Introduction to Photonics lecture 13-14-15 16 Electromagnetic Optics(1)

57
Introduction to Photonics Lecture 13/14/15/16: Electromagnetic Optics November 3/5/10/12, 2014 Electroma gn et ic the or y Review of Maxwell’ s equa ti ons Electromagnet ic waves in dielectric media Conductive media Time- ha rmonic ME and TEM w av es Ab so rp tio n and di sp ers io n Resonant medi a and Lorentz mod el 1

Transcript of Introduction to Photonics lecture 13-14-15 16 Electromagnetic Optics(1)

8/10/2019 Introduction to Photonics lecture 13-14-15 16 Electromagnetic Optics(1)

http://slidepdf.com/reader/full/introduction-to-photonics-lecture-13-14-15-16-electromagnetic-optics1 1/59

Introduction to Photonics

Lecture 13/14/15/16: Electromagnetic OpticsNovember 3/5/10/12, 2014

• Electromagnetic theory

• Review of Maxwell’s equations

• Electromagnetic waves in dielectric media

• Conductive media

• Time-harmonic ME and TEM waves

• Absorption and dispersion

• Resonant media and Lorentz model 1

8/10/2019 Introduction to Photonics lecture 13-14-15 16 Electromagnetic Optics(1)

http://slidepdf.com/reader/full/introduction-to-photonics-lecture-13-14-15-16-electromagnetic-optics1 2/59

2

Electromagnetic Optics

• Ray optics! light as ray theory – Reflection, refraction, imaging

 – Good approximation when wavelength is small in comparison to size of

optical component

• Wave optics! light as scalar wave theory – Ray optics plus diffraction and interference (by considering phase)

• Electromagnetic optics! light as vector wave theory

 – Wave optics plus fraction of light reflected and/or transmitted (by

considering polarization)

8/10/2019 Introduction to Photonics lecture 13-14-15 16 Electromagnetic Optics(1)

http://slidepdf.com/reader/full/introduction-to-photonics-lecture-13-14-15-16-electromagnetic-optics1 3/59

• Light is an electromagnetic phenomenon.

• An electromagnetic field is described by two mutually coupled

vector fields, the electric field, E , and the magnetic field, H .

 –  E = ( E  x , E  y , E  z) and H = ( H  x , H  y , H  z) – Wave optics is a scalar approximation of electromagnetic optics.

• Relationship between electric and magnetic field vectors

described by Maxwell’s equations

3

Electromagnetic Optics

8/10/2019 Introduction to Photonics lecture 13-14-15 16 Electromagnetic Optics(1)

http://slidepdf.com/reader/full/introduction-to-photonics-lecture-13-14-15-16-electromagnetic-optics1 4/59

4

Review of Maxwell’s Equations

•  E (r, t ) , H (r, t ) are electric and magnetic fields – Units of E : [V/m]; Units of H : [A/m]

 – Six functions of E and H must satisfy M.E.

•  D(r, t ) is electric flux density (or displacement

field) [C/m2]

•  B(r, t ) is magnetic flux density [W/m2 = T]

•   ! is electric permittivity [F/m]

 –   ! 0 = 8.854 x 10-12 F/m

• µ is magnetic permeability [H/m]

 – µ 0 = 4" x 10-7 H/m

•  J (r, t ) is current density [A/m2]

•   # (r, t ) is charge density [C/m2]

• P(r, t ) is polarization density [C/m2]

•  M (r, t ) is magnetization density [A/m]

• Many variables, however, this is for any arbitrary medium

• Relationships simplify for many media

0),(),(),(

),(),(

),(),(

),(

=$%=

$%

&

&'=(%

+&

&=(%

t  Bt t  D

t  Bt  E 

t  J t 

t  Dt  H 

rrr

rr

rr

r

 # 

),(),(),(

),(),(),(

t  M t  H t  B

t Pt  E t  D

rrr

rrr

µ µ 

+=

+=

8/10/2019 Introduction to Photonics lecture 13-14-15 16 Electromagnetic Optics(1)

http://slidepdf.com/reader/full/introduction-to-photonics-lecture-13-14-15-16-electromagnetic-optics1 5/59

8/10/2019 Introduction to Photonics lecture 13-14-15 16 Electromagnetic Optics(1)

http://slidepdf.com/reader/full/introduction-to-photonics-lecture-13-14-15-16-electromagnetic-optics1 6/59

6

E&M Waves in Dielectric Media

• The constitutive relations describe the specific medium; theydescribe how currents and charges are generated

• Have relation between P and E and between M and H for medium

),(),(),(   t Pt  E t  D   rrr += !    ),(),(),(   t  M t  H t  B   rrr µ µ  +=

Describes dielectric properties Describes magnetic properties

),(),(

1

),(   t  M t  Bt  H    rrr  '

= µ 

 H is medium independent

From Maxwell’s equations

 D is medium independent

Constitutive Relations

8/10/2019 Introduction to Photonics lecture 13-14-15 16 Electromagnetic Optics(1)

http://slidepdf.com/reader/full/introduction-to-photonics-lecture-13-14-15-16-electromagnetic-optics1 7/59

Nondispersive:

Material is memoryless, i.e., P at time t is related

to E at same time, but not to prior values

Linear

Nonlinear1.

