Introduction to neutron spectroscopy - GDR Mico

81
Introduction to neutron spectroscopy Yvan Sidis Yvan Sidis Laboratoire Léon Brillouin Laboratoire Léon Brillouin CEA-CNRS, Saclay Ecole d'été MICO – AUSSOIS , 5-11 juin 2010

Transcript of Introduction to neutron spectroscopy - GDR Mico

Page 1: Introduction to neutron spectroscopy - GDR Mico

Introduction to neutron spectroscopy

Yvan SidisYvan Sidis

Laboratoire Léon BrillouinLaboratoire Léon BrillouinCEA-CNRS, Saclay

Ecole d'été MICO – AUSSOIS , 5-11 juin 2010

Page 2: Introduction to neutron spectroscopy - GDR Mico

Neutron scattering cross-section

Theory

Page 3: Introduction to neutron spectroscopy - GDR Mico

Partial differential cross-section

Definition:

Page 4: Introduction to neutron spectroscopy - GDR Mico

Partial differential cross-section

Neutron: no charge spin ½ plane wave energy stateno charge spin ½ plane wave energy state

Target: energy state

Scattering: initial state final state g

Kinematic constraints

Page 5: Introduction to neutron spectroscopy - GDR Mico

Partial differential cross-section

Probability for the incidentneutron to be in the

Density of accessible states k'

spin state |>

Neutron fluxNeutron fluxProbability for the targetto be in the initial state |>

Page 6: Introduction to neutron spectroscopy - GDR Mico

Partial differential cross-section

Scattering potential

Partial differential scattering cross-section

Scattering potential

Page 7: Introduction to neutron spectroscopy - GDR Mico

Nuclear neutron scatteringNuclear neutron scattering

ThTheory

Page 8: Introduction to neutron spectroscopy - GDR Mico

Nuclear scattering: scattering by a single nucleus

b= scattering lengthScattering strength

•positive or negative•depend on the isotope

Page 9: Introduction to neutron spectroscopy - GDR Mico

Nuclear scattering: scattering by a single nucleus

Page 10: Introduction to neutron spectroscopy - GDR Mico

Nuclear scattering: scattering by a single nucleus

Non magnetic scattering :

Evaluation of the term :Evaluation of the term :

Page 11: Introduction to neutron spectroscopy - GDR Mico

Nuclear scattering: scattering by a single nucleus

Properties of the -function:

Time dependent operator:p p

Projector:

Thermodynamic average:

Page 12: Introduction to neutron spectroscopy - GDR Mico

Nuclear scattering: crystal

l

lr

dR

O

Page 13: Introduction to neutron spectroscopy - GDR Mico

Nuclear scattering: crystal

Scattering potential :g p

i di t fperiodic arrangment of the lattice

???Organisation of atoms within the unit cell

Page 14: Introduction to neutron spectroscopy - GDR Mico

Nuclear scattering: crystal

Elastic term Inelastic terms

Page 15: Introduction to neutron spectroscopy - GDR Mico

Nuclear scattering: crystal

Page 16: Introduction to neutron spectroscopy - GDR Mico

Nuclear scattering: Elastic scattering cross-section

Elastic structure factorElastic structure factorcrystal structure

Debye-Waller factor

Bragg reflections in reciprocal spacegg p p

Page 17: Introduction to neutron spectroscopy - GDR Mico

Nuclear scattering: Inelastic scattering cross-section

D i l fDynamical structure factorphonons

creation anihilationpolarization

Page 18: Introduction to neutron spectroscopy - GDR Mico

Lattice vibration(1)

Atoms oscillating in harmonic potentials

Sum of all forces on a given atom

Equation of motion

SFN 2010

Page 19: Introduction to neutron spectroscopy - GDR Mico

Lattice dynamics (2)Mono‐atomic chain

Fourier transform Zone boundaries

Dispersion relation

Zone centers

SFN 2010

Page 20: Introduction to neutron spectroscopy - GDR Mico

Lattice dynamics (3)Di‐atomic chain

Fourier transform: 2 sets of equations

Optical phononOut‐of‐phase vibration

Acoustic phononIn‐phase vibrations

SFN 2010

Page 21: Introduction to neutron spectroscopy - GDR Mico

Lattice dynamics (3)General case

Normal coordinates

Fourier transform:

