Introduction Very Long Energy and Environmental Model: Outline of the Methodology T.Hamacher, M....

21
roduction Very Long Energy and Environmental Model: Outline of the Methodology T.Hamacher, M. Biberacher and the VLEEM consortium Max-Planck-Institut für Plasmaphysik
  • date post

    20-Dec-2015
  • Category

    Documents

  • view

    214
  • download

    0

Transcript of Introduction Very Long Energy and Environmental Model: Outline of the Methodology T.Hamacher, M....

Page 1: Introduction Very Long Energy and Environmental Model: Outline of the Methodology T.Hamacher, M. Biberacher and the VLEEM consortium Max-Planck-Institut.

Introduction

Very Long Energy and EnvironmentalModel: Outline of the

Methodology

T.Hamacher, M. Biberacher and the VLEEM consortium

Max-Planck-Institut für Plasmaphysik

Page 2: Introduction Very Long Energy and Environmental Model: Outline of the Methodology T.Hamacher, M. Biberacher and the VLEEM consortium Max-Planck-Institut.

Introduction

1. Objective of VLEEM

2. Back-casting

3. The GIS interface

4. Global link as example

5. Conclusion and outlook

Page 3: Introduction Very Long Energy and Environmental Model: Outline of the Methodology T.Hamacher, M. Biberacher and the VLEEM consortium Max-Planck-Institut.

Objective of VLEEM

The VLEEM project - sponsored by the DG-Research - should develop R&D guidelines for the European Energy Research.

Page 4: Introduction Very Long Energy and Environmental Model: Outline of the Methodology T.Hamacher, M. Biberacher and the VLEEM consortium Max-Planck-Institut.

Back-casting

The goal of VLEEM is to develop a system view of possible future technologies and the possiblecontributions of these technologies to a sustainableenergy future. Emphasise is more put on the technologythan on the economy.

Renewable

Fossil Nuclear

Page 5: Introduction Very Long Energy and Environmental Model: Outline of the Methodology T.Hamacher, M. Biberacher and the VLEEM consortium Max-Planck-Institut.

The tool box

GIS-Interface

Energy-ressourcedatabase

BALANCE

Energy-technologydatabase

User-Interface

BASES TASES

Special models

Page 6: Introduction Very Long Energy and Environmental Model: Outline of the Methodology T.Hamacher, M. Biberacher and the VLEEM consortium Max-Planck-Institut.

The tool box

BASES: module to estimate the future energy demand. Special emphasise is put on time budgets to describe the energy demand.

BALANCE: module to describe the trajectory from today to the future end-point of the investigation. Themodule is based on a simple LP-approach.

TASES: module to describe the future sustainable end-point and to “prove” the feasibility of certain technological solutions.

Page 7: Introduction Very Long Energy and Environmental Model: Outline of the Methodology T.Hamacher, M. Biberacher and the VLEEM consortium Max-Planck-Institut.

Global link as example

One of the crucial questions for a prosperousfuture of renewable energies is the way theintermittent nature of wind and solar will be treated.

While in a lot of studies hydrogen is proposed as possible way out, in VLEEM a second option is also investigated, a so called global link.

Page 8: Introduction Very Long Energy and Environmental Model: Outline of the Methodology T.Hamacher, M. Biberacher and the VLEEM consortium Max-Planck-Institut.

Global link: motivation

Possible sites for off-shore wind parks in theNorth and Baltic sea.

Page 9: Introduction Very Long Energy and Environmental Model: Outline of the Methodology T.Hamacher, M. Biberacher and the VLEEM consortium Max-Planck-Institut.

Global link: motivation

The installation of off-shore wind parks will not only impact the German network.

Page 10: Introduction Very Long Energy and Environmental Model: Outline of the Methodology T.Hamacher, M. Biberacher and the VLEEM consortium Max-Planck-Institut.

Global link: motivation

Contribution of wind to the total demand.

0

10000

20000

30000

40000

50000

60000

70000

80000

0 14 28 42 56 70 84 98 112

126

140

154

168

Ele

ctric

ity p

rodc

utio

n [M

W]

.

Demand

Off-shore

On-shore

Page 11: Introduction Very Long Energy and Environmental Model: Outline of the Methodology T.Hamacher, M. Biberacher and the VLEEM consortium Max-Planck-Institut.

green: max. use of capacity < 80% (no problem)blue: max. use of capacity 80% - 100%

(could become critical)red: max. use of capacity 100%

(critical)magenta: max. use of capacity >> 100%

(new capacity needs to be installed)

Global link: motivation

Necessary enforcement of the GermanGrid.

