Introduction to bioinformatics, 2010 - Göteborgs...

49
RNA bioinformatics Marcela Davila Department of Medical Biochemistry and Cell Biology Institute of Biomedicine Introduction to bioinformatics, 2010

Transcript of Introduction to bioinformatics, 2010 - Göteborgs...

Page 1: Introduction to bioinformatics, 2010 - Göteborgs universitetbio.lundberg.gu.se/courses/vt10/2010_RNA_genomics_toprint.pdf · Introduction to bioinformatics, 2010. RNA bioinformatics

RNAbioinformatics

Marcela DavilaDepartment of Medical Biochemistry and Cell Biology

Institute of Biomedicine

Introduction to bioinformatics, 2010

Page 2: Introduction to bioinformatics, 2010 - Göteborgs universitetbio.lundberg.gu.se/courses/vt10/2010_RNA_genomics_toprint.pdf · Introduction to bioinformatics, 2010. RNA bioinformatics

RNA bioinformatics 2

Types and Roles of ncRNAs• mRNA codes for proteins

• A non-coding RNA (ncRNA) is any RNAmolecule that is not translated into a protein

•Genomic stabilityTelomerase

•RNA processing and modificationSpliceosomal snRNAU7 snRNARNAse PRNAse MRP

•Transcription7SK RNA6S RNA

•TranslationtRNAtmRNArRNA

•Protein traffickingSRP RNA

Gisela Storz, Shoshy Altuvia and Karen M. Wasserman (2005)Matera, A.G., R.M. Terns, and M.P. Terns, Nat Rev Mol Cell Biol, 2007.

Page 3: Introduction to bioinformatics, 2010 - Göteborgs universitetbio.lundberg.gu.se/courses/vt10/2010_RNA_genomics_toprint.pdf · Introduction to bioinformatics, 2010. RNA bioinformatics

RNA bioinformatics 3

ncRNA content

Are ncRNAs responsible for the complexity in different organisms?

Huttenhofer, A., P. Schattner, and N. Polacek, Trends Genet, 2005

Page 4: Introduction to bioinformatics, 2010 - Göteborgs universitetbio.lundberg.gu.se/courses/vt10/2010_RNA_genomics_toprint.pdf · Introduction to bioinformatics, 2010. RNA bioinformatics

RNA bioinformatics 4

DiseasePrasanth, K.V. and D.L. Spector, Genes Dev, 2007. Costa, F.F. Drug Discov Today 2009Pandey, A.K., P. Agarwal, K. Kaur, and M. Datta. Cell Physiol Biochem 2009

miR DiabetesMRP RNA Cartilage hair-hypoplasia

Page 5: Introduction to bioinformatics, 2010 - Göteborgs universitetbio.lundberg.gu.se/courses/vt10/2010_RNA_genomics_toprint.pdf · Introduction to bioinformatics, 2010. RNA bioinformatics

RNA bioinformatics 5

DiseaseThiel, C.T., G. Mortier, I. Kaitila, A. Reis, and A. Rauch. Am J Hum Genet 2007

Cartilage hair-hypoplasia

MRP RNA processing of pre-rRNA

Page 6: Introduction to bioinformatics, 2010 - Göteborgs universitetbio.lundberg.gu.se/courses/vt10/2010_RNA_genomics_toprint.pdf · Introduction to bioinformatics, 2010. RNA bioinformatics

RNA bioinformatics 6

Protein - Primary sequenceClustalW

Sequence similarity biological relationsame function

Page 7: Introduction to bioinformatics, 2010 - Göteborgs universitetbio.lundberg.gu.se/courses/vt10/2010_RNA_genomics_toprint.pdf · Introduction to bioinformatics, 2010. RNA bioinformatics

RNA bioinformatics 7

ncRNA - Primary sequence

No sequence conservation,but structural

Covariation: Consistent and compensatory mutations that (often) conserve the structure

Mfold, RNAfold

Page 8: Introduction to bioinformatics, 2010 - Göteborgs universitetbio.lundberg.gu.se/courses/vt10/2010_RNA_genomics_toprint.pdf · Introduction to bioinformatics, 2010. RNA bioinformatics

