Introduction to thermal infrared remote sensing - Surface...

55
Introduction to thermal infrared remote sensing - Surface Energy Balance System Basics Z. (Bob) Su International Institute for Geo-Information Science and Earth Observation (ITC), Enschede, The Netherlands [email protected] [email protected] , www.itc.nl/wrs , www.itc.nl/wrs Monday 29 June 2009, Lecture D1Lb3

Transcript of Introduction to thermal infrared remote sensing - Surface...

Page 1: Introduction to thermal infrared remote sensing - Surface …earth.esa.int/landtraining09/D1Lb3_Su_SEBBasics.pdf ·  · 2015-05-28Introduction to thermal infrared remote sensing

Introduction to thermal infrared remote sensing - Surface Energy Balance System Basics

Z. (Bob) SuInternational Institute for Geo-Information Science

and Earth Observation (ITC), Enschede, The Netherlands

[email protected][email protected], www.itc.nl/wrs, www.itc.nl/wrs

Monday 29 June 2009, Lecture D1Lb3

Page 2: Introduction to thermal infrared remote sensing - Surface …earth.esa.int/landtraining09/D1Lb3_Su_SEBBasics.pdf ·  · 2015-05-28Introduction to thermal infrared remote sensing

• Learning Objectives

1. To understand basic concepts of surface radiation budget 2. To understand basic measurements to derive surface radiation components3. To be able to derive surface radiation components using different information 4. To familiarize with retrieval of surface parameters

Page 3: Introduction to thermal infrared remote sensing - Surface …earth.esa.int/landtraining09/D1Lb3_Su_SEBBasics.pdf ·  · 2015-05-28Introduction to thermal infrared remote sensing

Wind

Solar Radiation

Land-Atmosphere Interactions - Terrestrial Water, Energy and Carbon Cycles

Sens

ible

Hea

t(d

i ffus

ion/

con v

ecti o

n)

Gas

es

Soil

He a

t(C

o ndu

ctio

n)

Ther

mal

radi

atio

n

Late

nt H

eat

(Pha

se c

hang

e)

Prec

ipita

tion

Biochemical Processes W

ater

&va

pour

Advection

Page 4: Introduction to thermal infrared remote sensing - Surface …earth.esa.int/landtraining09/D1Lb3_Su_SEBBasics.pdf ·  · 2015-05-28Introduction to thermal infrared remote sensing

VIS

UV

NIRTIR

MIR

SOLAR TERRESTRIAL

SOLAR AND TERRESTRIAL SPECTRUM

Wavelength (μm)

THERMAL INFRARED RADIATION is a form of electromagnetic radiation with a wavelength between 3 to 14 micrometers (µm). Its flux is much lower than visible flux.

Source: J.-L. Casanova

Page 5: Introduction to thermal infrared remote sensing - Surface …earth.esa.int/landtraining09/D1Lb3_Su_SEBBasics.pdf ·  · 2015-05-28Introduction to thermal infrared remote sensing

RADIANT POWER: The rate of flow of electromagnetic energy, i.e., radiant energy, Φ (watts, i.e., joules per second.)

RADIANT EMITTANCE: Radiant power emitted into a full sphere, i.e., 4π (steradians), by a unit area of a source, expressed in watts per square meter. Synonym radiant exitance, flux, radiant flux, E (W m-2)

RADIANCE: Radiant power, in a given direction, per unit solid angle per unit of projected area of the source, as viewed from the given direction. Note: Radiance is usually expressed in watts per steradian per square meter, L (W m-2.sr-1) = M/π

IRRADIANCE: Radiant power incident per unit area upon a surface. Note: Irradiance is usually expressed in watts per square meter, but may also be expressed in joules per square meter. Synonym: power density, flux, radiant flux, M (watts/m2).

SOME DEFINITIONS

Source: J.-L. Casanova

Page 6: Introduction to thermal infrared remote sensing - Surface …earth.esa.int/landtraining09/D1Lb3_Su_SEBBasics.pdf ·  · 2015-05-28Introduction to thermal infrared remote sensing

GRAPHICAL REPRESENTATION OF E, L AND M

Source: J.-L. Casanova

RADIANCE, L = E/π (Wm-2.sr-1)

IRRADIANCE, M (Wm-2)

EMITTANCE or EXITANCE, E (Wm-2)

Page 7: Introduction to thermal infrared remote sensing - Surface …earth.esa.int/landtraining09/D1Lb3_Su_SEBBasics.pdf ·  · 2015-05-28Introduction to thermal infrared remote sensing

