Inundation Effect and Quartic Approximation of Morison-Type Wave Loading

4
Proceedings o f the Eleventh (2001) hlternationai Offshore and Polar E nginee ring Conf e rence Stavanger, Norway, June 17-22, 2001 Copyright © 2001 by The International Society of Offshore and Polar Engineers ISBN 1-880653-51-6 (Set); IS BN 1-880653-54-0 (VoL II1); ISSN 1098-6189 (Set) Inundation Effect and Quartic Approximation of Morison-Type Wave Loading X. Y. Zheng and C Y Liaw National University of Singapore Singapore ABSTRACT A quartic approximation of the nonlinear inundation effect of Morison-type wave loading is proposed. Using Taylor series expansion, the inundation force due to varying free water surface can be represented by a 'concentrated load', acting on the structure at the mean water level, of which the drag component can be modelled by a polynomial of the fourth order. Polynomial coefficients are obtained using the least squares approximation method, and they are shown to depend upon the wave conditions. However, simple expressions for the polynomial coefficients are recommended based on a numerical study showing that the coefficients are mainly functions of the standard deviation of water particle velocity at the mean water level. KEY WORDS: Inundation effect, Morison wave force, quartic approximation, least squares method, joint probability density function. INTRODUCTION Wave forces can have very sig nifica nt nonli near effects on the response of offshore structures, especially for structures subjected to Moris on-type wave loading . There are mai nly two types of nonl inear effect attri butabl e to wave forces. One is the effect of the nonlinear drag force, which is usually the predominant wave force component for the slender structural members of an offshore structure and can be evaluat ed using the wel l-known Morison formu la. Based on the method of least squares approximation (Benda t, 1997) the nonl inea r drag force per uni t length can be represent ed by a polyno mial ex pansion, and the corres pondin g frequency response functions can then be derived using the Volterra series method (Schetzen, 198 0; Rugh, 198 1). Borgman (1969) studied a cu bic repre sentat ion of the drag term with out cu rrent and Gudmestad, et aL (1983) included the effect of current vi a fourth order expansion. Li et al., (1995) and Tognarelli et al. (1997) presented the frequency response functions based on equivalent statistical cubicization of the drag force. They observed that the structural response spectra obtained exhibited a significant resonance phe nomeno n near the freq uenc y of 3c op , where c o p is the peak frequency of the wave spectrum. The other type of non lin ear effect att ributable to wave forces can be related to the variable submerged height of the struct ure nea r the mean water level, or the so-called inundation effect (Tickell, et al., 198 5; Tung, 1996; Liaw, 2000). This nonl inear inundation effect produces even-orde r sup er-har monic force components that can cause the wave force spectra to have peaks at 2wp, which are oRen close to the fundamental structural frequency within the range between 0.25 and 0.12 Hz (Gudmestad, 1988 ; Kjeoy, et al., 1990; Liaw, 2000 ). This can o bviously lead to significant non linea r struct ural responses n ear 2co p. Further, depe ndin g on the frequency ratio of the structure and wave, the nonli near ef fect of inun datio n can, in some cases, be even more significant than that of the drag force distributed along the height of the structure (Liaw, 2000). In a previous paper (Liaw, 2000) a quadratic model for wave force was develop ed: th e drag force itsel f was approximated by a linear term and the in undat ion force was corresp onding ly represented by a quadratic term. Wave force spectrum based on such a quadratic model can properly estimate the nonl inea r wave forces by including the superha rmonic compone nts with fre quenci es u p to 2 C O p, and is adequ ate for analy sing structures with fundamental nat ural frequencies less or near 2 O~ p.However, for structures with frequencies nea r 3o)p , a cubic approximation for the drag force is necessary; the corresponding approx imation for the inunda tion f orce should then be quartic. In this paper, Taylor series expansion is first employed to obtain the approx imate expression for the inund atio n effect that is shown to be a function composed of the wave elevation and wave kinematics at the mean water level; the force is modelled as a polynomial of terms up to fourth-order. Secondly, the least squares approximation method is used to obtain the polynomial coefficients that are the weights of different terms. JONSWAP wave spectrum is used in the numerical evaluations of the polynomial coefficients as well as the join t probab ility density functio n of wave elevatio n and water particle velocity at the mean water level. APPROXIMATION OF INUNDATION EFFECT AS A CONCENTRATED LOAD The empirical Morison wave force, f, per unit length of a vertical cylinde r (Fig. 1) is given as: f = Cu A ~ + CvAolu[u (1) where C u and C o are the inertia and drag coefficients respectively; A1 = xpD 2/4 and A v = pD /2 ; u, the water particle velocity normal to the structural member; p, mass density of water; D, diameter of cylinder. 2 9 5