Linear:

Any component of P is weighted superposition

of components of E 

Nondispersive

Dispersive

4.

Isotropic

Anisotropic3.

Isotropic:System is invariant to rotation of coordinate

system. P is parallel to E 

Homogeneous

2.

Homogenous:

System is invariant to displacement; relationbetween P and E is independent of position

Nonhomogeneous

7

Properties of Dielectric Media

8/10/2019 Introduction to Photonics lecture 13-14-15 16 Electromagnetic Optics(1)

http://slidepdf.com/reader/full/introduction-to-photonics-lecture-13-14-15-16-electromagnetic-optics1 8/59

8

Maxwell’s Equations

0),(

),(),(

),(),(

),(),(

),(

=$%

=$%

&

&'=(%

+&

&=(%

t  B

t t  D

t t  Bt  E 

t  J t 

t  Dt  H 

r

rr

rr

rr

r

 # Divergenceequations

Curlequations

Time-varying displacement (electric

field) and current are accompanied by

rotating magnetic field

Time-varying magnetic fieldaccompanied by rotating electric field

Diverging displacement (electric field)

related to charge (both bound and free)

Diverging magnetic flux densitydoesn’t exist

8/10/2019 Introduction to Photonics lecture 13-14-15 16 Electromagnetic Optics(1)

http://slidepdf.com/reader/full/introduction-to-photonics-lecture-13-14-15-16-electromagnetic-optics1 9/59

9

Review of Differential Operators

k  z

 j  y

i x   &

&+&

&+&

&)%del

Gradient

(slope)  k 

 z j 

 yi

 x   &

&+

&

&+

&

&)%

  * * * *    *  is scalar field

Divergence

(degree of outwardness)  z

 y

 x

V V 

&

&+

&

&+

&

&)$%

  321 k V  j V iV V  321 ++= is a vector field

Uses of del:

0=$% V    0+$% V 

8/10/2019 Introduction to Photonics lecture 13-14-15 16 Electromagnetic Optics(1)

http://slidepdf.com/reader/full/introduction-to-photonics-lecture-13-14-15-16-electromagnetic-optics1 10/59

10

Review of Differential Operators

k  z

 j  y

i x   &

&+&

&+&

&)%del

Curl(degree of rotation) ( )

k  y

 x

V  j 

 x

 z

V i

 z

 y

V V V 

 z y x

k  j i

k V  j V iV k  z j  yi xV 

!! "

 #$$% 

&

&'

&

&+!

 "

 #$% 

&

&'

&

&+!!

 "

 #$$% 

&

&'

&

&=

&

&

&

&

&

&

=++(

!! "

 #

$$% 

&

&

+&

&

+&

&)(%

123123

321

321

Uses of del:

0+(%   V    0=(%   V 

8/10/2019 Introduction to Photonics lecture 13-14-15 16 Electromagnetic Optics(1)

http://slidepdf.com/reader/full/introduction-to-photonics-lecture-13-14-15-16-electromagnetic-optics1 11/59

11

Review of Differential Operators

Laplacian

(divergence of 

the gradient)!!

 "

 #$$% 

&

&+!!

 "

 #$$% 

&

&+!!

 "

 #$$% 

&

&=%)%$%

2

2

2

2

2

22)(

 z y x

* * * * * 

2

2

2

2

2

22

 z y x   &

&+

&

&+

&

&)%

Important identities

V V V 

V 2)()(

0)(

0)(

%'$%%=(%(%

=(%$%

=%(%   * 

8/10/2019 Introduction to Photonics lecture 13-14-15 16 Electromagnetic Optics(1)

http://slidepdf.com/reader/full/introduction-to-photonics-lecture-13-14-15-16-electromagnetic-optics1 12/59

12

M.E. 1: Ampere’s Law

Displacement current(added by Maxwell)

),(),(

),(   t  J t 

t  Dt  H    r

rr +

&

&=(%

Conductioncurrent

• A time-varying displacement (electric

field) OR current generates magnetic

field with rotation

• Another way to state ‘generates’ is to say ‘is

accompanied by’

• The displacement current term allows forexistence of electromagnetic waves (when

 J = 0, E still accompanied by H )

• Recall curl is a measure of field rotation –

how much vector curls around a given point

8/10/2019 Introduction to Photonics lecture 13-14-15 16 Electromagnetic Optics(1)

http://slidepdf.com/reader/full/introduction-to-photonics-lecture-13-14-15-16-electromagnetic-optics1 13/59

13

M.E. 2: Faraday’s Law

t  Bt  E 

&

&'=(%

  ),(),(  r

r

• A time-varying magnetic flux (magnetic field) generates an

electric field with rotation• Rotating current (field) on a solenoid generates magnetic field