ALL THESE MAGNITUDES ARE USUALLY EXPRESSED AS SPECTRAL MAGNITUDES, THAT IS TO SAY, REFERRED TO A WAVELENGHT

RADIANT POWER: Pλ (W.μm-1) or (W.cm-1)

RADIANT EMITTANCE: Eλ (W.m-2.μm-1) or (W.cm-1m-2)

RADIANCE: Lλ (W.m-2.sr-1. μm-1) or (W.cm-1 m-2.sr-1) = Eλ/π

IRRADIANCE: Mλ (W.m-2. μm-1) or (W.cm-1m-2).

cm-1 = number of wavelenghts per cm = 10,000 . (1/ λ μm)e.g. 1 μm ~ 10,000 cm-1; 10 μm ~ 1,000 cm-1; 11 μm ~ 909.09 cm-1…

SPECTRAL MAGNITUDES

Source: J.-L. Casanova

Page 8: Introduction to thermal infrared remote sensing - Surface …earth.esa.int/landtraining09/D1Lb3_Su_SEBBasics.pdf ·  · 2015-05-28Introduction to thermal infrared remote sensing

c1 = 1.19104·108 W µm4 m-2 sr-1

c2 = 1.43877·104 µm K, are the first radiation constant (for spectral radiance) and second radiation constant, respectively, B (λ, Ts) is given in W m-2 sr-1 μm-1 if λthe wavelength is given in µm.

The theory to express the thermal emission is based on the black body concept: a black body is an object that absorbs all electromagnetic radiation at eachwavelength that falls onto it. A black body however emits radiation as well, its magnitude depends on its temperature, and is expressed by the Planck’s Law:

1exp),(

2

51

−⎟⎟⎠

⎞⎜⎜⎝

⎛=

S

S

Tc

cTB

λ

λλ

Thermal emission- the Planck’s Law:

Page 9: Introduction to thermal infrared remote sensing - Surface …earth.esa.int/landtraining09/D1Lb3_Su_SEBBasics.pdf ·  · 2015-05-28Introduction to thermal infrared remote sensing

Terminology in Thermal Remote Sensing

• Thermodynamic (kinetic) temperature• Brightness temperature• Directional radiometric surface temperature & Directional

emissivity• Hemispheric broadband radiometric surface temperature &

Hemispherical broadband emissivity

Source: J. Norman, and F. Becker, 1995

Page 10: Introduction to thermal infrared remote sensing - Surface …earth.esa.int/landtraining09/D1Lb3_Su_SEBBasics.pdf ·  · 2015-05-28Introduction to thermal infrared remote sensing

Thermodynamic (kinetic) temperature• Thermodynamic (kinetic) temperature (T) is a macroscopic measure to

quantify the thermal dynamic state of a system in thermodynamic equilibrium with its environment (no heat transfer) and can be measured with a infinitesimal thermometer in good contact with it.

• By maximizing the total entropy (S) with respect to the energy (E) of the system, T is defined as

TdEdS 1

=

which is consistent with the definition of the absolute temperature by the ideal gas law

RTPV =

where P is pressure, V volume, R the gas constant (R=kN0, k is Boltzmann constant, N0 number of molecules in a mole).

Page 11: Introduction to thermal infrared remote sensing - Surface …earth.esa.int/landtraining09/D1Lb3_Su_SEBBasics.pdf ·  · 2015-05-28Introduction to thermal infrared remote sensing

Brightness temperature

• Brightness temperature (Tb,i) is a directional temperature obtained by equating the measured radiance (Rb,i) with the integral over wavelength of the Planck’s black body function multiplied by the sensor response fi.

( ) ( )( ) ( )

( )

∫⎟⎟⎠

⎞⎜⎜⎝

⎛−⎟

⎟⎠

⎞⎜⎜⎝

⎛== 2

1

1,

exp,,

,

25

1,,

λ

λλ

φθλλ

λφθφθ d

TC

CfTRR

ib

iibib

( ) 12

1

=∫λ

λλλ df i is the detector relative response.

Page 12: Introduction to thermal infrared remote sensing - Surface …earth.esa.int/landtraining09/D1Lb3_Su_SEBBasics.pdf ·  · 2015-05-28Introduction to thermal infrared remote sensing

α′λ = A′λ / Iλ < 1

ρ′λ = R′λ / Iλ > 0

α′λ +ρ′λ =1

As the body is in thermal equilibrium: A′λ = M′λ = α′λ Iλ

M′λ / α′λ = Iλ = Mλ GREY BODY

M′λ = ελ. Mλ = ελ. M′λ / α′λ ελ = α′λ ελ = 1 - ρ′λ

By applying the Kirchhoff law (energy conservation) to a black body and a real (grey) body, the emissivity is defined - The emittance of a real body is always lower than that of the black body at the same temperature. In order to measure its temperature using a radiometer, we need to introduce a factor called “emissivity”, ε < 1, to equate its emittence to that of the block body.