Dynamical matrix of dimension

Eigenmodes = phonons = collective vibration modes

Longitundinal modes Transverse modes

o square root of the phonon frequencyphonon frequencyo phonon polarization

Page 22: Introduction to neutron spectroscopy - GDR Mico

Magnetic neutron scatteringMagnetic neutron scattering

ThTheory

Page 23: Introduction to neutron spectroscopy - GDR Mico

Magnetic scattering potentials

Scattering potential:

Neutron: magnetic moment operator Target: distribution ofinternal magnetic fields

(1) Spins of unpaired electron(2) Electronic orbital moments(3) Nuclear spins

spin only scattering: Di l i t ti ith l t i ispin-only scattering: Dipolar interaction with electronic spins

unpolarized neutron beam:

Page 24: Introduction to neutron spectroscopy - GDR Mico

Partial differential cross-section

prefactor Owing to the dipolarInteraction one can observe onlyInteraction one can observe only the spin components perp. to Q

Magnetic form factor =Fourier transform of the spinpDistribution on each atom

Page 25: Introduction to neutron spectroscopy - GDR Mico

Magnetic structure factor

For a single type of magnetic atom

Magnetic structure factor = Fourier transform in space and time of spin-spin correlation function

Page 26: Introduction to neutron spectroscopy - GDR Mico

Fluctuation-dissipation theorem & detailed balance factor

Detailed balance factor

Imaginary part of the dynamical magnetic susceptibility

Page 27: Introduction to neutron spectroscopy - GDR Mico

Ordered magnetic moment & spin waves

Page 28: Introduction to neutron spectroscopy - GDR Mico

Spin wave – Magnons (1)

Ferromagnetic chain:

Hamiltonian:

Spin fluctuations:Spin fluctuations:

E f tiEqn of motion:

M fi ldMean field approx.

Eqn of motion:

Page 29: Introduction to neutron spectroscopy - GDR Mico

Spin wave – Magnons (2)

Fourier components:

2coupled eqns

Fourier components:Fourier components:

Page 30: Introduction to neutron spectroscopy - GDR Mico

Spin wave – Magnons (3)

Spin wave:

Page 31: Introduction to neutron spectroscopy - GDR Mico

Neutron scattering techniqueNeutron scattering technique

Th R litTheory versus Reality

Page 32: Introduction to neutron spectroscopy - GDR Mico

Neutron sources

-(1) a Fission reactor: a thermalneutron is absorbed by a 235Unucleus which splits into fission

-(2) spallation: A high energy proton(~1GeV) chops pieces of a heavynucleus. Twenty to forty neutronsnucleus, which splits into fission

fragments and evaporates a fewneutrons with energy of 1 to 2MeV

y yare evaporated with energies oftypically a few MeV

MeV.

Page 33: Introduction to neutron spectroscopy - GDR Mico

Neutron energy and wave length

Neutrons then slow down by loosing energy through inelastic collisions with light atoms (H,D,Be).

Characteristic energy (meV).0.1 - 10 meV : cold neutrons (moderator: liquid H2 at 20 K)210 - 100 meV : thermal neutrons

100 - 500 meV : hot neutrons (moderator: graphite at 2000 K)> 500 meV : epithermal neutronsV p

A neutron of 25 meV wave length of ~1.48 ºA.the same order of magnitude as the typical inter-atomic distance in a solidthe same order of magnitude as the typical inter-atomic distance in a solid.

Neutron energy same order of magnitudeas the characteristic excitations in a solid such as the phonons or the magnons.

Page 34: Introduction to neutron spectroscopy - GDR Mico

Neutron energy and wave length

Neutron spectroscopy can be used to probe the nuclear and magnetic structures of a sample and the related nuclear and magnetic excitations. This is a bulk and non destructive measurement.

Neutron scatering vsNeutron scatering vs. Other inelastic probes

Neutron

SR, MossBauer spectroscopy

NMR

Local probes

Magnetic excitations

Page 35: Introduction to neutron spectroscopy - GDR Mico

Monochromatic neutron beam

Monochromator:Monochromator:

Bragg scattering on ai l lsingle crysral

Chopper :

Page 36: Introduction to neutron spectroscopy - GDR Mico

Diffraction measurements : integration on the final energy

single crystals4-circle diffractometers

Powder samplePowder diffractometer

Page 37: Introduction to neutron spectroscopy - GDR Mico

Inelastic Measurements: analysis of the final neutron energy

Single crystalTriple-axis spectrometer

Powder samplesTime of flight spectrometerp p

(TAS)g p(TOF)

The final energy is given: ½ Mv2

v = D/.D is the fixed distance between the sample and the detector (the flight path) and the time of flight of the neutron.and the time of flight of the neutron.