Transcript of Inundation Effect and Quartic Approximation of Morison-Type Wave Loading

Page 1: Inundation Effect and Quartic Approximation of Morison-Type Wave Loading

7/28/2019 Inundation Effect and Quartic Approximation of Morison-Type Wave Loading

http://slidepdf.com/reader/full/inundation-effect-and-quartic-approximation-of-morison-type-wave-loading 1/4

Proceedings o f the Eleventh (2001) hlternatio nai Offshore an d Polar E ngineering ConferenceStavanger,Norway, Ju ne 17-22 , 2001

Copyrigh t © 2001 by The In terna t iona l Soc ie ty o f O f fshore and Po lar Eng ineers

IS BN 1-8806 53-51-6 (Set); IS BN 1-880653-54-0 (VoL II1); IS SN 1098-6189 (Set)

Inundat ion Ef fec t and Quart ic A pprox imat ion o f Mor ison-Type Wa ve Loading

X . Y . Z h e n g a n d C Y L i a w

National University of S i n g a p o r e

Singapore

ABSTRACT

A q u a r t i c a p p r o x i m a t i o n o f t h e n o n l i n e a r i n u n d a t i o n e f f e c t o f

M o r i s o n - t y p e w a v e l o a d i n g i s p r o p o s e d . U s i n g T a y l o r s e r i e s

e x p a n s i o n , t h e i n u n d a t i o n f o r c e d u e t o v a r y i n g f r e e w a t e r s u r f a c ec a n b e r e p r e s e n t e d b y a ' c o n c e n t r a t e d l o a d ' , a c t i n g o n t h e s t r u c t u r e

a t t h e m e a n w a t e r l e v e l , o f w h i c h t h e d r a g c o m p o n e n t c a n b e

m o d e l l e d b y a p o l y n o m i a l o f t h e f o u r t h o r d e r . P o l y n o m i a l

c o e f f i c i e n t s a r e o b t a i n e d u s i n g t h e l e a s t s q u a r e s a p p r o x i m a t i o n

m e t h o d , a n d t h e y a r e s h o w n t o d e p e n d u p o n t h e w a v e c o n d i t i o n s .

H o w e v e r , s i m p l e e x p r e s s i o n s f o r t h e p o l y n o m i a l c o e f f i c i e n t s a r e

r e c o m m e n d e d b a s e d o n a n u m e r i c a l s t u d y s h o w i n g t h a t t h e

c o e f f i ci e n t s a r e m a i n l y f u n c t i o n s o f t h e s t a n d a r d d e v i a t i o n o f w a t e r

p a r t i c l e v e l o c i t y a t t h e m e a n w a t e r l e v e l .

KEY WORDS: Inundation effect, Morison wave force, quartic

approximation, least squares method, joint probability density function.

INTRODUCTION

Wave forces can have very significant nonlinear effects on the

response of offshore structures, especially for structures subjected to

Morison-type wave loading. There are mainly two types of nonl inear

effect attributable to wave forces. One is the effect of the nonlineardrag

force, which is usually the predominant wave force component for the

slender structural members of an offshore structure and can be

evaluated using the wel l-known Morison formula. Based on the method

of least squares approximation (Bendat, 1997), the nonl inear drag force

per uni t length can be represented by a polynomial expansion, and the

corresponding frequency response functions can then be derived using

the Volterra series method (Schetzen, 1980; Rugh, 1981). Borgman

(1969) studied a cubic representation of the drag term without current

and Gudmestad, et aL (1983) included the effect of current via fourth

order expansion. Li et al . , (1995) and Tognarelli e t a l . (1997) presented

the frequency response functions based on equivalent statisticalcubicization of the drag force. They observed that the structural