Iλ: incident fluxαλ: absorptanceAλ: absorbed fluxρλ: reflectanceRλ: reflected fluxε: emissivity

αλ = Aλ / Iλ = 1

ρλ = Rλ / Iλ = 0

αλ + ρλ = 1

Aλ = Iλ = Mλ (black body definition)

BLACK BODY

Directional radiometric surface temperature & Directional emissivity

Page 13: Introduction to thermal infrared remote sensing - Surface …earth.esa.int/landtraining09/D1Lb3_Su_SEBBasics.pdf ·  · 2015-05-28Introduction to thermal infrared remote sensing

Directional radiometric surface temperature & Directional emissivity

• The spectral radiance (RR) measured by a directional radiometer is the sum of the emitted black body radiance modified by the emissivity and the reflected radiation within an infinitesimal wavelength band.

( ) ( ) ( )

( ) ( ) ( ) ( )∫∫+=

2/

0 ,

2

0

,,

sin,cos,,,

,,,π

λλ

π

λλλ

βααβααφθβαρ

φθφθεφθ

ddL

RR

b

BR

Bidirectional reflectance distribution function Sky radiance

If the incident sky radiance is isotropic, we have

( ) ( ) ( ) ( ) ( )∫∫ =2/

0 ,

2

0,sin,cos,,,

π

λλλλ

πφθρβααβααφθβαρ LddLb

Therefore for opaque bodies at thermal equilibrium,

( ) ( )φθρφθε λλ ,1, −=

Page 14: Introduction to thermal infrared remote sensing - Surface …earth.esa.int/landtraining09/D1Lb3_Su_SEBBasics.pdf ·  · 2015-05-28Introduction to thermal infrared remote sensing

Hemispheric broadband radiometric surface temperature & Hemispherical broadband emissivity

• A hemispheric radiometric surface temperature is used to provide an estimate of the emitted radiance (Rl) over a broad wavelength and the full hemisphere of view

( ) ( ) ( ) ( ) 42/

0 ,

2

0cossin,,2

1RBl TdddRR σεφθλθθφθφθε λ

π

λ

λ

λ λ

π== ∫ ∫∫

Page 15: Introduction to thermal infrared remote sensing - Surface …earth.esa.int/landtraining09/D1Lb3_Su_SEBBasics.pdf ·  · 2015-05-28Introduction to thermal infrared remote sensing

Corn

Bare Soil

Water Body

Garlic

Green Grass

Vineyard

Reforestation

In-Situ measurements of Surface Energy Balance- EAGLE/SPARC Campaign 2004, Barrax, Spain

- Situated in the area of La Mancha, in the west of the province of Albacete, 28 km from Albacete- Geographic coordinates: 39º 3’ N; 2º 6’ W- Altitude (above sea level): 700 m

Page 16: Introduction to thermal infrared remote sensing - Surface …earth.esa.int/landtraining09/D1Lb3_Su_SEBBasics.pdf ·  · 2015-05-28Introduction to thermal infrared remote sensing

The Canopy from Different Perspectives

Page 17: Introduction to thermal infrared remote sensing - Surface …earth.esa.int/landtraining09/D1Lb3_Su_SEBBasics.pdf ·  · 2015-05-28Introduction to thermal infrared remote sensing

52°23°Nadir

Object

Sensor

The Fundamental The Fundamental

of Earth Observationof Earth Observation((Sensor - Object Radiative Relationship))

Sensor ResponseA. How much radiation is detected?

B. When does it arrive?

Object Properties:Its range, its combined temperature

& Emissivity (or reflectivity)at different times, at different spatial resolution, at different wavelengths, at

different direction, at different polarization

A: A Passive Sensor SystemA+B: An Active Sensor System

atmosphere

Page 18: Introduction to thermal infrared remote sensing - Surface …earth.esa.int/landtraining09/D1Lb3_Su_SEBBasics.pdf ·  · 2015-05-28Introduction to thermal infrared remote sensing

Factors Influencing the Emissivity ε

• The material (minerals, water etc.)• The surface geometry (roughness of the surface) • The wavelength of the radiation • The view angle

(Source: Sobrino et al., 2005)

Page 19: Introduction to thermal infrared remote sensing - Surface …earth.esa.int/landtraining09/D1Lb3_Su_SEBBasics.pdf ·  · 2015-05-28Introduction to thermal infrared remote sensing