RNA bioinformatics 8

A single mutation can radically change the structure

Canonical pairs Non-canonical pairs: GU wobble

http://prion.bchs.uh.edu/bp_type/bp_structure.html

Page 9: Introduction to bioinformatics, 2010 - Göteborgs universitetbio.lundberg.gu.se/courses/vt10/2010_RNA_genomics_toprint.pdf · Introduction to bioinformatics, 2010. RNA bioinformatics

RNA bioinformatics 9

Multibranched loop

Secondary structure

RNA functionality depends on structure

External base

Stem

Loop

Hairpin

Internal loop

Bulge

Pseudoknot

Page 10: Introduction to bioinformatics, 2010 - Göteborgs universitetbio.lundberg.gu.se/courses/vt10/2010_RNA_genomics_toprint.pdf · Introduction to bioinformatics, 2010. RNA bioinformatics

RNA bioinformatics 10

Tertiary structure

RNA tertiary structure comprises interactions of SS:two helicestwo unpaired regionsone unpaired region and a double-stranded helix

Prediction of RNA 3D structure is very difficult and RNA bioinformatics is therefore dominated by the prediction and analysis of secondary structure.

Page 11: Introduction to bioinformatics, 2010 - Göteborgs universitetbio.lundberg.gu.se/courses/vt10/2010_RNA_genomics_toprint.pdf · Introduction to bioinformatics, 2010. RNA bioinformatics

RNA bioinformatics 11

Family structure

tRNA Telomerase RNAP RNA

Each family typically adopts a characteristic secondary structure

Page 12: Introduction to bioinformatics, 2010 - Göteborgs universitetbio.lundberg.gu.se/courses/vt10/2010_RNA_genomics_toprint.pdf · Introduction to bioinformatics, 2010. RNA bioinformatics

RNA bioinformatics 12

However...

Dictyostelium discoideumCandida albicans

Trypanosoma brucei

U1 snRNA

MRP RNA

Page 13: Introduction to bioinformatics, 2010 - Göteborgs universitetbio.lundberg.gu.se/courses/vt10/2010_RNA_genomics_toprint.pdf · Introduction to bioinformatics, 2010. RNA bioinformatics

RNA bioinformatics 13

RNA regulatory elements

A cis-regulatory element or cis-element is a region of RNA that regulates the expression of genes located on that same strand.

iron-responsive element/iron regulatory protein 26–30 nts (long hairpin), CAGUGN apical loop sequence, 5’UTR – 3’UTR

Page 14: Introduction to bioinformatics, 2010 - Göteborgs universitetbio.lundberg.gu.se/courses/vt10/2010_RNA_genomics_toprint.pdf · Introduction to bioinformatics, 2010. RNA bioinformatics

RNA bioinformatics 14

IRE regulationMuckenthaler MU, Galy B, Hentze MW. AnnuRev Nutr. 2008

Ferritiniron storage protein

Transferrin receptoriron acquisition protein

Page 15: Introduction to bioinformatics, 2010 - Göteborgs universitetbio.lundberg.gu.se/courses/vt10/2010_RNA_genomics_toprint.pdf · Introduction to bioinformatics, 2010. RNA bioinformatics

RNA bioinformatics 15

RNA regulatory elements

A cis-regulatory element or cis-element is a region of RNA that regulates the expression of genes located on that same strand.

Riboswitch-Typically found in the 5’ UTR-Biosynthesis, catabolism and transport of various cellular catabolites (aminoacids [K,G], cofactors, nucleotides and metal ions)-Most known occur in Bacteria

Page 16: Introduction to bioinformatics, 2010 - Göteborgs universitetbio.lundberg.gu.se/courses/vt10/2010_RNA_genomics_toprint.pdf · Introduction to bioinformatics, 2010. RNA bioinformatics

RNA bioinformatics 16

Riboswitch examplesSerganov A, Patel DJ. Biochim Biophys Acta. 2009

Transcription Translation

Shine-Dalgarno

Page 17: Introduction to bioinformatics, 2010 - Göteborgs universitetbio.lundberg.gu.se/courses/vt10/2010_RNA_genomics_toprint.pdf · Introduction to bioinformatics, 2010. RNA bioinformatics

RNA bioinformatics 17

RNA regulatory elements

A cis-regulatory element or cis-element is a region of RNA that regulates the expression of genes located on that same strand.

