IPQI-2010-Anu Venugopalan 1 qubits, quantum registers and gates Anu Venugopalan Guru Gobind Singh...

30
IPQI-2010-Anu Venugopalan 1 qubits, quantum registers and gates Anu Venugopalan Guru Gobind Singh Indraprastha Univeristy Delhi _______________________________________________ INTERNATIONAL PROGRAM ON QUANTUM INFORMATION (IPQI- 2010) Institute of Physics (IOP), Bhubaneswar January 2010

description

IPQI-2010-Anu Venugopalan 3 The Qubit- computational basis ______________________________________ General state of a qubit and are complex coefficients that can take any possible values and satisfy the normalization condition: Computational basis State space : C 2 orthonormal basis

Transcript of IPQI-2010-Anu Venugopalan 1 qubits, quantum registers and gates Anu Venugopalan Guru Gobind Singh...

Page 1: IPQI-2010-Anu Venugopalan 1 qubits, quantum registers and gates Anu Venugopalan Guru Gobind Singh Indraprastha Univeristy Delhi _______________________________________________.

IPQI-2010-Anu Venugopalan 1

qubits, quantum registers and gates

Anu Venugopalan

Guru Gobind Singh Indraprastha UniveristyDelhi

_______________________________________________ INTERNATIONAL PROGRAM ON QUANTUM INFORMATION (IPQI-2010)

Institute of Physics (IOP), BhubaneswarJanuary 2010

Page 2: IPQI-2010-Anu Venugopalan 1 qubits, quantum registers and gates Anu Venugopalan Guru Gobind Singh Indraprastha Univeristy Delhi _______________________________________________.

IPQI-2010-Anu Venugopalan 2

The Qubit______________________________________

0

2 2| | | | 1Normalization

Physical implementations - Photons, electron, spin, nuclear spin

1

‘Bit’ : fundamental concept of classical computation & info. - 0 or 1 ‘Qubit’ : fundamental concept of quantum computation & info 0 1

- can be thought of mathematical objects having some specific properties

Page 3: IPQI-2010-Anu Venugopalan 1 qubits, quantum registers and gates Anu Venugopalan Guru Gobind Singh Indraprastha Univeristy Delhi _______________________________________________.

IPQI-2010-Anu Venugopalan 3

The Qubit- computational basis______________________________________

10

General state of a qubit and are complex coefficients that can take any possible values and satisfy the normalization condition:

122

Computational basis

10

1 ;01

0

State space : C2

orthonormal basis

Page 4: IPQI-2010-Anu Venugopalan 1 qubits, quantum registers and gates Anu Venugopalan Guru Gobind Singh Indraprastha Univeristy Delhi _______________________________________________.

IPQI-2010-Anu Venugopalan 4

The Qubit- measurement in the computational basis_________________________________

•In general the state of a qubit is a unit vector in a two dimensional complex vector space.

• Unlike a bit you cannot ‘examine’ a qubit to determine its quantum state

10

Page 5: IPQI-2010-Anu Venugopalan 1 qubits, quantum registers and gates Anu Venugopalan Guru Gobind Singh Indraprastha Univeristy Delhi _______________________________________________.

IPQI-2010-Anu Venugopalan 5

The Qubit- measurement in the computational basis_________________________________

-

•A qubit can exist in a continuum of states between and until it is observed

•Measuring on the qubit:

10 measurement 0

1

with prob

with prob2

2

0 1

Page 6: IPQI-2010-Anu Venugopalan 1 qubits, quantum registers and gates Anu Venugopalan Guru Gobind Singh Indraprastha Univeristy Delhi _______________________________________________.

IPQI-2010-Anu Venugopalan 6

How much information does a qubit hold?_________________________________

10 Geometric representation in terms of a Bloch sphere:

1

2sin0

2cos ie

A point on a unit 3D sphere

There are an infinite number of points on the unit sphere, so that in principle one could store a large amount of information

But – from a single measurement one obtains only a single bit of information.

In the state of a qubit, Nature conceals a great deal of hidden information

Page 7: IPQI-2010-Anu Venugopalan 1 qubits, quantum registers and gates Anu Venugopalan Guru Gobind Singh Indraprastha Univeristy Delhi _______________________________________________.