800 1200 1600 2000 2400 28000.5

0.6

0.7

0.8

0.9

1.0

Water:

Soil:

Spe

ctra

l em

issi

vity

Wave number (cm-1)

Seawatr1Vegetation: 106

108 121 e3101 e4643 eply3c7

Spectral emissivity extracted from MODIS UCSB Emissivity Library

Page 20: Introduction to thermal infrared remote sensing - Surface …earth.esa.int/landtraining09/D1Lb3_Su_SEBBasics.pdf ·  · 2015-05-28Introduction to thermal infrared remote sensing

Solar Radiation

Atm

ospheric therm

al radiation

Reflected solar radiation

Surface thermal

radiation

Surface Radiation Budget - Measurements

swuR

lwulwdswuswdn RRRRR −+−=

swdR lwdR lwuR

Net radiation

Page 21: Introduction to thermal infrared remote sensing - Surface …earth.esa.int/landtraining09/D1Lb3_Su_SEBBasics.pdf ·  · 2015-05-28Introduction to thermal infrared remote sensing

Surface Radiation Budget - Measurements

CNR1 net radiometer:

Spectral response- Pyranometer: 305 to 2800 nm- Pyrgeometer: 5000 to 50000 nm

Radiation components: 1. incoming short-wave radiation2. surface-reflected short-wave radiation3. incoming long-wave thermal infrared radiation 4. outgoing long-wave TIR radiation

Albedo (whiteness): ratio of scattered to incident electromagnetic radiation

( )nmmmm

10001505

=−

μμμ

1

2

3

4

Page 22: Introduction to thermal infrared remote sensing - Surface …earth.esa.int/landtraining09/D1Lb3_Su_SEBBasics.pdf ·  · 2015-05-28Introduction to thermal infrared remote sensing

EAGLE/SPARC Campaign 2004, Barrax, Spain

Barrax 2004 Radiation @ Vineyard

-2000

200400600800

10001200

196 197 198 199 200 201 202 203

SW_incSW_outLW_incLW_out

Page 23: Introduction to thermal infrared remote sensing - Surface …earth.esa.int/landtraining09/D1Lb3_Su_SEBBasics.pdf ·  · 2015-05-28Introduction to thermal infrared remote sensing

EAGLE/SPARC Campaign 2004, Barrax, Spain

Radiation Components, Barrax, 15 July 2004

-200

0

200

400

600

800

1000

1200

0

50

140

230

320

410

500

550

640

730

820

910

1000

1050

1140

1230

1320

1410

1500

1550

1640

1730

1820

1910

2000

2050

2140

2230

2320

Time

W/M

^2 SW_in

SW_outLW_inLW_out

Page 24: Introduction to thermal infrared remote sensing - Surface …earth.esa.int/landtraining09/D1Lb3_Su_SEBBasics.pdf ·  · 2015-05-28Introduction to thermal infrared remote sensing

EAGLE/SPARC Campaign 2004, Barrax, Spain

Exercise:

1. Calculate & plot the net radiation and explain what are the influencing factors2. Explain the pattern of the radiation components 3. Calculate the statistics of the radiation components (mean, minimum, maximum, etc.)4. Calculate the albedo from the radiation components5. Check the energy balance and explain what you see

Page 25: Introduction to thermal infrared remote sensing - Surface …earth.esa.int/landtraining09/D1Lb3_Su_SEBBasics.pdf ·  · 2015-05-28Introduction to thermal infrared remote sensing

Wind

How is the net radiation consumed?

H

G0

LE

00

≈ΔΔ+++=

SSLEHGRn

Rn

[ ]cfT ,,, 0εα

Right hand side:1. Soil heat flux (warming up of the soil layer)2. Sensible heat flux (warming up of the air layer)3. Latent heat flux (phase change, evaporation and transpiration)4. Heat storage and biological activities

Page 26: Introduction to thermal infrared remote sensing - Surface …earth.esa.int/landtraining09/D1Lb3_Su_SEBBasics.pdf ·  · 2015-05-28Introduction to thermal infrared remote sensing

Locations of measurements

Forest nurseryDutch site

garlicvineyard

corn

Bare soil

Wheat

~3 km

3

12

4

5

INRA sitesForest nursery

Dutch site

garlicvineyard

corn

Bare soil

Wheat

~3 km

3

12

4

5

Dutch site

garlicvineyard

corn

Bare soil

Wheat

~3 km

3

12

4

5

INRA sites

Page 27: Introduction to thermal infrared remote sensing - Surface …earth.esa.int/landtraining09/D1Lb3_Su_SEBBasics.pdf ·  · 2015-05-28Introduction to thermal infrared remote sensing

Soil heat flux: measurements with soil heat flux plates

• The soil heat fluxes were measured with 4 soil heat fluxes buried at a depth of 1cm below surface, with two placed in the middle of the row and two under the vine and shaded.