• Time-varying magnetic field generates counter current due to

rotating (curl) electric field

8/10/2019 Introduction to Photonics lecture 13-14-15 16 Electromagnetic Optics(1)

http://slidepdf.com/reader/full/introduction-to-photonics-lecture-13-14-15-16-electromagnetic-optics1 14/59

14

M.E. 3: Gauss’s Law

• The divergence of the electric displacement (electric flux) isproportional to the charge density present at the point

• Mathematical expression for Coulomb’s law

• Relates charge to electric field

• Recall that divergence is a measure of total outgoing flux per unit

volume

),(),(   t t  D   rr   # =$%

8/10/2019 Introduction to Photonics lecture 13-14-15 16 Electromagnetic Optics(1)

http://slidepdf.com/reader/full/introduction-to-photonics-lecture-13-14-15-16-electromagnetic-optics1 15/59

15

M.E. 4: Absence of Magnetic Charges

• There are no points in space that act as sources/sinks formagnetic field lines (or magnetic flux)

• Magnetic field lines always close on themselves

• There are no magnetic charges (magnetic monopoles)

0),( =$%   t  B  r

8/10/2019 Introduction to Photonics lecture 13-14-15 16 Electromagnetic Optics(1)

http://slidepdf.com/reader/full/introduction-to-photonics-lecture-13-14-15-16-electromagnetic-optics1 16/59

Introduction to Photonics

Lecture 13/14/15/16: Electromagnetic OpticsNovember 3/5/10/12, 2014

• Electromagnetic theory

• Review of Maxwell’s equations

• Electromagnetic waves in dielectric media

• Conductive media

• Time-harmonic ME and TEM waves

• Absorption and dispersion

• Resonant media and Lorentz model 16

8/10/2019 Introduction to Photonics lecture 13-14-15 16 Electromagnetic Optics(1)

http://slidepdf.com/reader/full/introduction-to-photonics-lecture-13-14-15-16-electromagnetic-optics1 17/59

17

Review of Maxwell’s Equations

•  E (r, t ) , H (r, t ) are electric and magnetic fields – Units of E : [V/m]; Units of H : [A/m]

 – Six functions of E and H must satisfy M.E.

•  D(r, t ) is electric flux density (or displacement

field) [C/m2]

•  B(r, t ) is magnetic flux density [W/m2 = T]

•   ! is electric permittivity [F/m]

 –   ! 0 = 8.854 x 10-12 F/m

• µ is magnetic permeability [H/m]

 – µ 0 = 4" x 10-7 H/m

•  J (r, t ) is current density [A/m2]

•   # (r, t ) is charge denstiy [C/m2]

• P(r, t ) is polarization density [C/m2]

•  M (r, t ) is magnetization density [A/m]

• Many variables, however, this is for any arbitrary medium

• Relationships simplify for many media

0),(

),(),(

),(),(

),(),(

),(

=$%

=$%

&

&'=(%

+&

&=(%

t  B

t t  D

t  Bt  E 

t  J t 

t  Dt  H 

r

rr

rr

rr

r

 # 

),(),(),(

),(),(),(

t  M t  H t  B

t Pt  E t  D

rrr

rrr

µ µ 

+=

+=

8/10/2019 Introduction to Photonics lecture 13-14-15 16 Electromagnetic Optics(1)

http://slidepdf.com/reader/full/introduction-to-photonics-lecture-13-14-15-16-electromagnetic-optics1 18/59

Nondispersive:

Material is memoryless, i.e., P at time t is related

to E at same time, but not to prior values

Linear

Nonlinear1.

Linear:

Any component of P is weighted superposition

of components of E 

Nondispersive

Dispersive

4.

Isotropic

Anisotropic3.

Isotropic:System is invariant to rotation of coordinate

system. P is parallel to E 

Homogeneous

2.

Homogenous:

System is invariant to displacement; relationbetween P and E is independent of position

Nonhomogeneous

18

Properties of Dielectric Media

8/10/2019 Introduction to Photonics lecture 13-14-15 16 Electromagnetic Optics(1)

http://slidepdf.com/reader/full/introduction-to-photonics-lecture-13-14-15-16-electromagnetic-optics1 19/59

Linear, Nondispersive, Homogeneous,

Isotropic Media

%2u - (1/c2)&2u/ &t 2=0 c = (! µ )-1/2 = co /n

 , ! 

! +===   1

0

0

c

cn

0µ µ =non-magnetic materials:

0

0

0

=$%

=$%

&

&'=(%

&

&=(%

 H 

 E 

 H  E 

 E  H 

µ 

)1(0

0

 , ! ! 

