Introduction to topological insulators and superconductors...Topological (band) insulators...

57
Introduction to topological insulators and superconductors 古崎 (理化学研究所) topological insulators (3d and 2d) September 16, 2009

Transcript of Introduction to topological insulators and superconductors...Topological (band) insulators...

  • Introduction to topological insulators and superconductors

    古崎 昭 (理化学研究所)

    topological insulators (3d and 2d)September 16, 2009

  • Outline

    • イントロダクション

    バンド絶縁体, トポロジカル絶縁体・超伝導体

    • トポロジカル絶縁体・超伝導体の例:

    整数量子ホール系

    p+ip超伝導体

    Z2 トポロジカル絶縁体: 2d & 3d

    • トポロジカル絶縁体・超伝導体の分類

  • 絶縁体 Insulator

    • 電気を流さない物質

    絶縁体

  • Band theory of electrons in solids

    • Schroedinger equation

    ion (+ charge)

    electron Electrons moving in the lattice of ions

    rErrVm

    2

    2

    2

    rVarV

    Periodic electrostatic potential from ions and other electrons (mean-field)

    Bloch’s theorem:

    ruarua

    ka

    ruer knknknikr

    ,,, , ,

    kEn Energy band dispersion :n band index

  • 例:一次元格子

    2

    A A A A AB B B B B

    t

    n 1n1n

    B

    Aikn

    u

    uen

    B

    A

    B

    A

    u

    uE

    u

    u

    kt

    kt

    )2/cos(2

    )2/cos(2

    222 )2/(cos4 ktE

    k

    E

    0

    2

  • Metal and insulator in the band theory

    k

    E

    a

    a 0

    Interactions between electronsare ignored. (free fermion)

    Each state (n,k) can accommodateup to two electrons (up, down spins).

    Pauli principle

  • Band Insulator

    k

    E

    a

    a 0

    Band gap

    All the states in the lower band are completely filled. (2 electrons per unit cell)

    Electric current does not flow under (weak) electric field.

    2

    2

  • Topological (band) insulators

    Condensed-matter realization of domain wall fermions

    Examples: integer quantum Hall effect,

    quantum spin Hall effect, Z2 topological insulator, ….

    • バンド絶縁体

    • トポロジカル数をもつ

    • 端にgapless励起(Dirac fermion)をもつstable

    free fermions

  • Topological (band) insulators

    Condensed-matter realization of domain wall fermions

    Examples:

    • バンド絶縁体

    • トポロジカル数をもつ

    • 端にgapless励起(Dirac fermion)をもつ

    Topological superconductors

    BCS超伝導体 超伝導gap

    (Dirac or Majorana) をもつ

    p+ip superconductor, 3He

    stable

  • Example 1: Integer QHE

  • Prominent example: quantum Hall effect

    • Classical Hall effect

    B

    e

    E

    v

    W

    :n electron density

    Electric current nevWI

    Bc

    vE Electric field

    Hall voltage Ine

    BEWVH

    Hall resistancene

    BRH

    Hall conductanceH

    xyR

    1

    BveF

    Lorentz force

  • Integer quantum Hall effect (von Klitzing 1980)

    Hxy

    xxQuantization of Hall conductance

    h

    eixy

    2

    807.258122e

    h

    exact, robust against disorder etc.

  • Integer quantum Hall effect

    • Electrons are confined in a two-dimensional plane.

    (ex. AlGaAs/GaAs interface)

    • Strong magnetic field is applied

    (perpendicular to the plane)

    Landau levels:

    ,...2,1,0 , ,21 n

    mc

    eBnE ccn

    AlGaAs GaAsB

    cyclotron motion

    k

    E

  • TKNN number (Thouless-Kohmoto-Nightingale-den Nijs)TKNN (1982); Kohmoto (1985)

    Ch

    exy

    2

    Chern number (topological invariant)

    yxxy k

    u

    k

    u

    k

    u

    k

    urdkd

    iC

    **22

    2

    1

    yxk kkAkd

    i,

    2

    1 2

    filled band

    kkkyx

    uukkA ,

    integer valued

    )(ruek

    rki

  • Edge states

    • There is a gapless edge mode along the sample boundary.