response spectra obtained exhibited a significant resonance

phenomenon near the frequency of 3cop, where cop is the peak frequency

of the wave spectrum. The other type of nonlinear effect attributable to

wave forces can be related to the variable submerged height of the

structure near the mean water level, or the so-called inundat ion effect

(Tickell, et al . , 198 5; Tung, 1996; Liaw, 2000). This nonl inear

inundation effect produces even-order super-harmonic force

components that can cause the wave force spectra to have peaks a

which are oRen close to the fundamental structural frequency with

range between 0.25 and 0.12 H z (Gudmestad, 1988; Kjeoy, et al . ,Liaw, 2000). This can obviously lead to significant nonlinea r str

responses near 2cop. Further, depending on the frequency ratio

structure and wave, the nonlinear effect of inundation can, in

cases, be even more significant than that of the drag force distr

along the height of the structure (Liaw, 2000).

In a previous paper (Liaw, 2000) a quadratic model for wave

was developed: the drag force itsel f was approximated by a line

and the inundat ion force was correspondingly represented

quadratic term. Wave force spectrum based on such a quadratic

can properly estimate the nonl inea r wave forces by includi

superharmonic components with frequencies up to 2COp, and is ad

for analysing structures with fundamental natural frequencies

near 2O~p. However, for structures with frequencies near 3o)p, a

approximation for the drag force is necessary; the corresp

approximation for the inundation force should then be quartic.

paper, Taylor series expansion is first employed to obta

approximate expression for the inundation effect that is shown

function composed of the wave elevation and wave kinematics

mean water level; the force is modelled as a polynomial of terms

fourth-order. Secondly, the least squares approximation method i

to obtain the polynomial coefficients that are the weights of di

terms. JONSWAP wave spectrum is used in the numerical evalu

of the polynomial coefficients as well as the join t probability d

function of wave elevation and water particle velocity at the mean

level.

APPROXIMATION OF INUNDATION EFFECT A

CONCENTRATED LOADThe empirical Morison wave force, f, per unit length of a v

cylinder (Fig. 1) is given as:

f = Cu A ~ + CvAolu[u

where C u and C o are the inertia and drag coefficients respectiv

= x p D 2 / 4 a nd A v = p D / 2 ; u , the water particle velocity normal

structural member; p, mass density of water; D, diameter of cy

2 9 5

Page 2: Inundation Effect and Quartic Approximation of Morison-Type Wave Loading

7/28/2019 Inundation Effect and Quartic Approximation of Morison-Type Wave Loading

http://slidepdf.com/reader/full/inundation-effect-and-quartic-approximation-of-morison-type-wave-loading 2/4

T o b e t t e r d e m o n s t r a t e t h e n o n l i n e a r ef f e c t o f i n u n d a t i o n , a s i n g l e

C M a n d C O , a r e a s s u m e d t o b e c o n s t a n t s a l o n g t h e h e i g h t o f t h e

c y l i n d e r . I f t h e m e t h o d o f m o d e - s u p e r p o s i t i o n i s a p p l i e d t o s o l v e f o r t h e

s t ruc tu ra l re sponses , the s t ruc tu ra l moda l fo rce F i s ob ta ined by

i n t e g r a t i n g t h e p r o d u c t o f t h e s t r u c t u r a l m o d e s h a p e f u n c t i o n q b a n d f

a l o n g t h e s u b m e r g e d h e i g h t o f t h e s t r u c t u r e , i .e .,

F = [ O ( z ) f ( z ) d z (2 )- d

E n d F i x e d t o D e c k

V M W L ( z - O )