+=

=

=

 E  D

 E P

Contains only

 E, H fields

8/10/2019 Introduction to Photonics lecture 13-14-15 16 Electromagnetic Optics(1)

http://slidepdf.com/reader/full/introduction-to-photonics-lecture-13-14-15-16-electromagnetic-optics1 20/59

Time-Harmonic Fields

A monochromatic (time-harmonic) field can be written as:

Spatial complex amplitude

])()([2

1})(Re{),(

  t  j t  j t  j  eeet  E    - - -    '.+==   rErErEr

)cos()(

)sin()}(Im{)cos()}(Re{),(

/ - 

- - 

+=

+=

t t t  E 

rE

rErEr

This is a different way of writing:

where !! "

 #$$% 

& =   '

)}(Re{

)}(Im{tan(   1

rE

rEr)/ 

8/10/2019 Introduction to Photonics lecture 13-14-15 16 Electromagnetic Optics(1)

http://slidepdf.com/reader/full/introduction-to-photonics-lecture-13-14-15-16-electromagnetic-optics1 21/59

M.E. for Time-Harmonic Fields

Expressed with only complex spatial amplitudes

where complex permittivity is:

0 (1 )   i0 

! ! , - 

= + +

B

!D

BE

JDH

$%

=$%

'=(%

+=(%

 j 

 j 

MHB

PED

00

0

µ µ 

+=

+=

8/10/2019 Introduction to Photonics lecture 13-14-15 16 Electromagnetic Optics(1)

http://slidepdf.com/reader/full/introduction-to-photonics-lecture-13-14-15-16-electromagnetic-optics1 22/59

Plane Harmonic Waves

Plane harmonic (monochromatic waves) are defined as:

M.E. for plane monochromatic waves are derived using properties of differential operators:

constant vector

!differential operators act as a multiplication operation

From M.E. we see that:

0

0

0 0

0 0

0

0

k E 

k H 

k E H 

k H E 

- µ 

-! 

$ =

$ =

( =

( = '

)(

0),(  rk t  j 

e E t  E   $'=   - 

r   r jk e E 

  $'= 0)(rE

complex amplitude

 jk 

 j t 

1%

1&

&- 

8/10/2019 Introduction to Photonics lecture 13-14-15 16 Electromagnetic Optics(1)

http://slidepdf.com/reader/full/introduction-to-photonics-lecture-13-14-15-16-electromagnetic-optics1 23/59

Helmholtz Equations

For source-free media, and time-harmonic fields:

Typical scattering problem

0

0

22

22

=+%

=+%

HH

EE

Vector Helmholtz equations:

! µ - 22 =k 

What are the boundary conditions ?

%$%)%2 is a dyadic which, when operated

on a vector yields a vector.

In the special case where E is specified relative to a rectangular

Cartesian coordinate system ! the components of E separatelysatisfy the scalar wave equation:

022 =+%   2 2    k 

8/10/2019 Introduction to Photonics lecture 13-14-15 16 Electromagnetic Optics(1)

http://slidepdf.com/reader/full/introduction-to-photonics-lecture-13-14-15-16-electromagnetic-optics1 24/59

0=$%

=$%

 B

 D

0

  3

=$

=$

''

'''''

&

&

V V 

dAn B

rd dAn D   # 

( )( )   012

12

=$'

=$'

n B Bn D D   0 

 B E 

t  D J  H 

&

&'=(%

&&+=(%

'''

'''

$! "

 #$% 

&

&'=$

$! "

 #$% 

&

&+=$

&

&

S S 

S S 

dAnt 

 Bdl E 

dAnt 

 D J dl H 

 

( )( )   K  H  H n

 E  E n

='(

='(

12

12   0

Using the divergence theorem

:K  Surface

current density :0  Surface charge

density

Using Stokes’s theorem

Boundary Conditions

8/10/2019 Introduction to Photonics lecture 13-14-15 16 Electromagnetic Optics(1)

http://slidepdf.com/reader/full/introduction-to-photonics-lecture-13-14-15-16-electromagnetic-optics1 25/59

Boundary Conditions

From M.E. 1, 2:

From M.E. 3, 4:

( )( )

0i j 

i j 

n E E 

n H H K  

( ' =

( ' =

( )( )   0

i j 

i j 

n D D

n B B

0 $ ' =

$ ' =

a surface current

density may be present

a surface charge

density may be present

Tangential components

Condition:

Normal components

Condition:

8/10/2019 Introduction to Photonics lecture 13-14-15 16 Electromagnetic Optics(1)

http://slidepdf.com/reader/full/introduction-to-photonics-lecture-13-14-15-16-electromagnetic-optics1 26/59

Tangential components of E, H" continuous

Normal components of D, B" continuous

Boundary Conditions

8/10/2019 Introduction to Photonics lecture 13-14-15 16 Electromagnetic Optics(1)

http://slidepdf.com/reader/full/introduction-to-photonics-lecture-13-14-15-16-electromagnetic-optics1 27/59

The simplest solution of Maxwell’s equations in free space is the harmonic transverse

electromagnetic wave (TEM) wave

TEM Wave

3 o = µ o   ! o = 377 Ohms

Properties:

• E and H are orthogonal to one another and to the direction of propagation (the z direction)

• The ratio of the magnitudes of E and H is the impedance = 377 Ohms.

z

x

y

E

H

H

z

E

E = E oe j - (t ' z/c o ) ˆ x

H = E o3 o

e j - ( t ' z/ co ) ˆ y

3 o = µ o   ! o

8/10/2019 Introduction to Photonics lecture 13-14-15 16 Electromagnetic Optics(1)

http://slidepdf.com/reader/full/introduction-to-photonics-lecture-13-14-15-16-electromagnetic-optics1 28/59