• Soil heat flux plates:• SH1 and SH4 were in the shade• SH2 and SH3 were in the sunlit areas SH2

SH3SH1SH4

Page 28: Introduction to thermal infrared remote sensing - Surface …earth.esa.int/landtraining09/D1Lb3_Su_SEBBasics.pdf ·  · 2015-05-28Introduction to thermal infrared remote sensing

Soil heat flux: measurements with soil heat flux plates

Page 29: Introduction to thermal infrared remote sensing - Surface …earth.esa.int/landtraining09/D1Lb3_Su_SEBBasics.pdf ·  · 2015-05-28Introduction to thermal infrared remote sensing

Sensible heat flux: scintillometer measurements

•Scintillometer, 2 Sets• Radiation components• Soil Heat flux plates• Temperature profile (air & soil)

Transmitter

Receiver

Page 30: Introduction to thermal infrared remote sensing - Surface …earth.esa.int/landtraining09/D1Lb3_Su_SEBBasics.pdf ·  · 2015-05-28Introduction to thermal infrared remote sensing

Scintillometer Data, EAGLE/SPARC Campaign 2004, Barrax, Spain

Barrax 2004 Sensible heat f luxes

-200

-100

0

100

200

300

400

500

600

196 197 198 199 200 201 202 203

Vineyard

Corn-C2

Reforestation-F1

Sunflow er-SF1

Bare-B1

corn-3D

Page 31: Introduction to thermal infrared remote sensing - Surface …earth.esa.int/landtraining09/D1Lb3_Su_SEBBasics.pdf ·  · 2015-05-28Introduction to thermal infrared remote sensing

Scintillometer Data, EAGLE/SPARC Campaign 2004, Barrax, Spain

Barrax 2004 Fluxes @ Vineyard

-400

-200

0

200

400

600

800

196 197 198 199 200 201 202 203

RnetG_avgH-LASLE_Rest.

Page 32: Introduction to thermal infrared remote sensing - Surface …earth.esa.int/landtraining09/D1Lb3_Su_SEBBasics.pdf ·  · 2015-05-28Introduction to thermal infrared remote sensing

Sensible & latent heat fluxes:Eddy Covariance Measurements

Canopy level measurements:

Eddy covariance system (Gill 3D sonic + closed path Licor

gasanalyser: CO2 and H2O + nitrogen reference gas + pneumatic mast + data loggers)

• Turbulence, sensible heat flux, H2O, CO2 fluxes

• CO2 concentrations

Page 33: Introduction to thermal infrared remote sensing - Surface …earth.esa.int/landtraining09/D1Lb3_Su_SEBBasics.pdf ·  · 2015-05-28Introduction to thermal infrared remote sensing

Flux data SPARC 2004

Eddy Correlation Data, 10 Min Average, July 2004

-500

-300

-100

100

300

500

700

DOY 195-203-20

-10

0

10

20

30

40

H W m-2LE W m-2Fc μmol m-2 s-1

Page 34: Introduction to thermal infrared remote sensing - Surface …earth.esa.int/landtraining09/D1Lb3_Su_SEBBasics.pdf ·  · 2015-05-28Introduction to thermal infrared remote sensing

Energy balance components

-200-100

0100200300400500600700800

196 197 198 199 200 201 202 203

H_edLERnGH_las

Energy balance (60 minute average), Vineyard, Barrax 2004

Page 35: Introduction to thermal infrared remote sensing - Surface …earth.esa.int/landtraining09/D1Lb3_Su_SEBBasics.pdf ·  · 2015-05-28Introduction to thermal infrared remote sensing

Energy balance closure ??(Sum of H and LE exceeds the available energy)

-200

0

200

400

600

800

196 197 198 199 200 201 202 203

H_ed+LE_ed

R_avai10 minutes average, Vineyard, Barrax 2004

-200

0

200

400

600

800

196 197 198 199 200 201 202 203

H_ed+LE_ed

R_avai60 minutes average, Vineyard, Barrax 2004

Page 36: Introduction to thermal infrared remote sensing - Surface …earth.esa.int/landtraining09/D1Lb3_Su_SEBBasics.pdf ·  · 2015-05-28Introduction to thermal infrared remote sensing

Solar Radiation

Atm

ospheric therm

al radiation

Reflected solar radiation

Surface thermal

radiation

Surface Radiation Budget - Parameterisation

eTemperaturSurfaceTemissivityalbedo

:::

