Introduction to particle physics Part IV

31
INTRODUCTION TO PARTICLE PHYSICS PART IV Physics 129, Fall 2010; Prof. D. Budker

description

Physics 129, Fall 2010; Prof. D. Budker . Introduction to particle physics Part IV. Bubble chamber. The Gargamelle at CERN: discovered weak neutral currents in 1973 . Great topics for oral presenantion !. Professor Donald A. Glaser. How particles d e c a y. - PowerPoint PPT Presentation

Transcript of Introduction to particle physics Part IV

Page 1: Introduction  to particle  physics Part IV

INTRODUCTION TO PARTICLE PHYSICS

PART IV

Physics 129, Fall 2010; Prof. D. Budker

Page 2: Introduction  to particle  physics Part IV

Physics 129, Fall 2010, Prof. D. Budker; http://budker.berkeley.edu/Physics129_2010/Phys129.html

Bubble chamber

Great topics for oral presenantion!

The Gargamelle at CERN: discovered weak neutral currents in 1973

Professor Donald A. Glaser

Page 3: Introduction  to particle  physics Part IV

Physics 129, Fall 2010, Prof. D. Budker; http://budker.berkeley.edu/Physics129_2010/Phys129.html

How particles decay

• Decay probability goes as dt :

• Particles do not age!

• Board work: Mean Lifetime = 1/

• Branching Ratios

• Partial decay rates add

teNtNdtNdN )0()(

Page 4: Introduction  to particle  physics Part IV

Physics 129, Fall 2010, Prof. D. Budker; http://budker.berkeley.edu/Physics129_2010/Phys129.html

Cross Sections

• Effective area

• Inclusive vs. exclusive

• Elastic vs. inelastic (different reactions are called channels)

• Resonances

Page 5: Introduction  to particle  physics Part IV

Physics 129, Fall 2010, Prof. D. Budker; http://budker.berkeley.edu/Physics129_2010/Phys129.html

Cross Sections

• Effective area

• Differential cross section

dd

Page 6: Introduction  to particle  physics Part IV

Physics 129, Fall 2010, Prof. D. Budker; http://budker.berkeley.edu/Physics129_2010/Phys129.html

Cross Sections

Page 7: Introduction  to particle  physics Part IV

Physics 129, Fall 2010, Prof. D. Budker; http://budker.berkeley.edu/Physics129_2010/Phys129.html

Cross Sections• Some cross-sections diverge (e.g., for Rutherford scattering)

• Effective cut-off

Page 8: Introduction  to particle  physics Part IV

Physics 129, Fall 2010, Prof. D. Budker; http://budker.berkeley.edu/Physics129_2010/Phys129.html

Cross Sections

Page 9: Introduction  to particle  physics Part IV

Physics 129, Fall 2010, Prof. D. Budker; http://budker.berkeley.edu/Physics129_2010/Phys129.html

Mandelstam Variables

Universally used!

Page 10: Introduction  to particle  physics Part IV

Physics 129, Fall 2010, Prof. D. Budker; http://budker.berkeley.edu/Physics129_2010/Phys129.html

Units of cross section

Origin: Uranium nucleus 10-24 cm2 --- as "big as a barn"

Unit Symbol m2 cm2

megabarn Mb 10−22 10−18

barn b 10−28 10−24

millibarn mb 10−31 10−27

microbarn (or "outhouse"[3]) μb 10−34 10−30

nanobarn nb 10−37 10−33

picobarn pb 10−40 10−36

femtobarn fb 10−43 10−39

attobarn ab 10−46 10−42

shed[4][5] (10−24 barn) [none] 10−52 10−48

Page 11: Introduction  to particle  physics Part IV

Physics 129, Fall 2010, Prof. D. Budker; http://budker.berkeley.edu/Physics129_2010/Phys129.html

Cross Sections

• Luminosity: number of particles in a beam per unit area per unit time

Page 12: Introduction  to particle  physics Part IV

Physics 129, Fall 2010, Prof. D. Budker; http://budker.berkeley.edu/Physics129_2010/Phys129.html

Luminosity

• What about colliding beams?

• Luminosity = collision frequency n1 n2 / beam area

Page 13: Introduction  to particle  physics Part IV

Physics 129, Fall 2010, Prof. D. Budker; http://budker.berkeley.edu/Physics129_2010/Phys129.html

Luminosity

Page 14: Introduction  to particle  physics Part IV

Physics 129, Fall 2010, Prof. D. Budker; http://budker.berkeley.edu/Physics129_2010/Phys129.html

LHC luminosity: reality check

Page 15: Introduction  to particle  physics Part IV

Physics 129, Fall 2010, Prof. D. Budker; http://budker.berkeley.edu/Physics129_2010/Phys129.html

The Fermi Golden Rule

• mi – mass of ith particle

• pi – 4-momentum of ith particle

• S – statistical factor accounting for identical particles

• M – amplitude (p1, …. , pn)

Page 16: Introduction  to particle  physics Part IV

Physics 129, Fall 2010, Prof. D. Budker; http://budker.berkeley.edu/Physics129_2010/Phys129.html