IPQI-2010-Anu Venugopalan 7

multiple qubits - quantum registers_________________________________

-

More than one qubit…..The state space of a composite physical system is the tensor product of the state spaces of the component systems.

Example: for a two qubits, the state space is C2 C2=C4

computational basis for C2 : 1; 0

computational basis for C4 :

11;01;10; 00

11;10;01; 00alternate representation :

Page 8: IPQI-2010-Anu Venugopalan 1 qubits, quantum registers and gates Anu Venugopalan Guru Gobind Singh Indraprastha Univeristy Delhi _______________________________________________.

IPQI-2010-Anu Venugopalan 8

Two qubit register – computational basis_________________________________

11;10;01; 00computational basis :

The state vector for two qubits: 212,1

10

1021

20

2

11

10

1

state of qubit 1

state of qubit 2

11100100 111001002,1

Page 9: IPQI-2010-Anu Venugopalan 1 qubits, quantum registers and gates Anu Venugopalan Guru Gobind Singh Indraprastha Univeristy Delhi _______________________________________________.

IPQI-2010-Anu Venugopalan 9

Two qubit register – matrix representation

_________________________________

1000

11;

0100

10;

0010

01;

0001

00

computational basis :

21

202

120

2

11

101

110

1

10

10

state of qubit 1

state of qubit 2

Page 10: IPQI-2010-Anu Venugopalan 1 qubits, quantum registers and gates Anu Venugopalan Guru Gobind Singh Indraprastha Univeristy Delhi _______________________________________________.

IPQI-2010-Anu Venugopalan 10

Two qubit register – matrix representation

_________________________________The state vector for two qubits: 212,1

11100100 111001002,1

11

10

01

00

21

11

20

11

21

10

20

10

Page 11: IPQI-2010-Anu Venugopalan 1 qubits, quantum registers and gates Anu Venugopalan Guru Gobind Singh Indraprastha Univeristy Delhi _______________________________________________.

IPQI-2010-Anu Venugopalan 11

n-qubit register_________________________________

Two-qubit register- state space C2 ; 4 basis states4 terms in the superposition for the state vector

11100100 111001002,1

C8 :three-qubit register : 23=8 terms in the superpositionC16 :four-qubit register : 24=16 terms in the superposition

Cn :n-qubit register : 2n terms in the superposition

Page 12: IPQI-2010-Anu Venugopalan 1 qubits, quantum registers and gates Anu Venugopalan Guru Gobind Singh Indraprastha Univeristy Delhi _______________________________________________.

IPQI-2010-Anu Venugopalan 12

n-qubit register_________________________________

n-qubit register- 2n basis states 2n terms in the superposition for the state vector

n............3,2,1 : a superposition specified by 2n amplitudes

e.g. for n=500 (a quantum register of 500 qubits), the number of terms in the superposition, i.e., 2500 , is larger than the number of atoms in the Universe!

A few hundered atoms can store an enormous amount of data - an exponential amount of classical info. in only a polynomial number of qubits because of the superposition.

Page 13: IPQI-2010-Anu Venugopalan 1 qubits, quantum registers and gates Anu Venugopalan Guru Gobind Singh Indraprastha Univeristy Delhi _______________________________________________.

IPQI-2010-Anu Venugopalan 13

Computing – gates – quantum analogs_________________________________

-

Quantum Mechanics as computation

Classical computer circuits consist of logic gates. The logic gates perform manipulations of the information, converting it from one form to another.

Quantum analogs of logic gates are Unitary operators which can be represented as matrices.

Unitary operators (quantum gates ) operate on qubits and quantum registers.

Page 14: IPQI-2010-Anu Venugopalan 1 qubits, quantum registers and gates Anu Venugopalan Guru Gobind Singh Indraprastha Univeristy Delhi _______________________________________________.

IPQI-2010-Anu Venugopalan 14

Computing –gates – quantum analogs_________________________________

example: single qubit quantum gates: The NOT Gate

01ˆ ;10ˆ

ˆ0110

XX

Xx

01

10ˆ ;

10

01ˆ XX

ˆ

X 0110ˆ X

Page 15: IPQI-2010-Anu Venugopalan 1 qubits, quantum registers and gates Anu Venugopalan Guru Gobind Singh Indraprastha Univeristy Delhi _______________________________________________.