C y l i n d e r

D

S e a B o t t o m ( z = - d ) I f

i i i

F i g u r e l. W a v e f o r c e d u e t o i n t e r m i t t e n t w a v e s

In o rder to inc lu de the va r iab le su r face e ffect , the m oda l fo rce shou ld be

i n t e g ra t e d f r o m t h e s e a f l o o r ( z = - d ) u p t o t h e i n s t a n t a n e o u s f r e e

su r face o f the wave , q . I t can be wr i t ten as :0 t/

F : f O ( z ) f ( z ) d z + f O ( z ) f ( z ) d z (3 )- d 0

A p p a r e n t l y , t h e f i rs t t e r m o n t h e r i g h t h a n d s i d e o f E q . ( 3 ) i s t h e

c o m m o n m o d a l w a v e f o r c e, w h i c h i s a n o n l i n e a r fu n c t i o n o f th e w a v e

e l e v a t i o n i f t h e l i n e a r A i r y w a v e t h e o r y i s a p p l i e d , w h i l e t h e s e c o n d

represen ts the I n u n d a t i o n E f f e c t ( IE ) , w h i c h i s o f o n e h i g h e r o r d e r t h a n

t h e f ir st . I n t e r m s o f T a y l o r s e r i e s e x p a n s i o n , t h e s e c o n d t e r m c a n b e

e x p a n d e d w i t h r e s p e c t to t h e v a r i a b l e a t M e a n - W a t e r - L e v e l (M W L w i t h

z = 0), i .e . ,

F uE ) = _ ~ ( O ) f ( O ) . r l + ( ~ ' ( O ) f ( O ) + O ( O ) f ' ( O ) ) . l r l 2 (4 )

T h e s e c o n d t e r m o n t h e r i g h t - h a n d - s i d e o f E q . ( 4 ) i s u s u a l l y a h i g h e r -

o r d e r t e r m ; i t v a n i s h e s i d e n t i c a l l y , i f a r e a s o n a b l e m o d e s h a p e f u n c t i o n

of the cy l inder , e .g . ~ P ( z ) = c o s ( ~ z / 2 d ) f o r t h e l e g s o f j a c k - u p

p la t fo rms , i s a ssumed . Thus

--- O(O )f (O) • 7 /+ O (O )f ' (0 ) . 2 r /2 (5 )( l e )

I

I t c a n a l s o b e e a s i l y s h o w n t h a t t h e f i rs t p a r t o f t h e r i g h t - h a n d - s i d e o f

t h e a b o v e e x p r e s s i o n i s p r e d o m i n a n t , w h i l e t h e s e c o n d p a r t i s o f

r e l a t iv e l y h i g h e r o r d e r a n d h a s a m u c h l o w e r m a g n i t u d e t h a n t h e f i rs t ;

t h e r a t io b e t w e e n t h e m i s k r/ , w i t h k b e i n g t h e w a v e n u m b e r . T h u s , t h e

c o n c e n t r a t e d f o rc e r e p r e s e n t i n g t h e i n u n d a t i o n e f f e ct c a n b e w r i t te n a s :

F u E ) = f ( O ) r l = F l r e ) + F ( S ) (6 )w h e r e

F t ' E ) = f ~ ( O ) r l = C i A, f i (0 )q (7 )

a n d

FD E , : UD (O)T] ---- C o A ~ u ( O ) [ u ( O ) l r l ( 8 )

F/:E) i s th e i n e r t i a p a r t a n d F o ~ ) t h e d r a g p a r t o f t h e t o t a l i n u n d a t i o n

IE) 1E)fo rce F :zEj , of which the co r res pon d ing mod a l fo rce i s F ( = ¢P(0)F .

I t c a n b e s e e n t h a t t h e i n u n d a t i o n ef f e c t m a y b e p r o p e r l y m o d e l e d a s a

c y l i n d e r i s c o n s i d e r e d . F u r t h e r m o r e , t h e h y d r o d y n a m i c c o e f f i c

c o n c e n t r a t e d f o r c e a c t i n g a t M W L o f t h e s t r u c t u r e . M o r e o v e r

F / E ) a n d F ~ ~ ) a r e e v e n - o r d e r f u n c t i o n s o f t h e w a v e e l e v a t i o n

cause s ign i f ican t s t ruc tu ra l re sponse s a t even o rder f requ enc ies

2o)p an d 4o)p.