Page 38: Introduction to neutron spectroscopy - GDR Mico

Instrumental resolution

Measured intensity proportional to

The Fourier transform of the theoretical structure factorconvoluted by the instrumental resolution function

Gaussian function (4 dimensions)Resolution ellipsoidResolution ellipsoid

Simplified description (Cooper, Nathans,1967…)Th l ti f ti d R ( XtAX)The resolution function reads : R0exp(-XtAX)X stands for a 4D vector : (Q-Q0,w-w0)

2fi01)Adet(VVR with Vi=pmki

3cot(m) et Vf=pakf3cot(a)

Vi provides the same information as the monitor fixed kf

Page 39: Introduction to neutron spectroscopy - GDR Mico

Instrumental resolution

Focusing effect on two modes at q and +qNeutron scattering techniqueFocusing effect on two modes at –q and +qNeutron scattering technique

f iA li tidefocusing focusing

focusing

defocusing

Applicationdefocusing

Page 40: Introduction to neutron spectroscopy - GDR Mico

Sr2RuO4

Superconductivity

R

La2-xBaxCuO4 Sr2RuO4

Superconductivity TC 1.5K (1994)

A i t i 3 di t lRu

OCuO

Anisotropic 3-dim. metal RC/Rab 450ab<1cm

Pauli-ParamagnetismLa/Ba Sr

12 72 Å

Fermi liquid (low T)12.72 Å

Odd parity (p-wave)Spin-triplet pairing3.86Å

Page 41: Introduction to neutron spectroscopy - GDR Mico

Sr2RuO4 – electronic structure

eFree IonFermi surface: 3 sheets

4d4eg

t2

Ru4+: 4d4

dyz,dxz band

t2g

Crystal Field

dxy band

Crystal Field

(2 dim.) (1 dim.)

Page 42: Introduction to neutron spectroscopy - GDR Mico

Sr2RuO4 – dynamical nesting

The non interaction spin or charge susceptibility is given by the Lindhardt function

jik iqjqk

jqkikji

qkkB i

ffMgq

,, ,),(

),(,,

)(;20 0

)]()([),(

,,, ji1/0Mj iqjqk,, ,),(

Strong nesting effect between the quasi-1d and bands

Qi=(0.3 0.3)

Page 43: Introduction to neutron spectroscopy - GDR Mico

Instrumental resolution

Focusing effect on two modes at q and +qunpolarized INS measurementsFocusing effect on two modes at –q and +qunpolarized INS measurements(single crystals)

f idefocusing focusing

focusing

defocusingLattice dynamicsdefocusing Lattice dynamics

Page 44: Introduction to neutron spectroscopy - GDR Mico

Sr2RuO4 – lattice dynamics

scattered intensity :

Calc lated and meas redCalculated and measureddispersion curves

Page 45: Introduction to neutron spectroscopy - GDR Mico

Sr2RuO4 – lattice dynamics

Lattice instability:

3 branch, which ends at the zone boundary (0 5 0 5 0) in the modeboundary (0.5,0.5,0) in the mode corresponding to the RuO6 octahedron rotation around c axis, exhibits a sharp d t th b ddrop at the zone boundary.

Sr2RuO4 is close to rotational instability

Kohn anomaly: No phonon anomaly detected at the planar nesting wave vector Q =(0 3 0 3)nesting wave vector Qi=(0.3,0.3)

Page 46: Introduction to neutron spectroscopy - GDR Mico

Instrumental resolution

Focusing effect on two modes at q and +qunpolarized INS measurementsFocusing effect on two modes at –q and +qunpolarized INS measurements(single crystals)

f idefocusing focusing

focusing

defocusingdefocusing

Spin dynamics

Page 47: Introduction to neutron spectroscopy - GDR Mico

Sr2RuO4 –spin dynamics

Magnetic scattering:

Magnetic response close to the planar nesting wave vectorplanar nesting wave vector Qi=(0.3,0.3)

Page 48: Introduction to neutron spectroscopy - GDR Mico

Sr2RuO4 –spin dynamics

INS

RPA

2D spin fluctuations

RPA

2D spin fluctuations

Intensity along c controlled by F(Q)2 only

INS measurements in agreement with RPA calculations

by F(Q)2 only

Intensity decreases at large |Q||Q|

Page 49: Introduction to neutron spectroscopy - GDR Mico

Sr2RuO4 – near a SDW instability

close to magnetic instability

1-I(qi)0(qi)= 0

0(qi)

t l Tat low T

Sidi t l PRL 83 3320 (1999)Sidis et al. PRL 83, 3320 (1999)Braden et al. PRB 66, 064522 (2002)