The Fermi Golden Rule

• Kinematic constraints:

All outgoing particles are on the mass shell

All outgoing particles have positive energy

Energy & momentum conservation

Page 17: Introduction  to particle  physics Part IV

Physics 129, Fall 2010, Prof. D. Budker; http://budker.berkeley.edu/Physics129_2010/Phys129.html

The Fermi Golden Rule

• 2π rules:

Every δ gets a 2π

Every d gets a 1/(2π)

Page 18: Introduction  to particle  physics Part IV

Physics 129, Fall 2010, Prof. D. Budker; http://budker.berkeley.edu/Physics129_2010/Phys129.html

The Fermi Golden Rule• With the kinematic constraints, the G.R. simplifies to:

• For two-body decay: 2

218M

cmpS

Page 19: Introduction  to particle  physics Part IV

Physics 129, Fall 2010, Prof. D. Budker; http://budker.berkeley.edu/Physics129_2010/Phys129.html

The Feynman-Diagram Rules

• Goal: figure out amplitude M

• Draw all possible diagrams for the

process

• The amplitudes from different

diagrams add

Page 20: Introduction  to particle  physics Part IV

Physics 129, Fall 2010, Prof. D. Budker; http://budker.berkeley.edu/Physics129_2010/Phys129.html

The Feynman-Diagram Rules• For each diagram:

1. Label external momenta pi , label internal momenta qi, draw arrows (arbitrary for internal lines)

2. For each vertex, write coupling constant 3. Each internal line propagator:

4. For each vertex: energy/momentum conservation: (minus for outgoing lines)

5. Add for each internal line; integrate

6. Erase the resulting ; multiply by

• The result is M ; examples in Ch. 6 of Griffiths

ig

222 cmqi

jj

321442 kkk

qd 4

421

nppp ...2 2144 i

Page 21: Introduction  to particle  physics Part IV

Physics 129, Fall 2010, Prof. D. Budker; http://budker.berkeley.edu/Physics129_2010/Phys129.html

Higher-order diagrams

• Problem: loop integrals (logarithmically) diverge at large q

• This is not because the diagrams are bad!

• Regularization: introduce a heavy particle cut-off (p. 219)

• Renormalization; running coupling constants….

Page 22: Introduction  to particle  physics Part IV

Physics 129, Fall 2010, Prof. D. Budker; http://budker.berkeley.edu/Physics129_2010/Phys129.html

Example/interlude: Diagrams in

Page 23: Introduction  to particle  physics Part IV

Physics 129, Fall 2010, Prof. D. Budker; http://budker.berkeley.edu/Physics129_2010/Phys129.html

Example/interlude: Diagrams in

• Vanishes for

• Vanishes in the high-frequency limit

Page 24: Introduction  to particle  physics Part IV

Physics 129, Fall 2010, Prof. D. Budker; http://budker.berkeley.edu/Physics129_2010/Phys129.html

Relativistic Equations

Nonrelativistic

Relativistic; spin zero

Page 25: Introduction  to particle  physics Part IV

Physics 129, Fall 2010, Prof. D. Budker; http://budker.berkeley.edu/Physics129_2010/Phys129.html

The Dirac Equation (relativistic, spin ½)• Introduce 44 Dirac Matrices:

Relativistic; spin 1/2

Page 26: Introduction  to particle  physics Part IV

Physics 129, Fall 2010, Prof. D. Budker; http://budker.berkeley.edu/Physics129_2010/Phys129.html

Solving the Dirac Equation• Assume wavefunction independent of position:

Page 27: Introduction  to particle  physics Part IV

Physics 129, Fall 2010, Prof. D. Budker; http://budker.berkeley.edu/Physics129_2010/Phys129.html

Solving the Dirac Equation• Four independent solutions:

• The Dirac Sea

• Plane wave solutions (Sec. 7.2)

Electron Electron

Positron Positron

Page 28: Introduction  to particle  physics Part IV

Physics 129, Fall 2010, Prof. D. Budker; http://budker.berkeley.edu/Physics129_2010/Phys129.html

Dirac Spinor Algebra

• Some useful facts about spinors:

• How do Dirac spinors transform under P?

invariant! icRelativist

SpinorAdjoint 2

42

32

22

10

43210

scalar trueinvariant P

0

Page 29: Introduction  to particle  physics Part IV

Physics 129, Fall 2010, Prof. D. Budker; http://budker.berkeley.edu/Physics129_2010/Phys129.html

Dirac Spinor Algebra

• Introduce another matrix:

0010000110000100

32105 i

arpseudoscal odd P55

0

What about 4 ?

Page 30: Introduction  to particle  physics Part IV

Physics 129, Fall 2010, Prof. D. Budker; http://budker.berkeley.edu/Physics129_2010/Phys129.html

Bilinear Covariants

Page 31: Introduction  to particle  physics Part IV

Physics 129, Fall 2010, Prof. D. Budker; http://budker.berkeley.edu/Physics129_2010/Phys129.html