Page 12: Introduction Very Long Energy and Environmental Model: Outline of the Methodology T.Hamacher, M. Biberacher and the VLEEM consortium Max-Planck-Institut.

Global link as example

Page 13: Introduction Very Long Energy and Environmental Model: Outline of the Methodology T.Hamacher, M. Biberacher and the VLEEM consortium Max-Planck-Institut.

7979

5358

7009

6487

5442

4339

7424

4969

1211

10837

• World is divided in several regions..

• .. represented by an hourly scattered load curve for on year regarding electricity demand (in TWh)

• electricity exchange between neighbour regions is possible

electricity demand

distribution

wind PV

storage

Assumption: Electricity demand in 2100 will be covered by solar- and wind power.

Global link as example

Page 14: Introduction Very Long Energy and Environmental Model: Outline of the Methodology T.Hamacher, M. Biberacher and the VLEEM consortium Max-Planck-Institut.

Electricity consumption in 2100

0 2000 4000 6000 8000 10000 12000

Europe

Former USSR

North America

Latin America

Sub Saharian AfricaNorth Africa and Middle East

South Asia

Centrally planned Asia and China

OECD Pacific Asia

Other Pacific Asia

TWhSource: IIASA/WEC Global Energy Perspectives, 1998

NEEDS SUPPLY

2000 2050 2100 2150 2200

hour of year

force values to norm load curve

Source: UCTE Statistical Yearbook 2000

shift and merge curves to regional appearing time zones

%%%%%%%%%% Solar radiation

increasing

%%%%%%%%%%

increasing

Wind speed

2000 2050 2100 2150 2200

Stunde im Jahr

Lei

stu

ng

Global link as example

Page 15: Introduction Very Long Energy and Environmental Model: Outline of the Methodology T.Hamacher, M. Biberacher and the VLEEM consortium Max-Planck-Institut.

Global link (data series preparation)

########## # # ## # # # # ## # ########### # ## # # ## # # # # # # #

# # ##

# # # # # # # ##

######## ## # # # # # # ## # # # # ## ## ## ########## ## # # # # # ## ### # # #

# ####### # # # # # # # # ### # ### # # ## ###### ## # # # ###

# # ##### ## ####

######

########## # # # # # ## # # # # #

# # # # # # # # ### # # # # #### # ### # #

#

## ###### # # ######## ### # # # ## # # # # ## # # # # # # # ########## ### ########### #### ######### # # # # # # # # ##### # #### # # # # ## # ## # ### # # ## #

########### ### ###### ########### # # ## # # # # # # # ## # # # ## # # # # ## # # # # # # # # # ### ############ ####### ###### ########### # # # # # # # # # #### # ## # # # ## # # # # ## # # # # # #####

######## # # # # # ## # # # # # #

## ###### # # ## ## # # # # # ## # ####### ##

### ##### # # # # ## # # # # # ## # # ## ## # # #

# # ### #

### ## ### # # # # ## ## # # # ## # ## # # # # # ## ###### # ## # # # # # # ## # # # # # ## # # # # # # # # # #

# ### ##### ##### # # # # # # ### # # # # # ## # # # # # # # # # ### ####### ####### # # # # # ## # # # ## # # ## # # # # # # # # # #

# # # ## ######## ####### # # # # # # # # ### # # # # # # # # # # # # # # ## # # ######### ######## # # # # # # # # # # ## # # # # # ## # # # # # # # # # #

######## ######### # # # # # # # # # # ### # # # # # ## # # # # # # # # # ## ## ########## #### ####### # # # # # # # # # # ### ### # # # # # # # # ## # # # # # #

#### ## # #

# ######## # # # # # ## # # # # # ###

############## ######## # # # # # # # # # # ## # # # # ### # # # # # # # # ## # # # # # ### ## ################ ## ############ # # # # # # # # # # ## # # # # # # ## # # # # # # # # # # # # # # ### ## # #

## #

############## ############### # # # # # # # # # # # # # ## # # ## # # ## ## # # # # # # # ##### # # # # ### #### ############### # # # # # ## # # #

# # ## # ################# # ## #

#######

one year

win

d s

pe

ed

######### # ## # # # ########## ######## # ######### ######### # # # #

###### # # # ### ## ### # ###### # # # # # # # ## # #

#### # # # # ###### #

###

##

#

########## # # # # ## # # # ##

# # # # # # # # ## # # # # #

# ##### # # # # # # # # # # # ## # # # ## # # # # ## # # # # # # # # # #

########### #### ######## # # # # # # # # # # # ## # # # ## # # # # ## # # # # # # # # # #

