125 150 175

J

E

,

Sin

gle

Pul

se A

vala

nche

Ene

rgy

(mJ)

AS

A

Starting T , Junction Temperature (°C)

V = 25V

ITOP 6.5A 11ABOTTOM 16A

DD

D

IRFZ34N

2014-8-9 6 www.kersemi.com

Page 7: IRFZ34N Datasheet -K

Fig 14. For N-Channel HEXFETS

* VGS = 5V for Logic Level Devices

Peak Diode Recovery dv/dt Test Circuit

RGVDD

• dv/dt controlled by R G• Driver same type as D.U.T.• ISD controlled by Duty Factor "D"• D.U.T. - Device Under Test

D.U.T Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer

*

IRFZ34N

2014-8-9 7 www.kersemi.com

Page 8: IRFZ34N Datasheet -K

Package OutlineTO-220AB OutlineDimensions are shown in millimeters (inches)

TO-220AB

Part Marking Information

LEAD ASSIGNMENTS 1 - GATE 2 - DRAIN 3 - SOURCE 4 - DRAIN

- B -

1.32 (.052)1.22 (.048)

3X 0.55 (.022)0.46 (.018)

2.92 (.115)2.64 (.104)

4.69 (.185)4.20 (.165)

3X 0.93 (.037)0.69 (.027)

4.06 (.160)3.55 (.140)

1.15 (.045) MIN

6.47 (.255)6.10 (.240)

3.78 (.149)3.54 (.139)

- A -

10.54 (.415)10.29 (.405)2.87 (.113)

2.62 (.103)

15.24 (.600)14.84 (.584)

14.09 (.555)13.47 (.530)

3X 1.40 (.055)1.15 (.045)

2.54 (.100)

2X

0.36 (.014) M B A M

4

1 2 3

NOTES: 1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982. 3 OUTLINE CONFORMS TO JEDEC OUTLINE TO-220AB. 2 CONTROLLING DIMENSION : INCH 4 HEATSINK & LEAD MEASUREMENTS DO NOT INCLUDE BURRS.

PART NUMBERINTERNATIONAL RECTIFIER LOGO

EXAMPLE : THIS IS AN IRF1010 WITH ASSEMBLY LOT CODE 9B1M

ASSEMBLY LOT CODE

DATE CODE (YYWW)YY = YEARWW = WEEK

9246IRF1010

9B 1M

A

IRFZ34N

2014-8-9 8 www.kersemi.com