    B

    Number of edge modes Che

    xy

    /2

    Robust against disorder (chiral fermions cannot be backscattered)

    Bulk: (2+1)d Chern-Simons theory

    Edge: (1+1)d CFT

  • xm

    x

    Effective field theory

    zyyxx xmivH

    zyyxx mivH

    parity anomaly mxy sgn2

    1

    Domain wall fermion

    i

    dxxmv

    ikyyxx

    y

    1''

    1exp,

    0

    vkE 0m 0m

  • Example 2:chiral p-wave superconductor

  • BCS理論 (平均場理論)

    ,,

    *

    ,,

    ,

    22

    '','','2

    1

    2

    rrrrrrrrrrdd

    rAiem

    rrdH

    dd

    d

    ''',, rrrrVrr 超伝導秩序変数

    S-wave (singlet) rrrrr 2

    1'',,

    0

    P-wave (triplet)

    +

    rrrr

    rr

    '

    '',,

    yxkk ikkk 0)(

    高温超伝導体22)( yxkk kkk

    22 yx

    d

    Integrating outGinzburg-Landau

  • Spinless px+ipy superconductor in 2 dim.

    • Order parameter

    • Chiral (Majorana) edge state

    )()( 0 yxkk ikkk

    k

    E

    2

    1

    2)()(

    )(2)(

    2

    122

    22

    k

    FFyx

    FyxF

    kh

    mkkkikk

    kikkmkkH

    Hamiltonian density

    k

    k

    m

    kkk

    k

    k

    k

    kh

    Fyx

    F

    y

    F

    xk

    2

    222

    khE

    Gapped fermion spectrum22 : SSh

    h

    k

    k

    winding (wrapping)number=1

    1zL

  • yxyxF

    iik

    im

    H

    22

    22

    rv

    rue

    tr

    triEt /

    ,

    ,

    v

    uE

    v

    u

    hii

    iih

    yx

    yx

    0

    0

    Hamiltonian density

    Bogoliubov-de Gennes equation

    *

    *

    ,u

    v

    v

    uEE Particle-hole symmetry (charge conjugation)

    zeromode: Majorana fermion

    Ht

    i ,

  • Majorana edge state

    v

    uE

    v

    u

    km

    ik

    i

    ik

    ikm

    Fyxyx

    F

    yx

    F

    Fyx

    222

    222

    2

    1

    2

    1

    E

    px+ipy superconductor: 0y 0

    v

    u

    y

    1

    1 cosexp 22 ykky

    k

    mikx

    v

    uF

    Fk

    k

    Fk

    kE

    k

    E

    2

    F

    FF

    k

    k

    ktxik

    k

    ktxikee

    dktx

    0

    //

    4,

    yydyk

    ik

    kdkH y

    F

    k

    kk

    F

    F

    0

    edge

  • • Majorana bound state in a quantum vortex

    vortex e

    hc

    Fn En / ,2

    000

    Bogoliubov-de Gennes equation

    v

    u

    v

    u

    he

    ehi

    i

    *

    0

    0 FEAepm

    h 2

    02

    1

    zero mode

    v

    u

    00 00 Majorana (real) fermion!

    energy spectrum of vortex bound states

    2N vortices GS degeneracy = 2N

  • interchanging vortices braid groups, non-Abelian statistics

    i i+11 ii

    ii 1

    D.A. Ivanov, PRL (2001)

  • Fractional quantum Hall effect at

    • 2nd Landau level

    • Even denominator (cf. Laughlin states: odd denominator)

    • Moore-Read (Pfaffian) state

    2

    5

    jjj iyxz

    4/2

    MR

    21Pf i

    z

    jiji

    ji

    ezzzz

    ijij AA det Pf

    Pf( ) is equal to the BCS wave function of px+ipy pairing state.

    Excitations above the Moore-Read state obey non-Abelian statistics.

    Effective field theory: level-2 SU(2) Chern-Simons theory

    G. Moore & N. Read (1991); C. Nayak & F. Wilczek (1996)

  • Example 3: Z2 topological insulator

    Quantum spin Hall effect

  • Quantum spin Hall effect (Z2 top. Insulator)

    • Time-reversal invariant band insulator

    • Strong spin-orbit interaction

    • Gapless helical edge mode (Kramers pair)

    Kane & Mele (2005, 2006); Bernevig & Zhang (2006)

    B

    B

    up-spin electrons

    down-spin electrons

    SEpSL

    ,,,

    spin

    ,,

    charge

    2

    0

    xyxyxyxy

    xyxyxy

    If Sz is conserved, If Sz is NOT conserved,

    Chern # (Z) Z2

    Quantized spin Hall conductivity

  • (trivial)Band insulator

    Quantum SpinHall state

    Quantum Hallstate

  • kykx

    E

    K

    K’