Page 50: Introduction to neutron spectroscopy - GDR Mico

Sr2RuO4 – origin of non Fermi liquid

T* TN

p-wave SC

Fermi Liquid SDW

p wave SCQCP

T>T* /T liT>T* /T scaling

Non Fermi liquid : T>T* , ~Tq ,

Fermi liquid : T<T* , ~T2

Braden et al. PRB 66,064522 (2002)

Page 51: Introduction to neutron spectroscopy - GDR Mico

Instrumental resolution

Focusing effect on two modes at q and +qPolarized INS measurementsFocusing effect on two modes at –q and +qPolarized INS measurements(single crystals)

f idefocusing focusing

focusing

defocusingdefocusing

Spin dynamics

Page 52: Introduction to neutron spectroscopy - GDR Mico

Sr2RuO4 – polarized INS measurements

Spin polarized neutron beam

H

Heusler monochromator / analyzer

Single domain ferromagnet

|b | |b ||bN | = |bm|

Interference between nuclear and magnetic scattering

| b + b |2 0| bN + bm|2 = 0

| bN - bm|2 ≠ 0

A magnetic guide field keep the spin polarization and defines the polarization P of neutron spin

Page 53: Introduction to neutron spectroscopy - GDR Mico

Sr2RuO4 – polarized INS measurements

Polarization:

Nuclear scattering : non spin flip scattering

Magnetic scattering: spin components: (i) Q , (ii) P spin flip scattering

(0 0 1) S i fli h l

HHz

( ) Spin flip channel :

Ix ~ Im a,b + Im c + Bg

I ~ Im + Bg

Hx

Hy

(0 1 0)

Iy ~ Im c + Bg

Iz ~ Im a,b + Bg

Q

H P // Q

(100)

Hx : P // Q

Page 54: Introduction to neutron spectroscopy - GDR Mico

Sr2RuO4 – spin anisotropy

(0 0 1)

Polarized neutron 8 meV

Hy

Hz

QHx

(0 1 0)

Q

Hx : P // Q

(1 0 0)

x

Anisotropy of IC spin fluctuations at Qi

c(qi) / a b(qi) ~1.6spin orbit coupling c(qi) a,b(qi)spin-orbit coupling

+ strong correlation

c(qi) / a b(qi) >1anisotropic spin fluctuations can favor spin tripet SC

Ng et al. J. Phys. Soc. Jpn, (2002).Manke et al., PRB (2002).

c(qi) / a,b(qi) 1 p p

Sato et al. J. Phys. Soc. Jpn, (2000).Kawabara et al., PRB (2000).

Page 55: Introduction to neutron spectroscopy - GDR Mico

Sr2RuO4 – full spin susceptibility

’(q,0)60

80

100

T = 150 KE = 8 meV

eV-1)

60

80

100

T = 1.6 KE = 8 meV

eV-1)

0

20

40

'' ( B

2 e

0

20

40

'' ( B

2 e

80

100

T = 150 KE = 15 meV

0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.30

(Qh, Qh-1, 0)

80

100

T = 1.6 KE = 15 meV

0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.30

(Qh, Qh-1, 0)

20

40

60

'' ( B

2 eV

-1)

20

40

60

'' ( B

2 eV

-1)

0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.30

20

(Qh, Qh-1, 0)0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.30

20

(Qh, Qh-1, 0)

Broad and weak excitationsaround Q=0 (~20 meV)

band

sharp and strong excitations

Hx : P // Q – spin flip channel

around Qi (~7 meV)

bands

Page 56: Introduction to neutron spectroscopy - GDR Mico

Instrumental resolution

Focusing effect on two modes at q and +q

INS measurementsFocusing effect on two modes at –q and +q

f i

Versus

defocusing focusing

focusing

defocusingNMR

S ifi h defocusing Specific heatARPES

Page 57: Introduction to neutron spectroscopy - GDR Mico

Sr2RuO4 – NMR – local probe

S i l tti l ti

INS

Spin-lattice relaxation

Hyperfine coupling

NMR NMR

Page 58: Introduction to neutron spectroscopy - GDR Mico

Sr2RuO4 – specific heat

Spin fluctuation contributionAt low temperatureAt low temperature

IC

FM

Page 59: Introduction to neutron spectroscopy - GDR Mico

Sr2RuO4 – charge excitations - ARPES

ARPES : spectral function of quasiparticles

Scattering : self-energy

collision with bosonic modes (phonons spin excitations )(phonons, spin excitations,....)