SECIS element: selenocysteine insertion sequence element3’UTR

Page 18: Introduction to bioinformatics, 2010 - Göteborgs universitetbio.lundberg.gu.se/courses/vt10/2010_RNA_genomics_toprint.pdf · Introduction to bioinformatics, 2010. RNA bioinformatics

RNA bioinformatics 18

Selenoprotein synthesis

Incorporation of Sec into selenoproteins requires:

1.- UGA-Sec

2.- Sec tRNA[Ser]Sec

3.- SECIS - selenocysteine insertion sequence element several Kb away from UGA – 3’UTR

4.- SRE – selenocysteine redefinition element6 nt downstream UGA - CDS

5- several protein factors: EFSecSBP2Sec- specific elongation factorribosomal protein L30Secp43 - RBPSLA - soluble liver antigen

Berry MJ, Nat genet. 2005Papp, LV, et al. ANTIOXIDANTS & REDOX SIGNALING 2007

Page 19: Introduction to bioinformatics, 2010 - Göteborgs universitetbio.lundberg.gu.se/courses/vt10/2010_RNA_genomics_toprint.pdf · Introduction to bioinformatics, 2010. RNA bioinformatics

RNA bioinformatics 19

RNA regulatory elements

Trans-regulatory elements are RNAs that may modify the expression of genes, distant from the gene that was originally transcribed to create them.

U7 snRNA

D3

B G

ELsm10

Lsm11 F Symplekin

CPSF-73

CPSF-100

SLBP

ZFP-100

Histone pre-mRNA

Dominski, Z. and W.F. Marzluff. Gene, 2007

Page 20: Introduction to bioinformatics, 2010 - Göteborgs universitetbio.lundberg.gu.se/courses/vt10/2010_RNA_genomics_toprint.pdf · Introduction to bioinformatics, 2010. RNA bioinformatics

RNA bioinformatics 20

Protein vs RNA identification

Sequence-similarity based

Conserved primary sequence

Protein RNA

Promoters (Pol II)Not Conserved primary sequencePromoters (Pol II, Pol III)Sequence-similarity basedSecondary structure basedComparative genomics

Page 21: Introduction to bioinformatics, 2010 - Göteborgs universitetbio.lundberg.gu.se/courses/vt10/2010_RNA_genomics_toprint.pdf · Introduction to bioinformatics, 2010. RNA bioinformatics

RNA bioinformatics 21

Methods

•Nussinov algorithm•Mfold (prediction of secondary structure)•Analysis of mutual information•Pattern matching•SCFG (Stochastic context-free grammar models)•Phylogenetic analysis

Nussinov algorithm: Find the structure with the most base pairs (dynamic programming)

Drawbacks:Not unique structureTesting all possible structures

numerically impossible

Page 22: Introduction to bioinformatics, 2010 - Göteborgs universitetbio.lundberg.gu.se/courses/vt10/2010_RNA_genomics_toprint.pdf · Introduction to bioinformatics, 2010. RNA bioinformatics

RNA bioinformatics 22

Methods

•Nussinov algorithm•Mfold (prediction of secondary structure)•Analysis of mutual information•Pattern matching•SCFG (Stochastic context-free grammar models)•Phylogenetic analysis

Zuker folding algorithm (1981): The correct structure is the one with the lowest equilibrium free energy (ΔG) which is the sum of individual contributions from loops, base pairs and other secondary structure elements

Every system seeks to achieve a minimum of free energy (MFE)

However ... The structure with the lowest MFE not always is the biological relevant

Page 23: Introduction to bioinformatics, 2010 - Göteborgs universitetbio.lundberg.gu.se/courses/vt10/2010_RNA_genomics_toprint.pdf · Introduction to bioinformatics, 2010. RNA bioinformatics

RNA bioinformatics 23

Methods

•Nussinov algorithm•Mfold (prediction of secondary structure)•Analysis of mutual information•Pattern matching•SCFG (Stochastic context-free grammar models)•Phylogenetic analysis

Mutual information: quantity that measures the mutual dependence of the two variables (two positions). The unit of measurement is the bit.