########### ### ###### ########### # # # # # # # # # # # ## # # # ## # # # # ## # # # # # # # # # #

########### ####### ###### ########### # # # # # # # # # # # ## # # # # # ## # # # # ## # # # # # # # # # #

####### # # # # # ## # # # # ##

## ##### # # ## ## # #### # ### #### # # # ######### # # #### # ### # # # # ######### ## # # # # # ##### # ## # # # # # ######### # # # # # # # # # ###### ##### # # # # # # ## # # # # # ## # # # # # # # # # #

##### ##### # # # # # # # # ## # # ## # # # # # # # # # ######## ###### # # # # # # # # ## # # # # # # # # # # # # # # #

###### ######## # # # # # # # # # # ## # # # # # ## # # # # # # # # # ####### ######## # # # # # # # # # # ## # # # # # ## # # # # # # # # # ######## ######### # # # # # # # # # # ## ## # # # # # # # # # # # # # # #

# ####### # # # ## # # # # ###

############# ##### # # # # # # # # # # ## # # # # ## # # # # # # # # # # # # # # #

############### ######### # # # # # # # # # # ## # # # # # ## # # # # # # # # # # # # # # #

############# ############# # # # # # # # # # # # # # # # ## # # # # # # # # # # # #

### ############## # # # # # ## # #

############### # #

####

one year

so

lar

ins

ola

tio

n

• for each raster slice one year hourly resoluted curves for wind speed ...• world is covered by a 5° x 5° grid pattern

• ... and solar insolation are available

Page 16: Introduction Very Long Energy and Environmental Model: Outline of the Methodology T.Hamacher, M. Biberacher and the VLEEM consortium Max-Planck-Institut.

... no storage available

storage installations

... storage available and expensive ... storage available and becomes cheaper ... storage available and very cheap

Backgrounding limitations:• only 0.5 % of earth surface per 5° x 5° can be utilised for solar radiation collection• only 1.25 GW wind power can be installed per 10‘000 km2 earth surface

installed solar power plant installed wind power plant electricity exchange

Global link as example

Page 17: Introduction Very Long Energy and Environmental Model: Outline of the Methodology T.Hamacher, M. Biberacher and the VLEEM consortium Max-Planck-Institut.

Comparison of cumulated numbers for the scenarios with different storage cost assumptions:

tremendous grid capacities necessary – but it can be reduced by the combination with storage facilities;

available storage capacities are suitable to increase grid exertion;

storage installations increase with deacreasing cost assumptions;

solar power profits from the combination with storage facilities more as from the connection to a global grid;

fluctuations in wind power are more or less completely compensated by a global grid – no storage is necessary ;

without storage

140 €/kWh storage cost

70 €/kWh storage cost

14 €/kWh storage cost

14 €/kWh storage cost and grid cost enlarged by a factor 1E6

Global link as example

Page 18: Introduction Very Long Energy and Environmental Model: Outline of the Methodology T.Hamacher, M. Biberacher and the VLEEM consortium Max-Planck-Institut.

Global link as example

* electricity networks seem to be one of the bottlenecks in the employment of renewables (beside the cost)

* R&D in new transmission technologies like super-conducting cables and system behaviour seem necessary

* R&D in the system behaviour of large intra-continental electricity networks seems necessary

Page 19: Introduction Very Long Energy and Environmental Model: Outline of the Methodology T.Hamacher, M. Biberacher and the VLEEM consortium Max-Planck-Institut.

Conclusion and outlook

* A toolbox was developed that is capable to fulfil the VLEEM objectives

* first more comprehensive examples were developed

* three major scenarios are under way and willbe ready at the end of the year

Page 20: Introduction Very Long Energy and Environmental Model: Outline of the Methodology T.Hamacher, M. Biberacher and the VLEEM consortium Max-Planck-Institut.

without storage facilities

cost for storage: 140 €/kWh

cost for storage: 70 €/kWh

cost for storage: 14 €/kWh

cost for storage: 14 €/kWh (net cost are factorised with 1E6)