0

εα

( ) 401 TRRR lwdswdn ⋅⋅−⋅+⋅−= σεεα

Page 37: Introduction to thermal infrared remote sensing - Surface …earth.esa.int/landtraining09/D1Lb3_Su_SEBBasics.pdf ·  · 2015-05-28Introduction to thermal infrared remote sensing

Pre-processing

Remote Sensing Data

Geographical Data

Regional Atmospheric State

Remote sensing retrievals Weather prediction model outputs

Radio sounding

ENVISAT NOAA/AVHRR, LANDSAT, METEOSAT, MODIS

MSG

DN ⇒ Radiance/Reflectance at Sensor⇓

Radiance/Reflectance at Surface⇓

Albedo, Temperature, Emissivity, Vegetation Parameters, Roughness, Incoming Radiation

Atmospheric correction

Inversion of radiative transfer models

Page 38: Introduction to thermal infrared remote sensing - Surface …earth.esa.int/landtraining09/D1Lb3_Su_SEBBasics.pdf ·  · 2015-05-28Introduction to thermal infrared remote sensing

Derived Surface Parameters/variables

• Incoming global radiation• Albedo• Vegetation cover, Leaf Area Index• Surface temperature• Emissivity• Roughness

Page 39: Introduction to thermal infrared remote sensing - Surface …earth.esa.int/landtraining09/D1Lb3_Su_SEBBasics.pdf ·  · 2015-05-28Introduction to thermal infrared remote sensing

Components of reflected and scattered solar beams received at the satellite

sI

ss Ψ,φ

0, Ψθ

Φ

mulIscaI

dirIskyI

indI

Page 40: Introduction to thermal infrared remote sensing - Surface …earth.esa.int/landtraining09/D1Lb3_Su_SEBBasics.pdf ·  · 2015-05-28Introduction to thermal infrared remote sensing

Incoming global radiation

• Input parameters:– Group 1: date, time, location (latitude) and DEM (elevation, slope,

aspect) to compute solar declination, eccentricity, solar zenith angle for a horizontal surface, solar azimuth angle, solar zenith angle on slopes

– Group2: weather condition - Optical properties of the atmosphere (at the time of calculation)

θz

τ

Case: a

θz

Case: b

In Ida Idr

Idm

Page 41: Introduction to thermal infrared remote sensing - Surface …earth.esa.int/landtraining09/D1Lb3_Su_SEBBasics.pdf ·  · 2015-05-28Introduction to thermal infrared remote sensing

Incoming global radiation

• Case a: use total optical depth

• where Isc is the solar constant, e0 the eccentricity factor, θz solar zenith angle, m air mass, τ the optical depth

)exp(cos0 τθ ⋅−⋅⋅⋅= meII zsc

Page 42: Introduction to thermal infrared remote sensing - Surface …earth.esa.int/landtraining09/D1Lb3_Su_SEBBasics.pdf ·  · 2015-05-28Introduction to thermal infrared remote sensing

Incoming global radiation (cont.)

Case b: use water-vapor / horizontal visibility

where the direct solar radiation is

etc.References:M. Iqbal (1983) An introduction to solar radiation, Academic Press, Toronto. p.188-191.R. Bird and R.L. Hulstrom (1980) Direct insolation models, Trans. ASME J. Sol. Energy Eng., 103, 182-192. R. Bird and R.L. Hulstrom (1981) A simplified clear sky model for direct and diffuse insolation on horizontal surfaces, SERI/TR-642-761, Solar Energy Research Institute, Golden, Colorado.

( )ag

dadrndmdadrn

dn

IIIIIII

III

ρρ ′⋅−⋅++=+++=

+=

11

( ) awgorzscn eII τττττθ ⋅⋅⋅⋅⋅⋅⋅⋅= cos9751.0 0

Page 43: Introduction to thermal infrared remote sensing - Surface …earth.esa.int/landtraining09/D1Lb3_Su_SEBBasics.pdf ·  · 2015-05-28Introduction to thermal infrared remote sensing

Surface Albedo & NDVI

• Algorithms• - Calculate surface bidirectional reflectance of narrow

band• - Derive surface broad-band albedo from narrow

surface reflectance- Derive NDVI from band RED & NIR surface

reflectance - (Ref. Lecture Jose Moreno)

Page 44: Introduction to thermal infrared remote sensing - Surface …earth.esa.int/landtraining09/D1Lb3_Su_SEBBasics.pdf ·  · 2015-05-28Introduction to thermal infrared remote sensing

Surface temperature

• Algorithms

• Land surface temperature derived by using a theoretical split-window algorithm

• References: Sorino et al.(2004)

Page 45: Introduction to thermal infrared remote sensing - Surface …earth.esa.int/landtraining09/D1Lb3_Su_SEBBasics.pdf ·  · 2015-05-28Introduction to thermal infrared remote sensing

The radiative transfer equation for LST retrieval

• The at-sensor radiance for a given wavelength (λ) s:

• where – ελθ is the surface emissivity, – Bθ(λ, Ts) is the radiance emitted by a blackbody at temperature Ts of the surface,

is the downwelling radiance, – τλθ is the total transmission of the atmosphere (transmittance) and

is the upwelling atmospheric radiance. All these magnitudes also depend on the observation angle θ.