0.000.00

0.000.00

0.001.00

0.002.00

0.000.00

Page 24: Introduction to bioinformatics, 2010 - Göteborgs universitetbio.lundberg.gu.se/courses/vt10/2010_RNA_genomics_toprint.pdf · Introduction to bioinformatics, 2010. RNA bioinformatics

RNA bioinformatics 24

Mutual information – excercise

Page 25: Introduction to bioinformatics, 2010 - Göteborgs universitetbio.lundberg.gu.se/courses/vt10/2010_RNA_genomics_toprint.pdf · Introduction to bioinformatics, 2010. RNA bioinformatics

RNA bioinformatics 25

Mutual information plot

Diagonals of covarying positions correspond to the four stems of the tRNA. Dashed lines indicate some of the addtional tertiary contacts observed in the yeast tRNA-Phe crytal structure.

Page 26: Introduction to bioinformatics, 2010 - Göteborgs universitetbio.lundberg.gu.se/courses/vt10/2010_RNA_genomics_toprint.pdf · Introduction to bioinformatics, 2010. RNA bioinformatics

RNA bioinformatics 26

Methods

•Nussinov algorithm•Mfold (prediction of secondary structure)•Analysis of mutual information•Pattern matching•SCFG (Stochastic context-free grammar models)•Phylogenetic analysis

p1 = 5...7GGAA~p1

Patscan: is a pattern matcher (deterministic motifs as well as secondary structure constraints) which searches protein or nucleotide sequence archives

Drawback:Yes/No answer

Page 27: Introduction to bioinformatics, 2010 - Göteborgs universitetbio.lundberg.gu.se/courses/vt10/2010_RNA_genomics_toprint.pdf · Introduction to bioinformatics, 2010. RNA bioinformatics

RNA bioinformatics 27

PatScan - Example

SRP RNA

N.gonorrhoeaeM. pneumoniae E.fecalis

r1={au,ua,gc,cg,gu,ug,ga,ag}p1=4...4cagrp2=3...3graar1~p2agcaar1~p1

Page 28: Introduction to bioinformatics, 2010 - Göteborgs universitetbio.lundberg.gu.se/courses/vt10/2010_RNA_genomics_toprint.pdf · Introduction to bioinformatics, 2010. RNA bioinformatics

RNA bioinformatics 28

Methods

•Nussinov algorithm•Mfold (prediction of secondary structure)•Analysis of mutual information•Pattern matching•SCFG (Stochastic context-free grammar models)•Phylogenetic analysis

Regular grammar primary sequence models

T aS | bT | ɛaT aaS aabS aabaT aabaɛ aaba

S aT | bS

Model repeat regions (ex. FMR-1 triplet repeat region)

S gW1W1 cW2W2 gW3W3 cW4W4 gW5W5 gW6W6 cW7 | aW4 | cW4W7 tW8W8 g

gcg cgg ctggcg cgg agg cgg ctggag agg ctggcg agg cgg ctggcg agg cgg cgg

Page 29: Introduction to bioinformatics, 2010 - Göteborgs universitetbio.lundberg.gu.se/courses/vt10/2010_RNA_genomics_toprint.pdf · Introduction to bioinformatics, 2010. RNA bioinformatics

RNA bioinformatics 29

Methods

•Nussinov algorithm•Mfold (prediction of secondary structure)•Analysis of mutual information•Pattern matching•SCFG (Stochastic context-free grammar models)•Phylogenetic analysis

Context-free grammar primary sequence models palindromes

S aSa | bSb | aa | bb S aSa aaSaa aabSbaa aabaabaa

RNA secondary structureCAGGAAACUGGCUGCAAAGCGCUGCAACUG

S aW1u | cW1g | gW1c |uW1aW1 aW2u | cW2g | gW2c |uW2aW2 aW3u | cW3g | gW3c |uW3aW3 ggaa | gcaa