Poynting Vector and Energy Flow

S E H =   ( Poynting vector (power flux density, W/cm2)

[ ]1

2W D E B H  =   $ +   $ E&M energy density (J/cm3)

Specifies the transfer rate of E&M energy: of fundamental importance in propagation, absorption, scattering

The rate at which E&M energy is transferred across a general surface:

 A

W S ndA= ' $'

Positive if energy is absorbed inside V

For harmonic fields in linear media, the time-averaged Poynting vector is:

{ }1

Re ( ) *( )2

S E r H r=   (This is a relevant experimental quantity:=),(   t r I 

Optical intensity

8/10/2019 Introduction to Photonics lecture 13-14-15 16 Electromagnetic Optics(1)

http://slidepdf.com/reader/full/introduction-to-photonics-lecture-13-14-15-16-electromagnetic-optics1 29/59

Intensity Relations for TEM Waves

.(=   H  E S 

2

1

3 2

2

0 E  I =   2

02

1 E W    ! =

cW  I =Time-averaged power density flow =

transport of time-averaged energy density

at the velocity of light

8/10/2019 Introduction to Photonics lecture 13-14-15 16 Electromagnetic Optics(1)

http://slidepdf.com/reader/full/introduction-to-photonics-lecture-13-14-15-16-electromagnetic-optics1 30/59

=   4 + j   4 4 

k = - ! µ o =   1+ , k o =   1+   4  ,   + j   4 4  ,   k o

k = 5   ' j  12 6    5  ' j  12 6 = k o   1+   4  ,   + j    4 4  ,  

n  ' j   6 

2k o=   1+   4  ,   + j   4 4  ,  

Absorption is governed by a complex susceptibility:

Complex wavenumber

Let

6  = absorption coefficient , attenuation coefficient, or extinction coefficient

U = e' jkz

= e' j ( 5 '   1

26 ) z

= e' 1

26  z

e' j  5  z  I = U 

 2= e

'6  z

 5  = propagation constant = nk o

Expression relating refractive index and

absorption coefficient to complex

susceptibility

z

Attenuated wave

Absorption

then,

Expression for plane wave:

! = ! o(1 +  , )Complex permittivity

8/10/2019 Introduction to Photonics lecture 13-14-15 16 Electromagnetic Optics(1)

http://slidepdf.com/reader/full/introduction-to-photonics-lecture-13-14-15-16-electromagnetic-optics1 31/59

8/10/2019 Introduction to Photonics lecture 13-14-15 16 Electromagnetic Optics(1)

http://slidepdf.com/reader/full/introduction-to-photonics-lecture-13-14-15-16-electromagnetic-optics1 32/59

Strongly Absorbing Media

'1''   ,  ,  +>>

2/)''(2

2/)''(

0   , 6 

 , 

'8

'8

n

00'' >(<   6 Note that

)''()1(2

1)''(''2/ 0   ,  ,  , 6    ''±=''=8'   j  j  j k  j n

8/10/2019 Introduction to Photonics lecture 13-14-15 16 Electromagnetic Optics(1)

http://slidepdf.com/reader/full/introduction-to-photonics-lecture-13-14-15-16-electromagnetic-optics1 33/59

Remarks on Conventions

In general:

n

 5 

6 are REAL quantities

k are COMPLEX quantities

'''1/2

10

0

 ,  , ! ! 6 

 j k 

 j n ++=='6  5 2

1 j k    '=

 , 

µ 3 

+

==

1

00Complex impedance:0nk = 5 

Propagation constant

(effective refractive index):

Complex wavenumber:

8/10/2019 Introduction to Photonics lecture 13-14-15 16 Electromagnetic Optics(1)

http://slidepdf.com/reader/full/introduction-to-photonics-lecture-13-14-15-16-electromagnetic-optics1 34/59

Complex Refractive Index

With 0   ( ) E E f k r t - =   $ ' we can obtain the dispersion relation

2 2

2  ( )

c k ! - 

- =

complex electric permitivity

( ) ( )n n i- 9 ! -  = + =!Where

Complex refractive index

)(~)(   - - ! 

n

cc

k ==

(relation between k and - )

8/10/2019 Introduction to Photonics lecture 13-14-15 16 Electromagnetic Optics(1)

http://slidepdf.com/reader/full/introduction-to-photonics-lecture-13-14-15-16-electromagnetic-optics1 35/59

Complex Refractive Index

( ) ( )n n i- 9 ! -  = + =!

0

( )n

: : 

- =

0

4( ) ( )

" 6 - 9 -  

=

Snell’s law refractive index

(real dispersion)

Intensity extinction

(energy dissipation)

Re( ) ( ) ph

g

cv

k n

vk 

= =

&=

&

Absorption coefficient

)(~)(   - - ! 