[ ] ↑↓− +−+= atmatmS

sensorat LLTBL λθλθλλθθλθλθ τελε )1(),(

↓atmLλ

↑atmLλθ

Page 46: Introduction to thermal infrared remote sensing - Surface …earth.esa.int/landtraining09/D1Lb3_Su_SEBBasics.pdf ·  · 2015-05-28Introduction to thermal infrared remote sensing

• According to Sobrino et al. (1996), the upwelling and downwelling atmospheric radiance can be substituted, respectively, by:

)()1( aiiatm TBL θλ τ−=↑

)()1( 53 aiiatm TBL τλ −=↓

where Ta is the effective mean atmospheric temperature andτi53 is the total atmospheric path transmittance at 53 degrees.

Page 47: Introduction to thermal infrared remote sensing - Surface …earth.esa.int/landtraining09/D1Lb3_Su_SEBBasics.pdf ·  · 2015-05-28Introduction to thermal infrared remote sensing

Split-window equations to derive land surface temperature

• Substituting both atmospheric radiances in the radiative transfer equation, an algorithm involving temperatures can be obtained using a first-order Taylor series expansion of the Planck’s law and writing the equation for i and j (i and j being two different channels observed at the same angle, Split-Window method):

Ts = Ti+A(Ti-Tj)-B0+(1-εi)B1-Δεθ B2

where A and Bi are coefficients that depend on atmospheric transmittances, εi is the mean value of the emissivities of channels i and j, Δεθ is the spectral variation, Ti and Tj are the brightness temperatures for two different channels with the same view angle.

This equation is the so-called split-window equation and gives a separation between the atmospheric and emissivity effects in the retrieval of surface temperature.

Page 48: Introduction to thermal infrared remote sensing - Surface …earth.esa.int/landtraining09/D1Lb3_Su_SEBBasics.pdf ·  · 2015-05-28Introduction to thermal infrared remote sensing

The structure of the split-window and dual-angle algorithms with the final values of the coefficients calculated by the minimization process

Page 49: Introduction to thermal infrared remote sensing - Surface …earth.esa.int/landtraining09/D1Lb3_Su_SEBBasics.pdf ·  · 2015-05-28Introduction to thermal infrared remote sensing

• Notation: • n: Nadir view;• f: Forward view;• SW: Split-Window Method (two spectral channels at the same

observation angle)• quad: algorithm that includes a quadratic dependence on (Ti-Tj);• (1): AATSR Channel 1 (12 μm);• (2): AATSR Channel 2 (11 μm);• W: algorithm with water vapor content dependence;• ε: algorithm with emissivity dependence;• Δε: algorithm including spectral or angular emissivity difference.

Page 50: Introduction to thermal infrared remote sensing - Surface …earth.esa.int/landtraining09/D1Lb3_Su_SEBBasics.pdf ·  · 2015-05-28Introduction to thermal infrared remote sensing

Emissivity

• Algorithms

• Estimation of surface emissivity using the theoretical model of Caselles and Sobrino (1989).

• References: • V. Caselles and J.A. Sobrino (1989) Determination of

frosts in orange groves from NOAA-9 AVHRR data, RSE, 29:135-146.

• E. Valor and V. Caselles (1995) Mapping land surface emissivity from NDVI: Application to European, African, and South American Areas, RSE, 57:167-184.

• Sobrino and Soria (2006)

Page 51: Introduction to thermal infrared remote sensing - Surface …earth.esa.int/landtraining09/D1Lb3_Su_SEBBasics.pdf ·  · 2015-05-28Introduction to thermal infrared remote sensing

Thresholds Method (NDVITHM)

• A simplified method based on the estimation of emissivity, ε, using atmospherically corrected data in the visible and near infrared channels (Sobrino and Raissouni, 2000), which considers three different type of pixels depending on the NDVI value: bare soil pixels (NDVI<0.2), mixed pixels (0.2<NDVI<0.5) and fully vegetation pixels (NDVI>0.5). The NDVITHM have been applied for NOAA channels 4 and 5 (Sobrino et al., 2001) and for MODIS channels (Sobrino et al., 2003).