Q U A R T I C A P P R O X I M A T I O N O F I N U N D A T I O N D

F ORC E

A s e x p r e s se d i n E q . ( 8 ) , t h e i n u n d a t i o n d r a g f o rc e , F ~ S ) ,

p r o d u c t o f 1 / a n d t h e d i s t r i b u t e d d r a g f o r c e a t M W L , w h i c h i s a S

L a w S y s t e m , l u ] u , w i t h t h e s i g n o f w a t e r p a r t i c le v e l o c i t y u a t

Cons ide r ing f i r s t ly the d is t r ibu ted d rag fo rce i t se l f , i t c

a p p r o x i m a t e d ( B o r g m a n , 1 9 6 9 ) u s i n g t h e l e a s t s q u a re s m e t h o d , i .e

] u [u = c r ~ 8 u = a l u (L ine ar approx . )

o r

[ u l u _ = . [ o ' , ~ ] u + [ ~ f / 3 c r , ] u 3 = a ~ s u + a 3 s u 3 ( C u b i c a p p r o x . )

w h e r e t r i s t h e s t a n d a r d d e v i a t i o n o f u . H o w e v e r , t h e

a p p r o x i m a t i o n s c a n n o t b e a p p l i e d d i r e c t l y t o m o d e l t h e i n u n d a t i o

f o r c e b e c a u s e o f t h e i n h e r e n t c o r re l a t i o n b e tw e e n r / a n d u (

s tochas t ic ana lys is o f s t ruc tu ra l re sponses to a un id i rec t io na l , s ta t

z e r o - m e a n l i n e a r G a u s s i a n w a v e t r a i n o f w a v e e l e v a t i o n r / , t h e

A i r y w a v e t h e o r y i s c o n s i d e r e d , i . e .,

on ?u = r ( z ) o ) r l , - f f~ = r ( z ) c o O t

a n d

o ) 2 = k g t a n h k d , r ( z ) = c o s h k ( z + d ) , ( - d < z < 0 ) s i n h k d

As ind ica ted in Eq . (11) , the re i s a l inea r t rans fo rm proc ess be tw

a n d u . I n th e f o l l o w i n g d e r i v a t i o n , u w i l l b e u n d e r s t o o d a s u

brev i ty . I f po lynom ia l approx im at ion o f F J F~) up to four th o

cons ide red , we have :

R = u [ u [ r ~ v = a 2 4 r l u + a 4 4 ~ u 3 (Quar t ic approx . )

I t s h o u l d b e n o t e d t h a t t h i s q u a r t i c a p p r o x i m a t i o n n e c e s s a r i l y c o

n o o d d - o r d e r t e r m s a n d m a y i n c l u d e n o o t h e r e v e n t e r m s o f o r d

t h a n f o u r . H e r e, w e d e f i n e Q = E l ( R - v ) 2] a s t h e m e a n s q u a r e

b e t w e e n R a n d v . B y s e t t i n g t h e d e r i v a t i v e o f Q w i t h r e s p e c t

co r resp ond in g coef f ic ien t equa l to ze ro , i . e . ,

I c3Q = 0

0 a 2 4

O Q = 0

0 a 4 4

t w o c o u p l e d l i n e a r e q u a t i o n s o f t h e t h e s e t w o p o l y n o m i a l c o e ff

a r e o b t a i n e d :

I E[r12u2]a24 + E[r12u '~ la44 = E[[u lr l2u 2] = 2E [r/2u 3 .. .

= E [ r / u ] .> ,E t r l ' u 4 ] a 2 4 + E [ r l 2 u 6 ] a , , E [ l u [ rl E u ] = 2 : 5

I t i s n o t e d t h a t+ < ~ + ~

E [ r f ' u " L , , = ~ p f ' u " p ( q , u ) d u d q

296

Page 3: Inundation Effect and Quartic Approximation of Morison-Type Wave Loading

7/28/2019 Inundation Effect and Quartic Approximation of Morison-Type Wave Loading

http://slidepdf.com/reader/full/inundation-effect-and-quartic-approximation-of-morison-type-wave-loading 3/4

C o n s i d e r n o w t h e t w o r a n d o m v a r i a b l e s r / a n d u , w h i c h a re

c o r r el a t e d, t h e i r j o i n t p r o b a b i l i t y d e n s i t y f u n c t i o n ( J P D F ) c a n b e

expressed as :

exp - 1 2 ~_~_ 2 r/ u u 2

p ( ~ , u ) ( 1 7 )

2 x t r . tr . 1 C - p ,~

whe re p~ , i s the co r re la t ion coef f ic ien t o f r / and u , i .e .