    K’

    K’

    K

    K

    Kane-Mele model (PRL, 2005)

    ij ij i

    iiiv

    ij

    jzijiRj

    z

    iijSOji cccdscicscicctH

    t

    SOi

    SOi

    i j

    ijd

    A B

    , ,, skke sBsArki

    zvyxxyRzzSOyyxxK sssivHK 2

    333 :

    (B) 1 (A), 1 i

    zvyxxyRzzSOyyxxK sssivHK 2

    333 :' '

    '

    *

    K

    y

    K

    y HisHis time reversal symmetry

  • • Quantum spin Hall insulator is characterized by Z2 topological index

    1 an odd number of helical edge modes; Z2 topological insulator

    an even (0) number of helical edge modes01 0

    Kane-Mele modelgraphene + SOI[PRL 95, 146802 (2005)]

    Quantum spin Hall effect

    2

    esxy

    (if Sz is conserved)

    0R

    Edge states stable against disorder (and interactions)

  • Z2 topological number

  • Z2: stability of gapless edge states

    (1) A single Kramers doublet

    zzyy

    x

    xx

    z sVsVsVVivsH 0

    HisHis yy *

    (2) Two Kramers doublets

    zzyyxxyxz sVsVsVVsIivH 0

    Kramers’ theorem

    opens a gap

    Odd number of Kramers doublet (1)

    Even number of Kramers doublet (2)

  • ExperimentHgTe/(Hg,Cd)Te quantum wells

    Konig et al. [Science 318, 766 (2007)]

    CdTeHgCdTeCdTe

  • Example 4: 3-dimensionalZ2 topological insulator

  • 3-dimensional Z2 topological insulatorMoore & Balents; Roy; Fu, Kane & Mele (2006, 2007)

    bulkinsulator

    surface Dirac fermionZ2 topological insulator

    bulk: band insulator

    surface: an odd number of surface Dirac modes

    characterized by Z2 topological numbers

    Ex: tight-binding model with SO int. on the diamond lattice[Fu, Kane, & Mele; PRL 98, 106803 (2007)]

    trivial insulator

    Z2 topologicalinsulator

    trivial band insulator: 0 or an even number of surface Dirac modes

  • Surface Dirac fermions

    • A “half” of graphene

    • An odd number of Dirac fermions in 2 dimensions

    cf. Nielsen-Ninomiya’s no-go theorem

    kykx

    E

    K

    K’

    K’

    K’

    K

    K

    topologicalinsulator

  • Experiments• Angle-resolved photoemission spectroscopy (ARPES)

    Bi1-xSbx

    p, Ephoton

    Hsieh et al., Nature 452, 970 (2008)

    An odd (5) number of surface Dirac modes were observed.

  • Experiments II

    Bi2Se3

    Band calculations (theory)

    Xia et al.,Nature Physics 5, 398 (2009)

    “hydrogen atom” of top. ins.

    a single Dirac cone

    ARPES experiment

  • トポロジカル絶縁体・超伝導体の分類

    Schnyder, Ryu, AF, and Ludwig, PRB 78, 195125 (2008)

    arXiv:0905.2029 (Landau100)

  • Classification oftopological insulators/superconductors

    Schnyder, Ryu, AF, and Ludwig, PRB (2008)

    Kitaev, arXiv:0901.2686

  • Zoo of topological insulators/superconductors

  • Topological insulators are stable against (weak) perturbations.

    Classification of topological insulators/SCs

    Random deformation of Hamiltonian

    Natural framework: random matrix theory (Wigner, Dyson, Altland & Zirnbauer)

    Assume only basic discrete symmetries:

    (1) time-reversal symmetry

    HTTH 1*0 no TRS

    TRS = +1 TRS with-1 TRS with

    TT

    TT (integer spin)

    (half-odd integer spin)

    (2) particle-hole symmetry

    HCCH 10 no PHS

    PHS = +1 PHS with-1 PHS with

    CC

    CC (odd parity: p-wave)

    (even parity: s-wave)