G AG AG.CA.UC.G

C AG AU.AC.GG.C

C AG AUxCCxUGxG

Page 30: Introduction to bioinformatics, 2010 - Göteborgs universitetbio.lundberg.gu.se/courses/vt10/2010_RNA_genomics_toprint.pdf · Introduction to bioinformatics, 2010. RNA bioinformatics

RNA bioinformatics 30

Methods

•Nussinov algorithm•Mfold (prediction of secondary structure)•Analysis of mutual information•Pattern matching•SCFG (Stochastic context-free grammar models)•Phylogenetic analysis

Stochastic regular grammar weighted primary sequence models (probabilistic)

S rW1 S kW1 S nW1

(0,45) (0,45) (0,10)

Hidden markov modelsA

C G

T

ɛβ

Page 31: Introduction to bioinformatics, 2010 - Göteborgs universitetbio.lundberg.gu.se/courses/vt10/2010_RNA_genomics_toprint.pdf · Introduction to bioinformatics, 2010. RNA bioinformatics

RNA bioinformatics 31

Methods

•Nussinov algorithm•Mfold (prediction of secondary structure)•Analysis of mutual information•Pattern matching•SCFG (Stochastic context-free grammar models)•Phylogenetic analysis

Stochastic context-free grammar Covariance models: probabilistic models that flexibly describe the secondary structure and primary sequences consensus fo an RNA sequence family

Page 32: Introduction to bioinformatics, 2010 - Göteborgs universitetbio.lundberg.gu.se/courses/vt10/2010_RNA_genomics_toprint.pdf · Introduction to bioinformatics, 2010. RNA bioinformatics

RNA bioinformatics 32

Infernal Package

•Search for additional and family-related sequences in sequence databases

Page 33: Introduction to bioinformatics, 2010 - Göteborgs universitetbio.lundberg.gu.se/courses/vt10/2010_RNA_genomics_toprint.pdf · Introduction to bioinformatics, 2010. RNA bioinformatics

RNA bioinformatics 33

Database containing information about ncRNA families and other structured RNA elements.

Rfam

Page 34: Introduction to bioinformatics, 2010 - Göteborgs universitetbio.lundberg.gu.se/courses/vt10/2010_RNA_genomics_toprint.pdf · Introduction to bioinformatics, 2010. RNA bioinformatics

RNA bioinformatics 34

Methods

•Nussinov algorithm•Mfold (prediction of secondary structure)•Analysis of mutual information•Pattern matching•SCFG (Stochastic context-free grammar models)•Phylogenetic analysis

- Conserved elements alignment- SCFG Secondary structure- Fold- Phylogenetic evaluation

EVOfold:

Page 35: Introduction to bioinformatics, 2010 - Göteborgs universitetbio.lundberg.gu.se/courses/vt10/2010_RNA_genomics_toprint.pdf · Introduction to bioinformatics, 2010. RNA bioinformatics

RNA bioinformatics 35

miRNA

•SS RNA

•~22 nucleotides

•Accounts for ~1% of all transcripts in humans and potentially regulate 10%-30% of all genes

•Expressed ubiquitously and highly conserved in Metazoans (animal kingdom) and Plants

•Inhibit the translation of mRNAs to their protein products by biding to specific regions in the 3ʼ UTR

C D Sm7G

5’ 3’miRNA

5’3’

AAUAA AAAAAAAATarget

Page 36: Introduction to bioinformatics, 2010 - Göteborgs universitetbio.lundberg.gu.se/courses/vt10/2010_RNA_genomics_toprint.pdf · Introduction to bioinformatics, 2010. RNA bioinformatics

RNA bioinformatics 36

miRNANegrini, M., M.S. Nicoloso, and G.A. Calin. CurrOpin Cell Biol 2009.