P ~ = g [ ( ~ - z ( ~ ) X u - e ( u ) ) ]

O'rtO"

Note tha t E [ r /] = E[u] = 0 . T h e r e f o r e ,

(18)

E[(r/- E(r/)Xu E(u))]= E[r/u]= ~H(co)S. co)dco (19 )

whe re H(co) i s the f requenc y t rans fe r func t ion f rom r / to u , i .e .

H(co) = mr(0 ) = co co th kd (20)

I t i s obv ious tha t the po ly nom ia l coef f ic ien ts , a24 and a44 in Eq . (15) ,

d e p e n d u p o n t h e c o r r e l a t i o n c o e f f i c ie n t , p , ~ , w h i c h , i n t u r n , is a

f u n c t i o n o f th e w a v e s p e c t r u m , S ~ ( c o ) . I f J O N S W A P w a v e s p e c t r u m i s

cons ide red , i . e .,

/ - / s c o p2 4 - 1 7 ~S , ( c o) = e x p [ ~ ] y q ( 2 1)

161oco' ( co l e% )4whe re H~. i s the s ign i f ican t wave he igh t ; cot ,, the p eak wav e f req uency ; 3' ,

t h e p e a k e n h a n c e m e n t f a c to r . V a l u e s o f / o a n d q a r e :

I o = 0 . 2 / 0 - 0 . 2 8 7 L n ( r ) ) ( 2 2 )

q = e xp [- (co / cop - l ) 2 / 2 o ' ~ ( 2 3 )

w i t h ( 7 = 0 . 0 7 f o r co / co , < 1 o r t r = 0 . 0 9 f o r co / co , > 1 . T o ev a l u at e

t h e c o r r e l a ti o n c o e f fi c i e n t, w e c a n l e t x = r / / t r , a n d y = u / o . tha t

leads to t r . = t ry = 1 . i. e . .

p ( r h u ) = p ( x , y ) ( 2 4 )t r . t r .

w h e r e th e JP D F o f x a n d y i s :

e x p l . . . . .- _1 7 ~, ( x , - 2 p ~ r x y + y 2 ) }

p ( x , y ) = [ 2 ( i - p ~ , ) i 25 )

a n d

SH(co)S"(c°)dc° ( 2 6 )

P'Y = P ~ = ~ ~ SH 2 CO)S.(CO)dco

F r o m E q . ( 1 2 ), w e a l s o h a v e

( ~o )' = ( k d ) t a n h ( k d ) . ~ _ I ) ' 1z x ) s ( 2 7 )

whe re co = and s=d/gTp2; t h e l a t te r i s a r e l a t i v e m e a s u r e o f t h e w a t e r

d e p t h . G i v e n s a n d c o , k d c a n b e o b t a i n e d f r o m E q . ( 2 7 ) . E q . ( 2 6 )c a n t h e n b e a p p l i e d t o e v a l u a t e t h e c o r r e l a t i o n c o e ff i c i en t f o r a g i v e n

p e a k e n h a n c e m e n t f a c to r 3 '.

F i g u r e 2 s h o w s t h e r e l a t i o n s h i p b e t w e e n t h e c o r r e l a t i o n c o e f fi c i e n t,

P~u , and the re la t ive wa te r dep th , s , fo r th ree d i f fe ren t va lues o f peak

e n h a n c e m e n t fa c t o r 3' o f t h e w a v e s p e c t ru m . I t c a n b e o b s e r v e d t h a t a l l

va lues o f , o~, a re ve ry c lose to 1 .0 , wh ic h ind ica tes the fac t tha t r / and

u a r e c l o s e l y c o r r e l a t e d u n d e r t h e a s s u m p t i o n o f A i r y l i n e

theory .