- n

cck 

==

8/10/2019 Introduction to Photonics lecture 13-14-15 16 Electromagnetic Optics(1)

http://slidepdf.com/reader/full/introduction-to-photonics-lecture-13-14-15-16-electromagnetic-optics1 36/59

Alternative Relations

2 ( )n   ! - =!  ( )

( ) ' ''

n n i

i

- 9 

! - ! !  

= +

= +

!

2 2'

'' 2

n

n

! 9 

! 9 

=   '

=

( ) ( )

( ) ( )

2 2

2 2

' '' '

2

' '' '

2

n! ! ! 

! ! ! 9 

+ +=

+   '=

Or, equivalently:

( , ) ( ', '')n  9 ! ! ;

connection describes the intrinsic

optical properties of matter

!  +=1

Complex refractive index

8/10/2019 Introduction to Photonics lecture 13-14-15 16 Electromagnetic Optics(1)

http://slidepdf.com/reader/full/introduction-to-photonics-lecture-13-14-15-16-electromagnetic-optics1 37/59

Kramers-Kronig Relations

Hilbert transform pairs

For any linear, shift-invariant, causal system with real impulse-response functions,

 , ’ and , ’’ are related through Kramers-Kronig relations:

Kramers-Kronig relations for n and 6 

Relation between absorption and dispersion: if n(: )!

then 6 (: )

8/10/2019 Introduction to Photonics lecture 13-14-15 16 Electromagnetic Optics(1)

http://slidepdf.com/reader/full/introduction-to-photonics-lecture-13-14-15-16-electromagnetic-optics1 38/59

Optical Transmission

8/10/2019 Introduction to Photonics lecture 13-14-15 16 Electromagnetic Optics(1)

http://slidepdf.com/reader/full/introduction-to-photonics-lecture-13-14-15-16-electromagnetic-optics1 39/59

  P 

Origin of Frequency Dependence of Susceptibility

Regard the P-E relation

as a (dynamic) linear system

!Since  ,  is frequency dependent,

n and 6 are also frequency dependent.n(- )  ' j   6 (- )

2-   co

=   1 +   4  ,  (- )+ j   4 4  ,   (- )

 P (t ) =! o '   , (t  ' 4 t )E (   4 t )d   4 t

Dielectric mediumLinear, homogeneous, isotropic

})(Re{)(   t  j et  E    - - E=   )()()( 0   - -- - - -- - ! !! ! - -- -    EP =

8/10/2019 Introduction to Photonics lecture 13-14-15 16 Electromagnetic Optics(1)

http://slidepdf.com/reader/full/introduction-to-photonics-lecture-13-14-15-16-electromagnetic-optics1 40/59

LSI Systems and Dielectric Media

  Electric dipole

)(t P : response (real)

)(t  E  : input (real)

)(0   t !  : impulse-response (real)

)(0   < !  : transfer function

*)()(   <  , <  ,  =' : Hermitian symmetry

 P ( t ) =! o '   , (t  ' 4 t )E (   4 t )d   4 t

)(t 7 

Recall LSI = linear, shift-invariant

 P P = - Nex

 N : atomic density

-e: electronic charge

 x: charge displacement

8/10/2019 Introduction to Photonics lecture 13-14-15 16 Electromagnetic Optics(1)

http://slidepdf.com/reader/full/introduction-to-photonics-lecture-13-14-15-16-electromagnetic-optics1 41/59

Resonant Medium: Lorentz Model

 NpP

ex p

=

'= induced dipole moment/atom

(-e = electron charge; x = displacement)

polarization density

( N = atomic density)

Lorentz model of materials

,m e“There is not a single granule oflight which is not the fruit of an

oscillating charge.” - A. Lorentz

How do we model the dipole moment (of an atom) induced by incident electric field?

! model motion of bound charge as driven harmonic oscillator

t  j 

cloc   e E  E 

  - 

= : local electric field that induces dipole moment

8/10/2019 Introduction to Photonics lecture 13-14-15 16 Electromagnetic Optics(1)

http://slidepdf.com/reader/full/introduction-to-photonics-lecture-13-14-15-16-electromagnetic-optics1 42/59

Lorentz model of materials

,m e

With harmonic driving field:

2

0   /

/

K m

b m

=

=

driving force

Solution:

Resonant Medium: Lorentz Model

loceE Kxdt 

dxb

dt 

 xd m   '=++

2

2

damping constant

resonant frequency

loceE  xmdt 

dxm

dt 

 xd m   '=++   2

02

2

- = 

t  j cloc   e E  E    - =   t  j 

c e x x   - =

)(   22

0   =- - -    j m

eE  x   c

c+'

'=Note: complex representation of real

time-harmonic quantities

8/10/2019 Introduction to Photonics lecture 13-14-15 16 Electromagnetic Optics(1)

http://slidepdf.com/reader/full/introduction-to-photonics-lecture-13-14-15-16-electromagnetic-optics1 43/59

43

loceE  xm

dt 

dxm

dt 

 xd m   '=++   2

02

2

- = 

Resonant Medium: Lorentz Model

mass*

acceleration

Where does this come from?