ApoptosisCell prolifertion Cell differentiationDevelopmentOrganism defense against infectionsTissue morphogenesisRegulation of metabolism

CancerViral infectionsNeurodegenerative disordersCardiac pathologiesMuscle disordersDiabetes

Biological processes Diseases

Page 37: Introduction to bioinformatics, 2010 - Göteborgs universitetbio.lundberg.gu.se/courses/vt10/2010_RNA_genomics_toprint.pdf · Introduction to bioinformatics, 2010. RNA bioinformatics

RNA bioinformatics 37

miRNA genesKim VN Nat Rev Mol Cell Biol. 2005Winter J et al Nat Cell Biol. 2009

Exonic / Intergenic

Intronic

mirtron

Page 38: Introduction to bioinformatics, 2010 - Göteborgs universitetbio.lundberg.gu.se/courses/vt10/2010_RNA_genomics_toprint.pdf · Introduction to bioinformatics, 2010. RNA bioinformatics

RNA bioinformatics 38

miRNA BiogenesisWinter, J., S. Jung, S. Keller, R.I. Gregory, and S. Diederichs. Nat Cell Biol 2009. Paul S. Meltzer, Nature, 2005

Editing

Page 39: Introduction to bioinformatics, 2010 - Göteborgs universitetbio.lundberg.gu.se/courses/vt10/2010_RNA_genomics_toprint.pdf · Introduction to bioinformatics, 2010. RNA bioinformatics

RNA bioinformatics 39

miRNA BiogenesisWinter, J., S. Jung, S. Keller, R.I. Gregory, and S. Diederichs. Nat Cell Biol 2009. Paul S. Meltzer, Nature, 2005

Page 40: Introduction to bioinformatics, 2010 - Göteborgs universitetbio.lundberg.gu.se/courses/vt10/2010_RNA_genomics_toprint.pdf · Introduction to bioinformatics, 2010. RNA bioinformatics

RNA bioinformatics 40

miRNA structureNegrini, M., M.S. Nicoloso, and G.A. Calin. CurrOpin Cell Biol 2009.

miRNA

miRNA*

Interveningloop

Hairpin structure

Human genome ~11 million hairpins

Page 41: Introduction to bioinformatics, 2010 - Göteborgs universitetbio.lundberg.gu.se/courses/vt10/2010_RNA_genomics_toprint.pdf · Introduction to bioinformatics, 2010. RNA bioinformatics

RNA bioinformatics 41

miRNA computational identification

Homology search basedBLASTmiRAling, ProMir, microHARVESTER

Gene findingIdentification of conserved genomic regionsFolding of the identified regions (Mfold, RNAfold)Evalutation of hairpinsmiRseeker, miRscan

Neighbour stem loop (~42% of human miRNA genes are clustered together)Check surroundings of a known miRNA for candidate secondary structures

Comparative genomicsBLAST intergenic sequences of two genomes against each otherFilter based on rules inferred based on known miRNAsmiRFinder

Intragenomic matching (A functional miRNA should have at least a target)miRNAs show perfect complementarity to their targets (?)It simultaneously predicts miRNAs and their targetsmiMatcher

Page 42: Introduction to bioinformatics, 2010 - Göteborgs universitetbio.lundberg.gu.se/courses/vt10/2010_RNA_genomics_toprint.pdf · Introduction to bioinformatics, 2010. RNA bioinformatics

RNA bioinformatics 42

miRNA experimental validation through sequencing

Experimental approach:

– Purify small RNAs (15-35 nt)– Deep sequencing of the RNA library.– Map sequence traces to the genome.

Ruby JG. et al. Genome Res., 2007

Page 43: Introduction to bioinformatics, 2010 - Göteborgs universitetbio.lundberg.gu.se/courses/vt10/2010_RNA_genomics_toprint.pdf · Introduction to bioinformatics, 2010. RNA bioinformatics

RNA bioinformatics 43

miRNA Target predictionNegrini, M., M.S. Nicoloso, and G.A. Calin. CurrOpin Cell Biol 2009.

• Predicting miRNA targets in plants is easier, due to the perfectcomplementarity to the miRNAs

• In animals, perfect complementarity is not common– miRNA seed complementarity (6 to 9 nt)– High false positives rate

• Common approach– Experimental evidences – Validated miRNA/target pairs– Tarbase, miRecords

• Computational methods:– Base-pairing rules and binding sites sequence features– Conservation– Thermodynamics

C D Sm7G

5’ 3’miRNA

5’3’

AAUAA AAAAAAAATarget

Page 44: Introduction to bioinformatics, 2010 - Göteborgs universitetbio.lundberg.gu.se/courses/vt10/2010_RNA_genomics_toprint.pdf · Introduction to bioinformatics, 2010. RNA bioinformatics

RNA bioinformatics 44

Base-pairing rulesBartel, D.P. 2009. Cell 2009.