IPQI-2010-Anu Venugopalan 15

Computing –gates – quantum analogs_________________________________

example: single qubit quantum gates: The phase flip Gate

11ˆ ;00ˆ

ˆ10

01

ZZ

Zz

01

10ˆ ;

10

01ˆ ZZ

ˆ

X 0010ˆ Z

Page 16: IPQI-2010-Anu Venugopalan 1 qubits, quantum registers and gates Anu Venugopalan Guru Gobind Singh Indraprastha Univeristy Delhi _______________________________________________.

IPQI-2010-Anu Venugopalan 16

Computing –gates – quantum analogs_________________________________

example: single qubit quantum gates: The Hadamard Gate

11

112

H

1

12

110ˆ ;

11

21

01ˆ HH

102

11ˆ

102

10ˆ

H

H

This gate is uniquely quantum-mechanical with no classical counterpart

Page 17: IPQI-2010-Anu Venugopalan 1 qubits, quantum registers and gates Anu Venugopalan Guru Gobind Singh Indraprastha Univeristy Delhi _______________________________________________.

IPQI-2010-Anu Venugopalan 17

Computing –gates – quantum analogs_________________________________

example: single qubit quantum gates: The Hadamard Gate

11

112

H

102

110ˆ H

Page 18: IPQI-2010-Anu Venugopalan 1 qubits, quantum registers and gates Anu Venugopalan Guru Gobind Singh Indraprastha Univeristy Delhi _______________________________________________.

IPQI-2010-Anu Venugopalan 18

Computing –gates – quantum analogs_________________________________example: two-qubit quantum gates: The quantum controlled NOT gate

The classical C-NOT gate

0 1 11 0 11 1 00 0 0

cba

The Quantum C-NOT gate (reversible)

a

b

a

ba

control qubit

target qubit

1011 ;1110

0101 ;0000

action

Page 19: IPQI-2010-Anu Venugopalan 1 qubits, quantum registers and gates Anu Venugopalan Guru Gobind Singh Indraprastha Univeristy Delhi _______________________________________________.

IPQI-2010-Anu Venugopalan 19

Quantum Gates – the C-NOT gate_________________________________Quantum C-NOT gate is reversible- it corresponds to a Unitary operator,

a

b

a

ba 1011 ˆ ;1110ˆ0101 ˆ ;0000ˆ

CNCN

CNCN

UU

UU

CNU

matrix representation

0100100000100001

ˆCNU

Page 20: IPQI-2010-Anu Venugopalan 1 qubits, quantum registers and gates Anu Venugopalan Guru Gobind Singh Indraprastha Univeristy Delhi _______________________________________________.

IPQI-2010-Anu Venugopalan 20

Quantum Gates – the swap circuit_________________________________

Three quantum C-NOT gates

a

b

b

a

abbabbbba

baababaaba

,)(,,

)(,,,

CNU CNU

CNU

Page 21: IPQI-2010-Anu Venugopalan 1 qubits, quantum registers and gates Anu Venugopalan Guru Gobind Singh Indraprastha Univeristy Delhi _______________________________________________.

IPQI-2010-Anu Venugopalan 21

A quantum circuit for producing Bell states

_________________________________

21100

00

21001

01

21100

10

21001

11

xyHx

y

These are very useful states

Page 22: IPQI-2010-Anu Venugopalan 1 qubits, quantum registers and gates Anu Venugopalan Guru Gobind Singh Indraprastha Univeristy Delhi _______________________________________________.

IPQI-2010-Anu Venugopalan 22

The No-Cloning Theorem_________________________________

Copying/cloning a single classical bitUse a C- NOT gate

x

0

x

y

x

xy

x

xTwo bits of the

same input x

The C-NOT operationCan we have a similar quantum circuit that can clone/copy a qubit?

Page 23: IPQI-2010-Anu Venugopalan 1 qubits, quantum registers and gates Anu Venugopalan Guru Gobind Singh Indraprastha Univeristy Delhi _______________________________________________.