: characteristic energy of bosonicManske et al., PRB 67, 134520 (2003)Manske et al., PRB 65, 220502 (2002)

: characteristic energy of bosonic modes ( phonons or spin excitations)

Page 60: Introduction to neutron spectroscopy - GDR Mico

Sr2RuO4 – charge excitations - ARPES

Iwasawa et al., condmat/0508312

ARPES

observed Kink in the bandsf~25meV

Role of the pseudo-FM fluctuations ?...... Role of phonons?

Page 61: Introduction to neutron spectroscopy - GDR Mico

Instrumental resolution

Focusing effect on two modes at q and +q

Unpolarized elastic measurements(single crystal)Focusing effect on two modes at –q and +q(single crystal)

f iMagnetic orderdefocusing focusing

focusing

defocusing

Magnetic orderdefocusing

Page 62: Introduction to neutron spectroscopy - GDR Mico

Sr2RuO4 – order from disorder

QCP

N ti Ti 4+

Magnetic wave vector q0Non magnetic Ti 4+ vector q0

Intensity proportional Orientation factor gives the direction of Correlation length y p p

to the square of the order moment

gives the direction of the order moment

gq ~-1

Page 63: Introduction to neutron spectroscopy - GDR Mico

Sr2RuO4 – order from disorder

Study : Q= qo+ q =(0.307,0.307,1) , = (1 0 -1) [I4mmm structure]

Ordered moment: m = 0.3 B Néel temperature : TN = 25 K

Planar correlation length : a b ~50 ÅPlanar correlation length : a,b 50 Å

along c : hardly correlated system

Page 64: Introduction to neutron spectroscopy - GDR Mico

Sr2RuO4 – mag. Order vs Fermi surface

q =(0.307,0.307, 1)

The order wave vector is 3D

Modulation along c of the and (i l d i ti ) (involved in nesting)

C. Bergemann et al.

dHvA

C. Bergemann et al.

Page 65: Introduction to neutron spectroscopy - GDR Mico

Sr2RuO4 – spin density wave

M1 : SDW with m // c

M4 : helimagnetFULLPROF- program

magnetic Moments are // to cconsistent with the spin anisotropy observed in Sr2RuO4consistent with the spin anisotropy observed in Sr2RuO4

Origin: spin-orbit coupling

Page 66: Introduction to neutron spectroscopy - GDR Mico

Instrumental resolution

Focusing effect on two modes at q and +q

Powder diffraction measurementsFocusing effect on two modes at –q and +q

f iMagnetic and nuclear structures

defocusing focusing

focusing

defocusingPh di defocusing Phase diagram

Page 67: Introduction to neutron spectroscopy - GDR Mico

Ca2-xSrxRuO4: Structural properties

r = 1.31ÅSr2+r = 1.18ÅCa2+Isovalent substitution rCa < rSr

rotation and tiltrotation

rotation and tilt

Sr RuOCa RuO Sr2RuO4Ca2RuO4

Nakatsuji et al. PRL 84 2666 (2000), Friedt et al. PRB 63, 174432 (2001), Braden et al. PRB 58, 847 (1998)

Page 68: Introduction to neutron spectroscopy - GDR Mico

Ca2RuO4: Nuclear structure

Incident neutron beam

2

Bragg reflections : Ca2RuO4

Bragg reflections: CaRuO3 (impurities)

Friedt et al. PRB 63, 74432 (2001),Braden et al. PRB 58, 847 (1998)

(impurities)

Page 69: Introduction to neutron spectroscopy - GDR Mico

Ca2RuO4: Magnetic structure

Mott Insulator Ca2RuO4 : T<Tn, A-type AF order

Magnetic moments // b = elongation of octahedrag g

Magnetic moment ~1.3 B < 2B (localized S=1 , Ru4+)

Friedt et al. PRB 63, 74432 (2001),Braden et al. PRB 58, 847 (1998)

Page 70: Introduction to neutron spectroscopy - GDR Mico

Instrumental resolution

Focusing effect on two modes at q and +q

Polarized neutron diffraction (high quality sample)Focusing effect on two modes at –q and +q(high quality sample)

f iSpin density mapsdefocusing focusing

focusing

defocusing

Spin density mapsdefocusing

Page 71: Introduction to neutron spectroscopy - GDR Mico

Ca2-xSrxRuO4: meta-magnetism

Intermediate Sr Content

0.2 < x < 0.5

i i bili

Metallic state

• near magnetic instability• high specific heat•metamagnetic transition

• octahedra tilt

Band structure : narrowing of the bandvan Hove singlarity shifts below Efvan Hove singlarity shifts below Ef