6-9 nt, starting usually at P2P1 is typically unpaired or starts with UOften flanked by AUsually no G:U wobbles (vs regulation)

3’ compensatory sites

Canonical sites

Atypical sites

lsy-6/cog-1 3’UTR

5’ dominant sites

May compensate for insufficient basepairing in the seed

Page 45: Introduction to bioinformatics, 2010 - Göteborgs universitetbio.lundberg.gu.se/courses/vt10/2010_RNA_genomics_toprint.pdf · Introduction to bioinformatics, 2010. RNA bioinformatics

RNA bioinformatics 45

More methods ...Negrini, M., M.S. Nicoloso, and G.A. Calin. CurrOpin Cell Biol 2009.

Search for conserved seeds in the UTRs across different species

Evaluation of ΔG of predicted duplexes usually < -20 Kcal/molDiscard F(+) but favorable interactions not always correspond to

actual duplex

The targe site on the mRNA not involved in any intramolecular bp

Any existing secondary structure must be first removed

Thermodynamics

Structural accesiblity

Conservation

Page 46: Introduction to bioinformatics, 2010 - Göteborgs universitetbio.lundberg.gu.se/courses/vt10/2010_RNA_genomics_toprint.pdf · Introduction to bioinformatics, 2010. RNA bioinformatics

RNA bioinformatics 46

miRNABartel, D.P. 2009. Cell 2009

Page 47: Introduction to bioinformatics, 2010 - Göteborgs universitetbio.lundberg.gu.se/courses/vt10/2010_RNA_genomics_toprint.pdf · Introduction to bioinformatics, 2010. RNA bioinformatics

RNA bioinformatics 47

miRNA gene expression in cancerNegrini, M., M.S. Nicoloso, and G.A. Calin. CurrOpin Cell Biol 2009.

Lu, J., et al., Nature, 2005

Page 48: Introduction to bioinformatics, 2010 - Göteborgs universitetbio.lundberg.gu.se/courses/vt10/2010_RNA_genomics_toprint.pdf · Introduction to bioinformatics, 2010. RNA bioinformatics

RNA bioinformatics 48

Carlo Croce 2009

A

B

miR-29b or scrambled oligos injection (5 µg)K562 cells injected SC

Days

Tumor size

Stop

0 3 7 10 14

D

* P<0.003

0

200

400

600

800

1000

1200

1400

1600

1800

0 +3Days +7 +10 +14

Tum

or V

olum

e (m

m3 )

Mock

Scrambled

miR-29b

**

miR-29b

Scrambled

C

Tum

or W

eigh

t (gr

ams)

P<0.001

0

0.2

0.4

0.6

0.8

1

1.2

scrambled miR-29b

(A) Diagram illustrating the experimental design of the mice xenograft experiment.

(B) Graphic representing the tumor volume determinations at the indicated days during the experiment for the three groups; mock (n= 6), scrambled (n=12) and synthetic miR-29b (n=12).

(C) Tumor weight averages between scrambled and synthetic miR-29b treated mice groups at the end of the experiment (Day +14). P-values were obtained using t-test. Bars represent ±S.D.

(D) Photographs of two mice injected with miR-29b (left flank) or scrambled (right flank).

MiR-29b inhibits Leukemic growth in vivo.

miRNAs as tumor suppresors

Page 49: Introduction to bioinformatics, 2010 - Göteborgs universitetbio.lundberg.gu.se/courses/vt10/2010_RNA_genomics_toprint.pdf · Introduction to bioinformatics, 2010. RNA bioinformatics

RNA bioinformatics 49

miR DBs

Published miRNAS

Experimentally suported targets

Prediction of miRNAS targets

miRNA-disease relationships reported in the literature.