Introduction to Copula Functions - University of...

20
9/29/2011 1 Introduction to Copula Functions t 1 part 1 Mahdi Pakdaman Intelligent System Program Outline Mathematics background Copula Definition Sklar’sTheorem Basic Copulas Properties Dependecy 2

Transcript of Introduction to Copula Functions - University of...

Page 1: Introduction to Copula Functions - University of …people.cs.pitt.edu/~pakdaman/tutorials/Copula01.pdfcopula is invariant w.r.t increasing and continuous transformation of marginal

9/29/2011

1

Introduction to Copula Functionst 1part 1

Mahdi PakdamanIntelligent System Program

Outline

Mathematics background Copula Definition Sklar’s Theorem Basic Copulas Properties Dependecy

2

Page 2: Introduction to Copula Functions - University of …people.cs.pitt.edu/~pakdaman/tutorials/Copula01.pdfcopula is invariant w.r.t increasing and continuous transformation of marginal

9/29/2011

2

Basic of joint distributions

Joint distribution of set of variables Y1, . . . , Ym  is

Survival function corresponding to F y1, . . . , y1 is

3

Basic of joint distributions(2)

4

Page 3: Introduction to Copula Functions - University of …people.cs.pitt.edu/~pakdaman/tutorials/Copula01.pdfcopula is invariant w.r.t increasing and continuous transformation of marginal

9/29/2011

3

Basic of joint distributions(2)

5

Basic of joint distributions(3)

Probability integral transform Theorem:

S se that a rand m ariable X has a c ntin s Suppose that a random variable X has a continuous distribution for which the cumulative distribution function is F.

Random variable Y defined as Y  Fx X  has a uniform [0,1] distribution.

6

Page 4: Introduction to Copula Functions - University of …people.cs.pitt.edu/~pakdaman/tutorials/Copula01.pdfcopula is invariant w.r.t increasing and continuous transformation of marginal

9/29/2011

4

History 1959: The word Copula appeared for the first time

(Sklar 1959)

1981: The earliest paper relating copulas to the study of dependence among random variables (Schweizerand Wolff 1981)

1990's: Copula booster: Joe (1997) and Nelson (1999).

1990' A d i lit t h t l

7

1990's +: Academic literatures on how to use copulas in risk management and other applications.

2009: Accused of "bringing the world financial system to its knees" (Wired Magazine)

Copula : Definition

The Word Copula is a Latin noun that means ''A link, tie, bond''

(Cassell's Latin Dictionary)

8

Page 5: Introduction to Copula Functions - University of …people.cs.pitt.edu/~pakdaman/tutorials/Copula01.pdfcopula is invariant w.r.t increasing and continuous transformation of marginal

9/29/2011

5

Copula: Conceptual

(1,1)G(y)

H(x,y)

Copulas

9

Each pair of real number (x, y) leads to a point of (F(x), G(y)) in unit square [0, 1]*[0, 1]

(0,0) F(x)

Copula: Conceptual

The mapping, which assigns the value of the joint di t ib ti f ti t h d d i f l f distribution function to each ordered pair of values of marginal distribution function is indeed a copula.

10

Page 6: Introduction to Copula Functions - University of …people.cs.pitt.edu/~pakdaman/tutorials/Copula01.pdfcopula is invariant w.r.t increasing and continuous transformation of marginal

9/29/2011

6

Copula : informal

A 2-dimensional copula is a distribution function on [0, 1]*[0, 1], with standard uniform marginal distributions.

11

Copula : informal (2) If  X, Y   is a pair of continuous random variables with distribution function H x,y  and marginal distributions F x and F y respectively then U F x ~ U 0 1Fx x  and Fy y  respectively, then U   Fx x  ~ U 0, 1  and V   Fy y  ~ U 0, 1  and the distribution function of U, V   is a copula.

C u ,v   P U u ,V  v    P X F‐1X u , Y F‐1Y v

12

C u,v    H F‐1X u ,F‐1Y v           H x,y    C FX x ,FY y

Page 7: Introduction to Copula Functions - University of …people.cs.pitt.edu/~pakdaman/tutorials/Copula01.pdfcopula is invariant w.r.t increasing and continuous transformation of marginal

9/29/2011

7

Formal Definition C : 0,1 2   0,11. C u ,0    C 0, v    02. C u ,1 u , C 1,v v3. C is 2‐increasing

v1 , v2 , u1 ,u2 0,1 ; u2 u1 , v2 v1C u2,v2 ‐ C u1,v2 ‐ C u2,v1  C u1,v1   0

13

(u2,v2)

(u1,v1)

Definition (2)Function

Vc u1,u2  x v1,v2    C u2,v2 ‐ C u1,v2 ‐ C u2,v1  C u1,v1   0

Is called the C-volume of the rectangle [u1,u2] x[v1,v2]

So, copula is the restriction to the unit square [0,1]2 of a

14

bivariate distribution function whose margins are uniform on [0,1].