    HTCTCH 1 10133

    (3) TRS PHS chiral symmetry [sublattice symmetry (SLS)]

    yisT

  • (2) particle-hole symmetry Bogoliubov-de Gennes

    zkyyxxkk

    k

    kkk kkhc

    chccH

    2

    1

    px+ipy

    T

    xkxkx CChh *

    dx2-y2+idxy

    zkyyyxyxkk

    k

    kkkkkkkh

    c

    chccH

    22 2

    1

    T

    ykyky CiChh *

  • 10 random matrix ensembles

    IQHE

    Z2 TPI

    px+ipy

    Examples of topological insulators in 2 spatial dimensionsInteger quantum Hall EffectZ2 topological insulator (quantum spin Hall effect) also in 3DMoore-Read Pfaffian state (spinless p+ip superconductor)

    dx2-y2+idxy

  • Table of topological insulators in 1, 2, 3 dim.Schnyder, Ryu, Furusaki & Ludwig, PRB (2008)

    Examples:(a) Integer Quantum Hall Insulator, (b) Quantum Spin Hall Insulator,(c) 3d Z2 Topological Insulator, (d) Spinless chiral p-wave (p+ip) superconductor (Moore-Read),(e) Chiral d-wave superconductor, (f) superconductor,(g) 3He B phase.

  • Classification of 3d topological insulators/SCs

    strategy (bulk boundary)

    • Bulk topological invariants

    integer topological numbers: 3 random matrix ensembles (AIII, CI, DIII)

    • Classification of 2d Dirac fermions Bernard & LeClair (‘02)

    13 classes (13=10+3) AIII, CI, DIII AII, CII

    • Anderson delocalization in 2dnonlinear sigma models Z2 topological term (2) or WZW term (3)

    BZ: Brillouin zone

  • Topological distinction of ground states

    m filledbands

    n emptybands

    xk

    yk

    map from BZ to Grassmannian

    nUmUnmU2 IQHE (2 dim.)

    homotopy class

    deformed “Hamiltonian”

  • In classes AIII, BDI, CII, CI, DIII, Hamiltonian can be made off-diagonal.

    Projection operator is also off-diagonal.

    nU3 topological insulators labeled by an integer

    qqqqqq

    kdq

    1112

    3

    tr24

    Discrete symmetries limit possible values of q

    Z2 insulators in CII (chiral symplectic)

  • The integer number # of surface Dirac (Majorana) fermions q

    bulkinsulator

    surfaceDiracfermion

  • (3+1)D 4-component Dirac Hamiltonian

    mk

    kmmkkH x

    AII: kHikHi yy *

    TRS

    DIII: kHkH yyyy *

    PHS

    AIII: kHkH yy chS

    mq sgn2

    1

    zm

    z

  • (3+1)D 8-component Dirac Hamiltonian

    0

    0

    D

    DH

    imkikikD yyy 5CI:

    kDkDT

    CII: kDmkkD kDikDi yy *

    2sgn2

    1 mq

    0q

    zm

    z

  • Classification of 3d topological insulators

    strategy (bulk boundary)

    • Bulk topological invariants

    integer topological numbers: 3 random matrix ensembles (AIII, CI, DIII)

    • Classification of 2d Dirac fermions Bernard & LeClair (‘02)

    13 classes (13=10+3) AIII, CI, DIII AII, CII

    • Anderson delocalization in 2dnonlinear sigma models Z2 topological term (2) or WZW term (3)

  • Nonlinear sigma approach to Anderson localization

    • (fermionic) replica• Matrix field Q describing diffusion• Localization massive• Extended or critical massless topological Z2 term

    or WZW term

    Wegner, Efetov, Larkin, Hikami, ….

    22 ZM

    ZM 3

  • Table of topological insulators in 1, 2, 3 dim.Schnyder, Ryu, Furusaki & Ludwig, PRB (2008)

    arXiv:0905.2029

    Examples:(a) Integer Quantum Hall Insulator, (b) Quantum Spin Hall Insulator,(c) 3d Z2 Topological Insulator, (d) Spinless chiral p-wave (p+ip) superconductor (Moore-Read),(e) Chiral d-wave superconductor, (f) superconductor,(g) 3He B phase.

  • Reordered TableKitaev, arXiv:0901.2686

    Periodic table of topological insulators

    Classification in any dimension

  • Classification oftopological insulators/superconductors

    Schnyder, Ryu, AF, and Ludwig, PRB (2008)

    Kitaev, arXiv:0901.2686

  • Summary

    • Many topological insulators of non-interacting fermions have been found.

    interacting fermions??

    • Gapless boundary modes (Dirac or Majorana)stable against any (weak) perturbation disorder

    • Majorana fermionsto be found experimentally in solid-state devices

    Andreev bound states in p-wave superfluids 3He-B

    Z2 T.I. + s-wave SC Majorana bound state (Fu & Kane)