IPQI-2010-Anu Venugopalan 23

The No-Cloning Theorem_________________________________A quantum C-NOT gate to clone/copy a qubit?

X= 10

0

010

Input state

Action of C-NOT

inputCNU ˆ

1100 output state

Page 24: IPQI-2010-Anu Venugopalan 1 qubits, quantum registers and gates Anu Venugopalan Guru Gobind Singh Indraprastha Univeristy Delhi _______________________________________________.

IPQI-2010-Anu Venugopalan 24

The No-Cloning Theorem_________________________________Can a quantum C-NOT gate clone/copy a qubit?

X= 10

0

010

Input state

1100 output state

If the circuit had cloned the input state x as in the case of the classical circuit, the output state should be

XX

Page 25: IPQI-2010-Anu Venugopalan 1 qubits, quantum registers and gates Anu Venugopalan Guru Gobind Singh Indraprastha Univeristy Delhi _______________________________________________.

IPQI-2010-Anu Venugopalan 25

The No-Cloning Theorem_________________________________

X= 10

0

1000 Input state:

1100 output state:

If the circuit had cloned the input state x as in the case of the classical circuit, the output state should be

XX 11100100

101022

Page 26: IPQI-2010-Anu Venugopalan 1 qubits, quantum registers and gates Anu Venugopalan Guru Gobind Singh Indraprastha Univeristy Delhi _______________________________________________.

IPQI-2010-Anu Venugopalan 26

The No-Cloning Theorem_________________________________

1000 Input state:

1100

output state:

Output state expected of a cloning machine

11100100 22 clearly

11100100 22

1100

We have not managed to clone the state

Page 27: IPQI-2010-Anu Venugopalan 1 qubits, quantum registers and gates Anu Venugopalan Guru Gobind Singh Indraprastha Univeristy Delhi _______________________________________________.

IPQI-2010-Anu Venugopalan 27

The No-Cloning Theorem_________________________________

1100 11100100 22

We have not managed to clone the state0,1or 1,0 if

11or 00RHS = LHS

Cloning happens only if the input state is either or 0 1

- These are like classical bits!

Page 28: IPQI-2010-Anu Venugopalan 1 qubits, quantum registers and gates Anu Venugopalan Guru Gobind Singh Indraprastha Univeristy Delhi _______________________________________________.

IPQI-2010-Anu Venugopalan 28

The No-Cloning Theorem_________________________________

Cloning happens only if the input state is either or 0 1

Only orthogonal states (classical bits) can be cloned

It is impossible to clone an unknown quantum state like an input state of the qubit = 10

The no cloning theorem is a result of quantum mechanics which forbids the creation of identical copies of an arbitrary unknown quantum state.

Page 29: IPQI-2010-Anu Venugopalan 1 qubits, quantum registers and gates Anu Venugopalan Guru Gobind Singh Indraprastha Univeristy Delhi _______________________________________________.

IPQI-2010-Anu Venugopalan 29

The No-Cloning Theorem_________________________________

The no cloning theorem was stated by Wootters, Zurek, and Dieks in 1982, and has profound implications in quantum computing and related fields. The theorem follows from the fact that all quantum operations must be unitary linear transformation on the state •W.K. Wootters and W.H. Zurek, A Single Quantum Cannot

be Cloned, Nature 299 (1982), pp. 802–803. •D. Dieks, Communication by EPR devices, Physics Letters A, vol. 92(6) (1982), pp. 271–272. •V. Buzek and M. Hillery, Quantum cloning, Physics World 14 (11) (2001), pp. 25–29.

Page 30: IPQI-2010-Anu Venugopalan 1 qubits, quantum registers and gates Anu Venugopalan Guru Gobind Singh Indraprastha Univeristy Delhi _______________________________________________.

IPQI-2010-Anu Venugopalan 30

Some consequences of the no-cloning theorem

___________________________________•The no cloning theorem prevents us from using classical error correction techniques on quantum states.

•the no cloning theorem is a vital ingredient in quantum cryptography, as it forbids eavesdroppers from creating copies of a transmitted quantum cryptographic key.

•Fundamentally, the no-cloning theorem protects the uncertainty principle in quantum mechanics

•More fundamentally, the no cloning theorem prevents superluminal communication via quantum entanglement.