Page 8: Introduction to Copula Functions - University of …people.cs.pitt.edu/~pakdaman/tutorials/Copula01.pdfcopula is invariant w.r.t increasing and continuous transformation of marginal

9/29/2011

8

Geometrical PropertyCopula is the C-Volume of rectangle [0,u]*[0,v]

C u ,v Vc 0, u 0, v

Copula assigns a number to each rectangle in [0,1]*[0,1], which is nonnegative, or Formally a copula C induces a probability measure on I2 via V ([0 ] [0 ]) = C( )

15

Vc ([0,u] x[0,v]) = C(u,v)

Geometrical Property

(1,1)

16

C u ,v Vc 0, u 0, v     Vc  A  Vc B  Vc C  Vc D

(0,0)

Page 9: Introduction to Copula Functions - University of …people.cs.pitt.edu/~pakdaman/tutorials/Copula01.pdfcopula is invariant w.r.t increasing and continuous transformation of marginal

9/29/2011

9

Sklar's Theorem(1959)Let H be a n-dimensional distribution function with margins F1,..., Fn. Then there exists an n-copula n_copula C such that for all x Rnsuch that for all x RH x1,…, xn    C F1 x1 ,…, Fn xn

C is unique if F1,..., Fn are all continuous. Conversely, if C is a n-copula and F1,..., Fn are distribution functions, then H defined above is an n-dimensional distribution function with

17

margins F1,..., Fn

Basic Copulas

18

Page 10: Introduction to Copula Functions - University of …people.cs.pitt.edu/~pakdaman/tutorials/Copula01.pdfcopula is invariant w.r.t increasing and continuous transformation of marginal

9/29/2011

10

Three Basic Bivariate Copulas

Product Copula C(u1,u2) = u1*u2

It is important as a benchmark because it is correspond to independence

19

Some Basic Bivariate Copulas Fréchet Lower bound Copula

CL u1,u2    max  0,u1 u2 1 ,u 0,1 2

Fréchet Upper bound Copula

CU u1,u2    min  u1 ,u2  ,u 0,1 2

20

Page 11: Introduction to Copula Functions - University of …people.cs.pitt.edu/~pakdaman/tutorials/Copula01.pdfcopula is invariant w.r.t increasing and continuous transformation of marginal

9/29/2011

11

Some Basic Bivariate Copulas

21

Fréchet Lower bound Copula Fréchet Upper bound Copula

Copula Property Any copula will be bounded by Fréchet lower and

upper bound copulasC C C 0 1 2CL u1,u2    C u1,u2   CU u1,u2     u    0,1 2

22

Page 12: Introduction to Copula Functions - University of …people.cs.pitt.edu/~pakdaman/tutorials/Copula01.pdfcopula is invariant w.r.t increasing and continuous transformation of marginal

9/29/2011

12

Additional Properties X1 and X2 are independent iff C is a product copula   C F1 x1  , F2 x2    F1 x1 F2 x2

X i i i f ti f X iff C C X1  is an increasing function of X2 iff C .    Cu .   Correspond to comonotonicity and perfect positive dependence 

X1  is a decreasing function of X2 iff C .    CL .   Correspond to countermonotonicity and perfect negative dependence 

23

Additional Properties Perfect positive and negative dependence is defined in

terms of comonotonicity and countermonotonicity F d d i Y Y d Y Y For any ordered pairs Y1j, Y2j  and Y1k , Y2k   Comonotonicity

 Y1j Y2j ,  Y1k Y2k    or   Y1j Y2j ,  Y1k Y2k  

Countermonotonicity  Y1j Y2j ,  Y1k Y2k    or   Y1j Y2j ,  Y1k Y2k  

24

Page 13: Introduction to Copula Functions - University of …people.cs.pitt.edu/~pakdaman/tutorials/Copula01.pdfcopula is invariant w.r.t increasing and continuous transformation of marginal

9/29/2011

13

Additional Properties Invariance property : the dependency captured by

copula is invariant w.r.t increasing and continuous transformation of marginal distributionstransformation of marginal distributions. Same copula for (X1, X2) as (lnX1 , lnX2)

If (U1,U2) ~ C then there are associated copulas: 1‐U1, 1‐U2  ,  U1, 1‐U2  ,  1‐U1, U2  

25

Additional Properties

Survival copula

26

Page 14: Introduction to Copula Functions - University of …people.cs.pitt.edu/~pakdaman/tutorials/Copula01.pdfcopula is invariant w.r.t increasing and continuous transformation of marginal

9/29/2011

14

Advantages Non-linear dependence Be able to measure dependence for heavy tail

di t ib tidistributions Very flexible: parametric, semi-parametric or non-

parametric Be able to study asymptotic properties of dependence

structures Computation is faster and stable with the two-stage

27

Computation is faster and stable with the two-stage estimation

Who cares about dependence? Unsupervised learning

–Which observations are dependent / independent Supervised learning Supervised learning

–Is there dependence between inputs and outputs? Analysis of stock markets, physical, biological, chemical

systems−Dependence between observations?