Hall measurementsSign change of charge carriersSign change of charge carriers

Nakatsuji et al. PRL 90 (2003)

Page 72: Introduction to neutron spectroscopy - GDR Mico

Ca2-xSrxRuO4: spin density map

I+

D

M F H

I-

2I+ N MF +FR

I± ( FN ±FM ) 2

FM << FN

I- N MF -FR

R 1 4 MF FM << FNNF

Page 73: Introduction to neutron spectroscopy - GDR Mico

Ca2-xSrxRuO4: spin density map at x=0.5

0.35 B Ruthenium 4dxy orbitals ( band) 0.08 B Oxygen (in-plane) significant amount of magnetization on oxygen0.01 B Oxygen (apical)

RuO2 plane:

0.01 B Oxygen (apical)

4

2

-2

0

-4O

-4 -2 0 2 4Å

Ru

Page 74: Introduction to neutron spectroscopy - GDR Mico

Instrumental resolution

Focusing effect on two modes at q and +q

Inelastic neutron scattering(single crystal)Focusing effect on two modes at –q and +q(single crystal)

f iExternal magnetic fielddefocusing focusing

focusing

defocusing

External magnetic fielddefocusing

Page 75: Introduction to neutron spectroscopy - GDR Mico

Ca1.8Sr0.2RuO4: meta-magnetism

INS: Ca1.8Sr0.2RuO4

Sr2RuO4

Steffens et al. Cond-mad(2010)

Page 76: Introduction to neutron spectroscopy - GDR Mico

Ca1.8Sr0.2RuO4: meta-magnetism

180

210

8 meV

150

180

6 meV

90

120

150

6 meV

unts

90

120

150

ts

4 meV

30

60

90

4 meV

co

30

60

90

count

2.5 meV

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

0

2 meV

Q = (1, K, 0) 0.6 0.8 1.0 1.2

0

Q = (H, H-1, 0)

(1 0 0)

Steffens et al. Cond-mad(2010)contributions from several Q(q1=0.12, q2=0.27)

Q (H, H 1, 0)

Page 77: Introduction to neutron spectroscopy - GDR Mico

Ca1.8Sr0.2RuO4: meta-magnetism

120 B || bT=2K8T Fundamental change of magnetic fluctuations at

80

100

6T

metamagnetic transitionIC FM

60

80

ts

6T

FM

IC

40

count

3T-0.5 0 0.5

H

AFMIC

20

0T

-0.4 -0.2 0.0 0.2 0.4

0

Q (H 0 1 6) E 2 V

Steffens et al. Cond-mad(2010)

Q = (H, 0, 1.6) E=2meV

Page 78: Introduction to neutron spectroscopy - GDR Mico

Ca1.8Sr0.2RuO4: FM-magnons

210B = 10 T

B c T=2K

4 meV18 0

21 0

B c T= 2K

2 m eV

150

180

3 meV5

)

12 0

15 0

nts

B = 1 0 T

120

150

ts

2

3

4

E

(meV

)

3 0

6 0

9 0

B = 0

coun

B = 6 T

60

90count

2.5 meV-0.1 0.0 0.1

1

K-0 .6 -0 .4 -0 .2 0 .0 0 .2 0 .4 0 .6

0

0

Q = (1 , K , 0 )

30

60

2 meVDispersive mode (Magnon) = D q2

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

0

Q = (1,K,0)

q

Field induced FM state

Steffens et al. Cond-mad(2010)

Q ( , , )

Page 79: Introduction to neutron spectroscopy - GDR Mico

Ca1.8Sr0.2RuO4: structural effects

Distortion of the octahedron

cooling

e-

field

e-

field

xy xz,yz

Page 80: Introduction to neutron spectroscopy - GDR Mico

+0 06eVMagnetismof -band

+0.05eV

+0.06eV

+0 07eV

+0.025eV

+0.07eV

0 eV

+0.085eV

+0.1eV0 05 V-0.05eV

-0.1eV

+0.15eV

Page 81: Introduction to neutron spectroscopy - GDR Mico

Instrumental resolution

Focusing effect on two modes at q and +qFocusing effect on two modes at –q and +q

f idefocusing focusing

focusing

defocusingdefocusing