1 . 0 0 .

Pn u

0 . 9 5 .

0.90 .q

~ ~ 0.9"-- - - ' - - "- - -" - ' - - 0 .9

11

- - y = 1 . 0

- - - y = 3 . 3

. . . . y=5.0

0.85I E - 3 o . 8 1 . . . . . . . o ' . ] . . . . . . . . ;

s = d / g T p 2

F i g u r e 2 . C o r r e l a t i o n c o e f f i c i en t s o f r / a n d u

=

y = l . 0

= .

11 Io11

F i g u r e 3a . J P D F o f r / a n d u w i t h T = I . 0

2

1

~ = o

-I

-2

-3.3

y=5 .0

= .

n Icr

F i g u r e 3 b . J P D F o f I / a n d u w i t h y = 5 . 0

T h e c o n t o u r p l o t s o f J P D F o f r / a n d u f o r t w o d i f f e r e n

o f p c o r r e s p o n d i n g r e s p e c t i v e ly t o y = l . 0 a rt d 5 . 0 i n t h e d e e p - w

a r e g i v e n i n F i g u r e 3 . I t i s o b v i o u s t h a t t h e c o r r e l a t i o n i s a f u n

t h e w a t e r d e p t h ( a s i n d i c a t e d b y s ) a n d t h e s h a r p n e s s o f t

s p e c t r u m . H o w e v e r , e v e n f o r t h e d e e p - w a t e r ( l a r g e s ) a n d b r

case (3' = 1 fo r P ie rso n-M osko wi tz spec t rum ) , the JPD F is s

2 9 7

Page 4: Inundation Effect and Quartic Approximation of Morison-Type Wave Loading

7/28/2019 Inundation Effect and Quartic Approximation of Morison-Type Wave Loading

http://slidepdf.com/reader/full/inundation-effect-and-quartic-approximation-of-morison-type-wave-loading 4/4

narrowly distributed with P,u = 0.929. One also notices that

p O T, u ) = p ( - r l , - u ) , p ( - q , u ) = p ( q , - u ) a nd

~ T m u " p ( q ' u ) d u d r l = c r: ° ' : S ~ m y " p ( x ' y ) d y d x (27)- ¢ o 0 - ~ 0

The polynomial coefficients a2+ and a44 can be numerically evaluated

from Eq. (15) for a given set values ofs and 7 for JONSWAP spectrum.

1 . 3 4 -

1 . 3 3 •

1 . 3 2 -

1 . 3 1 -

1 3 0 ,0 . 8 1 :

4 1 3

~ /50 . 8 0

a 2 4

a 1 3 1 . 3 1 7 3

. . . . . . . . . . . . • 1 . 3 1 5 6" i' = 1 . 0 1 . 3128

- - - 7 = 3.3.. . . 7=5.0

0,8089

, - 0 . 8 0 7 6~ o " ~ . - " . . . . . . . . . . 0 . 80 6 9

. / f / + ° a 4 4

. . . . . . . . i . . . . . . . . , . . . . . . . . i

I E - 3 0 . 0 1 0 .1 1

d/gTp2

Figure 4. Quartic coefficients of approximation

Figure 4 shows the variation of the quartic coefficients, a24 and a44,

versus Y and s. The values of a24 and a44 are presented as ratios to the

cubic approximation coefficients, a13 and a33, for the distributed drag

force as given in Eq.(10). Apparently, both ratios are not very sensitive

to either s or ~,; they can be regarded as two constants, 4/3 and 4/5.