Other applicationsFeature selection Boosting Clustering

28

- Feature selection, Boosting, ClusteringInformation theory, active learning, Prediction of protein structure, Drug design, fMRI data processing, Microarray data processing, ICA …

Page 15: Introduction to Copula Functions - University of …people.cs.pitt.edu/~pakdaman/tutorials/Copula01.pdfcopula is invariant w.r.t increasing and continuous transformation of marginal

9/29/2011

15

Dependence Measure

29

Correlation

30

Page 16: Introduction to Copula Functions - University of …people.cs.pitt.edu/~pakdaman/tutorials/Copula01.pdfcopula is invariant w.r.t increasing and continuous transformation of marginal

9/29/2011

16

Correlation (2)

Zero Correlation does not imply independence

Cov X Y 0 Cov X,Y    0

It is not defined for heavy tail distributions whose second

moment do not exit (e.g Student-t with d=1 or 2)

It is not invariant under strictly increasing nonlinear

31

transformations.

Rank Correlations Spearman’s rho

Empirical:

32

Page 17: Introduction to Copula Functions - University of …people.cs.pitt.edu/~pakdaman/tutorials/Copula01.pdfcopula is invariant w.r.t increasing and continuous transformation of marginal

9/29/2011

17

Rank Correlation

Kendall’s tau

Two pairs Xi,Yi  ;  Xj,Yj  are said to be concordant when Xi‐Xj Yi ‐Yj    0, and discordant when Xi‐Xj Yi –Yj    0

Em irical:

33

Empirical:Pn : # of concordant , Qn: # of discordant

Properties

symmetric normalized Co- and counter-monotonicity Zero when X and Y are independence

34

C   Cu iff Y T X   with T increasing C   CL iff Y T X   with T decreasing

Page 18: Introduction to Copula Functions - University of …people.cs.pitt.edu/~pakdaman/tutorials/Copula01.pdfcopula is invariant w.r.t increasing and continuous transformation of marginal

9/29/2011

18

Properties(2)

• Both ρs(X,Y ) and ρT (X,Y ) can be expressed in terms of copulasp

35

Are not simple function of moments hence computationally more involved!

Tail dependence

The expression S v,v    Pr U1  v,U2  v  represents 

36

1 2the joint survival function where 

U1  F1‐1 X , U2  F2‐1 Y 

Page 19: Introduction to Copula Functions - University of …people.cs.pitt.edu/~pakdaman/tutorials/Copula01.pdfcopula is invariant w.r.t increasing and continuous transformation of marginal

9/29/2011

19

Tail dependence

37

Tail Dependence LTD (Left Tail Decreasing) Y is said to be LTD in x, if  Pr Y   y | X   x  is decreasing in x for all yfor all y

RTI (Right Tail Increasing) Y is said to be RTI in X if Pr Y y | X x  is increasing in x for all y

For copulas with simple analytical expressions, the computation of λu can be straight-forward. E.g. for the

38

Gumbel copula λu equals 2 − 2θ

Page 20: Introduction to Copula Functions - University of …people.cs.pitt.edu/~pakdaman/tutorials/Copula01.pdfcopula is invariant w.r.t increasing and continuous transformation of marginal

9/29/2011

20

Tail Dependence (Embrechts et al., 2002) the bivariate Gaussian copula has the property of

asymptotic independence. Regardless of how high a correlation we choose if we go far enough into the tail correlation we choose, if we go far enough into the tail, extreme events appear to occur independently in each margin.

In contrast, the bivariate t-distribution displays asymptotic upper tail dependence even for negative and zero correlations, with dependence rising as the degrees-of-

39

freedom parameter decreases and the marginal distributions become heavy-tailed

Positive Quadrant Dependence Two random variables X,Y are said to exhibit PQD if their copula is greater than their product, i.e., 

C C CC u1,u2    u1u2  or C  C

PQD implies F x,y    F1 x F2 y   for all  x,y  in R2

PQD implies nonnegative correlation and nonnegative rank correlation

LTD and RTI properties imply the property of PQD

40