• This method is also applied to AATSR thermal channels using the Salisbury's spectra (Salisbury and D’Aria, 1992) and the AATSR response functions to obtain the appropriate expressions to estimate absolute emissivity. The NDVI value have been calculated with the well-known equation that uses reflectivity values from the Red region (ρred) and Near Infrared (ρnir) region, according to:

• AATSR channels centred in 0.67 μm and 0.87 μm have been used for ρred and ρnirrespectively.

nirred

nirredNDVIρρ

ρρ

+

−=

Page 52: Introduction to thermal infrared remote sensing - Surface …earth.esa.int/landtraining09/D1Lb3_Su_SEBBasics.pdf ·  · 2015-05-28Introduction to thermal infrared remote sensing

Thresholds Method (NDVITHM)

• The final expressions obtained for this method are for bare soil pixels (NDVI < 0.2),• ε = 0.9825 -0.051 ρred• Δε = -0.0001 -0.041 ρred

• for mixed pixels (0.2 NDVI 0.5),• ε = 0.971 + 0.018 fc• Δε = 0.006 (1 - fc )

• and for vegetation pixels (NDVI > 0.5),•• ε = 0.990

• with fc being the vegetation proportion, given by

• where NDVImin=0.2 and NDVImax=0.5. The main constraint of this method is that it can not be used to extract water emissivity values because it is not possible to apply the NDVI and fc equations for water pixels.

2

minmax

min⎟⎟⎠

⎞⎜⎜⎝

−=

NDVINDVI

NDVINDVIc

f

Page 53: Introduction to thermal infrared remote sensing - Surface …earth.esa.int/landtraining09/D1Lb3_Su_SEBBasics.pdf ·  · 2015-05-28Introduction to thermal infrared remote sensing

Roughness

20

200 vgor ZZZ +=

Total roughness

Vegetation roughness

Orographic roughness vp

Zsize

or ⋅=1

0

),(0 cvg fhfZ =

(h - vegetation height, fc – fractional coverage)

Page 54: Introduction to thermal infrared remote sensing - Surface …earth.esa.int/landtraining09/D1Lb3_Su_SEBBasics.pdf ·  · 2015-05-28Introduction to thermal infrared remote sensing

Questions:

1. What is surface radiation budget 2. List some methods to derive surface radiation components3. What information is needed in order to derive surface radiation components using the above mentioned methods 4. What are the essential surface parameters in determination of surface radiation balance

Page 55: Introduction to thermal infrared remote sensing - Surface …earth.esa.int/landtraining09/D1Lb3_Su_SEBBasics.pdf ·  · 2015-05-28Introduction to thermal infrared remote sensing

References/Further Readings

• Su, Z., Timmermans, W., Gieske, A., Jia, L., Elbers, J. A., Olioso, A., Timmermans, J., Van Der Velde, R., Jin, X.,Van Der Kwast, H., Nerry, F., Sabol, D., Sobrino, J. A., Moreno, J. and Bianchi, R., 2008, Quantification of land-atmosphere exchanges of water, energy and carbon dioxide in space and time over the heterogeneous Barrax

site, International Journal of Remote Sensing, 29:17,5215-5235.• Su, Z., J. Wen, and L. Wan, 2003, A methodology for the retrieval of land physical parameter and actual

evaporation using NOAA/AVHRR data, Journal of Jilin University (Earth Science Edition), 33(sup.), 106-118.

• Jia, J., Z.-L. Li, M. Menenti, Z. Su, W. Verhoef, Z. Wan, 2003, A practical algorithm to infer soil and foliage component temperatures from bi-angular ATSR-2 data, International Journal of remote Sensing, 24 (23), 4739–4760.

• Li, Z.-L., L. Jia, Z. Su, Z. Wan, R.H. Zhang, 2003, A new approach for retrieving precipitable water from ATSR-2 split window channel data over land area, International Journal of Remote Sensing, 24(24), 5095–5117.

• Z. Wan, Y. Zhang, Q. Zhang, Z.-L. Li, 2004, Quality assessment and validation of the MODIS global land surface temperature, International Journal of Remote Sensing, 25(1), 261–274.

• J. Sobrino, G. Soria, F. Prata, 2004, Surface temperature retrieval from Along Track Scanning Radiometer 2 data: Algorithms and validation, Journal of Geophysical Research, Vol. 109, doi:10.1029/2003JD004212.

• J. Norman, F. Becker, 1995, Terminology in thermal remote sensing of natural surfaces, Agricultural and Forest Meteorology, 77, 153-166.