restore frictionexternaltotal

total

F F F F 

maF 

++=

= Newton’s Law

Driving force from

electric field of

incident wave

Friction/damping

(loss: due to

emission,

scattering/

collisions)

Restoring

force

8/10/2019 Introduction to Photonics lecture 13-14-15 16 Electromagnetic Optics(1)

http://slidepdf.com/reader/full/introduction-to-photonics-lecture-13-14-15-16-electromagnetic-optics1 44/59

Collection of Oscillators

Induced dipole moment of an oscillator is:

Polarization density of medium containing N oscillators/unit volume is:

Where we have defined the plasma frequency:

22

0

 p

 Ne

m- 

! =

0P E ! , =

ex p   '=

 Nex NpP   '==

 E  j 

P   p

022

0

2

! =- - - 

- +'

=

Recall:=- - - 

-  , 

 j 

 p

+'=

22

0

2

8/10/2019 Introduction to Photonics lecture 13-14-15 16 Electromagnetic Optics(1)

http://slidepdf.com/reader/full/introduction-to-photonics-lecture-13-14-15-16-electromagnetic-optics1 45/59

Dielectric Permittivity of Oscillators

2

2 2

0

1 1  p

i

- ! , - - =-  

= + = +' '

' ''i! ! ! = +

( )( )

( )

2 2 2

0

22 2 2 2

0

2

22 2 2 2

0

' 1

''

 p

 p

- - - ! 

- - = -  

- =- ! 

- - = -  

'= +

' +

=

' +

1

0P E ! , =

8/10/2019 Introduction to Photonics lecture 13-14-15 16 Electromagnetic Optics(1)

http://slidepdf.com/reader/full/introduction-to-photonics-lecture-13-14-15-16-electromagnetic-optics1 46/59

8/10/2019 Introduction to Photonics lecture 13-14-15 16 Electromagnetic Optics(1)

http://slidepdf.com/reader/full/introduction-to-photonics-lecture-13-14-15-16-electromagnetic-optics1 47/59

The Resonant Medium

 

&2 x

&t 2 +0 

& x

&t +- o

2 x=

 e

mE 

 , (< ) =  , o< o

2

< o2

' < 2+ j < >< 

 P 

 

&2P 

&t 2 +0 

 &P 

&t +- o

2P =- o

2! o , oE 

 , o =  e2 N 

m! o- o2

Electric Dipole

>< =  0 

2" Lorentzian susceptibility

m = mass of bound electron,

9 = elastic constant of restoring force

- o =(9  /m)1/2 = resonance frequency

0 = damping coefficient

Solutions of the form:

{ }t  j 

t  j 

et P

et  E 

P

E

Re)(

Re)(

=

=

 P  = Nex

0P E ! , =  " 

- <  2

00 =

8/10/2019 Introduction to Photonics lecture 13-14-15 16 Electromagnetic Optics(1)

http://slidepdf.com/reader/full/introduction-to-photonics-lecture-13-14-15-16-electromagnetic-optics1 48/59

Structure of the Lorentz Susceptibility

>=   0Q

" < 

2=>

Low frequency limit

)/12/(0   QQ   "±Max/min of :)(' <  ,  occurring at :   Q/110   "< 

2

00

2

0

- ! 

 , 

m

 Ne=

Low-frequency

susceptibility

 , (< ) = , o< o

2

< o2

' < 2+ j < >< 

Plots of real and imaginary parts

Peak of - , ’’

For < >> < 0,  , ’  8  , ’’ 8 0

4  ,   (<  ) =  , o

< o2

< o2

' <  2( )

< o

2' <  2( )

2+   < >< ( )2

4 4  ,   (< ) =  ' , o< o

2< >< 

< o2

' < 2( )2

+   < >< ( )2

8/10/2019 Introduction to Photonics lecture 13-14-15 16 Electromagnetic Optics(1)

http://slidepdf.com/reader/full/introduction-to-photonics-lecture-13-14-15-16-electromagnetic-optics1 49/59

8/10/2019 Introduction to Photonics lecture 13-14-15 16 Electromagnetic Optics(1)

http://slidepdf.com/reader/full/introduction-to-photonics-lecture-13-14-15-16-electromagnetic-optics1 50/59

Dielectric Permittivity Approximations

For frequencies in the vicinity of 0- 

( )

( ) ( )

( ) ( )

0 0

2 2

0

0

2 2

0

/ 2' 1

/ 2

/ 4''

/ 2

 p

 p

- - - -  ! 

- - = 

=- - ! 

- - = 

'8 +

' +

8

' +

2

pmax

0

0

max max

min max

''

FWHM( '') / 2

' 1 '' / 2

' 1 '' / 2

- ! =- 

! - - =  

! ! 

! ! 

8

1 ' = ±

= +

=   'Lorentzian lineshape

(

8/10/2019 Introduction to Photonics lecture 13-14-15 16 Electromagnetic Optics(1)

http://slidepdf.com/reader/full/introduction-to-photonics-lecture-13-14-15-16-electromagnetic-optics1 51/59

Absorption/Refraction

One resonance

(dilute concentration

of atoms)

Multiple resonances

(different lattice and

electronic vibrations)

! Overall susceptibility

from superposition of 

resonances

'''1/2

10

0 ,  , ! ! 