0

2000

4000

6000

8000

10000

installed wind power

inst

alle

d w

ind

po

we

r in

GW

scenarios with different storage cost assumptions

0

60000

120000

installed solar collector surface

inst

alle

d s

ola

r co

llect

or

surf

ace

in

km

2

0

300

600

900

1200

1500

installed storage capacity

inst

alle

d s

tora

ge

ca

pa

city

in

TW

h

0.0

0.2

0.4

0.6

0.8

1.0 grid exertion

gri

d e

xert

ion

in %

0

50000

100000

150000 grid capacity

inst

alle

d g

rid

ca

pa

city

in

km

*TW

without storage facilities

cost for storage: 140 €/kWh

cost for storage: 70 €/kWh

cost for storage: 14 €/kWh

cost for storage: 14 €/kWh (net cost are factorised with 1E6)

0

2000

4000

6000

8000

10000

installed wind power

inst

alle

d w

ind

po

we

r in

GW

scenarios with different storage cost assumptions

0

60000

120000

installed solar collector surface

inst

alle

d s

ola

r co

llect

or

surf

ace

in

km

2

0

300

600

900

1200

1500

installed storage capacity

inst

alle

d s

tora

ge

ca

pa

city

in

TW

h

0.0

0.2

0.4

0.6

0.8

1.0 grid exertion

gri

d e

xert

ion

in %

0

50000

100000

150000 grid capacity

inst

alle

d g

rid

ca

pa

city

in

km

*TW

2000 2050 2100 2150 2200

hour of year

20%

What happens if it is assumed that part of the base load will be covered by conventional plant?

will be covered by near located (in a global context) base load plant and is therefore decoupled from the global optimisation

pow

er

load curve of electricity demand

Although the leaving part in the demand as well as the leaving supply technologies (wind and solar) show high fluctuations, the global assumed installations for grid, storage and solar power can be reduced evidently.

Global link as example

Page 21: Introduction Very Long Energy and Environmental Model: Outline of the Methodology T.Hamacher, M. Biberacher and the VLEEM consortium Max-Planck-Institut.

G r i d e f f i c i e n c y

00 . 10 . 20 . 30 . 40 . 50 . 60 . 70 . 80 . 91

Efficincy

w h i t o u t s t o r a g e a b i l i t yw i t h s t o r a g e a b i l i t y

G r i d c a p a c i t y

01 E + 1 32 E + 1 33 E + 1 34 E + 1 35 E + 1 36 E + 1 37 E + 1 3

Capacityin(km*kW) w h i t o u t s t o r a g e a b i l i t yw i t h s t o r a g e a b i l i t y

S o l a r p o w e r i n s t a l l a t i o n

0 . 0 E + 0 01 . 0 E + 1 02 . 0 E + 1 03 . 0 E + 1 04 . 0 E + 1 05 . 0 E + 1 06 . 0 E + 1 07 . 0 E + 1 0

Collectorsurfacein(m^2) w h i t o u t s t o r a g e a b i l i t yw i t h s t o r a g e a b i l i t y

W i n d p o w e r i n s t a l l a t i o n

0 . 0 E + 0 02 . 0 E + 0 64 . 0 E + 0 66 . 0 E + 0 68 . 0 E + 0 61 . 0 E + 0 71 . 2 E + 0 71 . 4 E + 0 71 . 6 E + 0 7

Capacityin(MW) w h i t o u t s t o r a g e a b i l i t yw i t h s t o r a g e a b i l i t y

Optimum

1. Necessary potentials are available;

2. Needed storage capacities are strongly reduced by a global grid;

3. Day/night fluctuations in solar power can completely compensated only by storage facilities and not by the connection to a global grid;

4. In opposite to solar power, the fluctuations in wind power are mostly compensated via the global connection.

Optimum in the scenario pattern would be a combination of net facilities and storage facilities because in that case the necessary installations would be at the lowest

without storage facilities

cost for storage: 140 €/kWh

cost for storage: 70 €/kWh

cost for storage: 14 €/kWh

cost for storage: 14 €/kWh (net cost are factorised with 1E6)

0

2000

4000

6000

8000

10000

installed wind power

inst

alle

d w

ind

po

we

r in

GW

scenarios with different storage cost assumptions

0

60000

120000

installed solar collector surface

inst

alle

d s

ola

r co

llect

or

surf

ace

in

km

2

0

300

600

900

1200

1500

installed storage capacity

inst

alle

d s

tora

ge

ca

pa

city

in

TW

h

0.0

0.2

0.4

0.6

0.8

1.0 grid exertion

gri

d e

xert

ion

in %

0

50000

100000

150000 grid capacity

inst

alle

d g

rid

ca

pa

city

in

km

*TW

Global link as example