Consequently, the quartic approximation coefficients for the inundation

drag force can be expressed as:

4a13_ 4(,fZ 2o. /

and

(28a)

a 4 4 ~ 5 5 L V 7 /" 3 a - n )

Therefore, the complete expression for the approximate modal

inundation force in Eq. (6) is

F (m) m qb(0)f(0)r/

= , I , ( 0 ) c . A , + , I , ( 0 ) C o A o ( a 2 , ,l u ( 0 ) + a 4 4 r ] u S ( 0 ) )

a t

(29)

CONCLUSIONS

The inundation effect of varying wave surface on structures can be

simplified as concentrated inundation forces acting at the mean water

level (MWL). Corresponding to the common practice of approximating

the drag force by a cubic polynomial, the inundation drag force can be

approximated by a quartic polynomial, which involves only even orderterms. The polynomial coefficients depend upon the correlation

coefficient of wave elevation and water particle velocity at MWL and

can be obtained using the least squares method. Based on the

assumptions of linear wave theory, the join t probability density function

(JPDF) and the correlation coefficient of the wave elevation and water

particle velocity at the mean water level are evaluated. It is shown that,

for wave conditions specified by JONSWAP-type wave spectrum, the

JPDF and the correlation coefficient are functions of two parameters:the water depth parameter s=d/gTp 2 and the peak enhancement factor of

the wave spectrum 7. The numerical results reveal that the

polynomial coefficients are not very sensitive to the two para

Simple closed-form expressions of the quartic coefficients

inunda tion drag force can be obtained, and they can be related

cubic coefficients for the distributed drag force. Consequently, a

analytical relationship between the wave elevation and the total

wave force, including the inundation effect, is established, wh

serve as the basis for developing the nonlinear frequency

transfer function of wave forces.

R E F E R E N C E S

Bendat, J. S. (1997), Nonl inear Sys tems Techn iques A nd A pp l ic

John Wiley & Sons, New York.

Borgman, L. E. (1969), "Ocean Wave Simulation for Engi

Design," J o u r n a l o f W a t e r w a y s a n d H a r b o u r s D i v is io n s, ASCE

pp. 557-583.

Gudmestad, O.T., and G.A. Poumbouras (1988), "Time and Fre

Domain Wave Forces on Offshore Strucures," A ppl ied Ocean R e10(1), pp. 43-46.

Kjeoy, H., N.G. Boe, and T. Hysing (1990), "Extreme-Re

Analysis of Jack-Up Platforms," T h e J a c k - U p D r i l l i n g P

Des ign , Cons truc t ion and Opera t ion , Elsevier Applied Scien

125-154.

Li, X.M., S.T. Quek, and C.G. Koh, (1995), "Stochastic Resp

Offshore Platform by Statistical Cubicization," A S C E J o u r

E ng ineer ing Mechan ics , 121 (10), pp. i 056-1068.

Liaw, C.Y., (2000), "Inundat ion Effect of Wave Forces on J

Platforms," P r o c e e d i n g s o f t h e 1 0~h In te rna t iona l Of f shore and

Eng inee ring Conference, Seatt le , III, pp. 351-355.

Paik, I. and Rosset, JM (1997), "Application of Higher Order T

Funct ion in Modeling Nonlinear Dynamics Behavior of O

Structures," I n t e r n a ti o n a l J o u r n a l o f O f f s h o r e a n d P o l a r E n g , 7

301-307.

Rugh, W.J. (1981), Non l inear Sys tem Th eory - The V o l terra /

A p p r o a c h , T h e Johns Hopkins Universi ty Press.

Schetzen, M. (1980), The V o l te rra an d W iener Theor ies o f No

Systems, John Wiley & Sons.

Tickell, R.G. and J.R. Bishop (I 985), "Analysis of Waves Force

Christchurch Bay Tower," P roc eed ing s o f 4 h In te rna t iona l O

M e c h a n i c s a n d A r c t i c E n g S y m p o s i u m ( O M A E ) , Dallas, 1 1, p

150.

Tognarelli, M.A., J. R. Zhao, and A. Kareem (1997), "Equ

Statistical Quadratization and Cubicization for Nonlinear Sy

J o u r n a l o f E n g i n e e r i n g M e c h a n i c s , 123(5), pp. 512-523.

Tung, CC (1996), "Total Wave Force on Cylinder Considerin

Surface Fluctuation," A p p l i e d O c e a n R e s e a r c h 18, pp. 37-43.

2 9 8