6  j k  j n ++=='

Recall:  , ’’ confined near

resonances;  , ’ near and

below resonance

!Absoption anddispersion strong near

resonance;

Away from resonance n

constant (nondispersive,

nonabsorptive)

8/10/2019 Introduction to Photonics lecture 13-14-15 16 Electromagnetic Optics(1)

http://slidepdf.com/reader/full/introduction-to-photonics-lecture-13-14-15-16-electromagnetic-optics1 52/59

Transparent [in Visible]

Although medium is approximately nondispersive/nonabsorptive away from resonance,

each resonance contributes to value of refractive index away from [below] resonance

Recall Kramers-Kronig relations:

8/10/2019 Introduction to Photonics lecture 13-14-15 16 Electromagnetic Optics(1)

http://slidepdf.com/reader/full/introduction-to-photonics-lecture-13-14-15-16-electromagnetic-optics1 53/59

Absorption/Refraction

One resonance

(dilute concentration

of atoms)

Multiple resonances

(different lattice and

electronic vibrations)

! Overall susceptibility

from superposition of 

resonances

'''1/2

10

0 ,  , ! ! 

6  j k  j n ++=='

Recall:  , ’’ confined near

resonances;  , ’ near and

below resonance

!Absoption anddispersion strong near

resonance;

Away from resonance n

constant (nondispersive,

nonabsorptive)

8/10/2019 Introduction to Photonics lecture 13-14-15 16 Electromagnetic Optics(1)

http://slidepdf.com/reader/full/introduction-to-photonics-lecture-13-14-15-16-electromagnetic-optics1 54/59

The Sellmeier Equation (far from resonance)!susceptibility is a sum of terms

Media with multiple resonances

n2(: )  8 1 +   , i

: 2

: 2

'  : i2

i

)

n28 1+   , oi

< i2

< i2

' < 2

i)

• Electronic vibrations• Lattice vibrations

Superpositionof different contributions

The imaginary part is confined near resonance

The real part contributes at all frequencies

The Sellmeier Equation

oi

8/10/2019 Introduction to Photonics lecture 13-14-15 16 Electromagnetic Optics(1)

http://slidepdf.com/reader/full/introduction-to-photonics-lecture-13-14-15-16-electromagnetic-optics1 55/59

 N  = n   ' :  dn

d :    D:  =   ' : 

c

d 2n

d : 2

= group index

c/N = group velocity

= dispersion coefficient(ps/km-nm)

Refractive Index of Silica Glass in the Transparent Region

(well described by three resonances)

 , 1=.6961663; : 1 =.0684043 µm

 , 2 =0.4079426; : 2 =0.1162414 µm

 , 3 =0.89794; : 3 =9.896161 µmn 2(: )  8 1 +   , i

: 2

: 2

'  : i2

i)

D : 

8/10/2019 Introduction to Photonics lecture 13-14-15 16 Electromagnetic Optics(1)

http://slidepdf.com/reader/full/introduction-to-photonics-lecture-13-14-15-16-electromagnetic-optics1 56/59

Refractive Index Dispersion

8/10/2019 Introduction to Photonics lecture 13-14-15 16 Electromagnetic Optics(1)

http://slidepdf.com/reader/full/introduction-to-photonics-lecture-13-14-15-16-electromagnetic-optics1 57/59

8/10/2019 Introduction to Photonics lecture 13-14-15 16 Electromagnetic Optics(1)

http://slidepdf.com/reader/full/introduction-to-photonics-lecture-13-14-15-16-electromagnetic-optics1 58/59

58

Optics of Conducting Media

EH eff  j -! =(%

0µ ! -  eff k =

Describes wave propagation with

eff ! 

µ 3    0=

n and 6 determined from

00   /2/   ! ! 6  eff k  j n ='- 

0 ! ! ! 

 j reff  += 0

When conductive effects dominate

0 ! 

 j eff   8

0 - µ 3 

0 - µ 6 

-! 0 

2/)1(

2

2/

0

0

0

 j 

n

+8

8

8

, where

8/10/2019 Introduction to Photonics lecture 13-14-15 16 Electromagnetic Optics(1)

http://slidepdf.com/reader/full/introduction-to-photonics-lecture-13-14-15-16-electromagnetic-optics1 59/59

Physical Meaning

Where complex permittivity defined as:

bound charge current density

free charge current density

Im( ) Im( ) Re  0 

! , - 

& #= + $ !

% "

Both conductivity and susceptibility contribute to the imaginary part of the permittivity

If the imaginary parts of  µ or !  are nonzero, the amplitude of a plane wave will

decrease as it propagates in the medium! absorption

Complex phenomenological coefficients of a medium are equivalent to a phase

difference between P and E (or H and B) and are manifested by absorption

! "

 #$% 

& ++=

0  , ! !    j )1(0