Introduction Orthogonal Geometric Transformations and...

46
Wallpaper Groups Lance Drager Introduction Orthogonal Matrices Orthogonal Matrices and Dot Product Classifying Orthogonal Matrices Exercises Classifying Isometries Translations First Classification Final Classification Exercises Geometric Transformations and Wallpaper Groups Isometries of the Plane Lance Drager Department of Mathematics and Statistics Texas Tech University Lubbock, Texas 2010 Math Camp

Transcript of Introduction Orthogonal Geometric Transformations and...

Page 1: Introduction Orthogonal Geometric Transformations and ...drager/Classes/17-2-Summer/M5399/beamer/nslides02/n... · Final Classi cation Exercises Orthogonal Matrices A matrix A isorthogonalif

WallpaperGroups

Lance Drager

Introduction

OrthogonalMatrices

OrthogonalMatrices andDot Product

ClassifyingOrthogonalMatrices

Exercises

ClassifyingIsometries

Translations

FirstClassification

FinalClassification

Exercises

Geometric Transformations and WallpaperGroups

Isometries of the Plane

Lance Drager

Department of Mathematics and StatisticsTexas Tech University

Lubbock, Texas

2010 Math Camp

Page 2: Introduction Orthogonal Geometric Transformations and ...drager/Classes/17-2-Summer/M5399/beamer/nslides02/n... · Final Classi cation Exercises Orthogonal Matrices A matrix A isorthogonalif

WallpaperGroups

Lance Drager

Introduction

OrthogonalMatrices

OrthogonalMatrices andDot Product

ClassifyingOrthogonalMatrices

Exercises

ClassifyingIsometries

Translations

FirstClassification

FinalClassification

Exercises

Outline

1 Introduction

2 Orthogonal MatricesOrthogonal Matrices and Dot ProductClassifying Orthogonal MatricesExercises

3 Classifying IsometriesTranslationsFirst ClassificationFinal ClassificationExercises

Page 3: Introduction Orthogonal Geometric Transformations and ...drager/Classes/17-2-Summer/M5399/beamer/nslides02/n... · Final Classi cation Exercises Orthogonal Matrices A matrix A isorthogonalif

WallpaperGroups

Lance Drager

Introduction

OrthogonalMatrices

OrthogonalMatrices andDot Product

ClassifyingOrthogonalMatrices

Exercises

ClassifyingIsometries

Translations

FirstClassification

FinalClassification

Exercises

Isometries

• A transformation T of the plane is an isometry if it isone-to-one and onto and

dist(T (p),T (q)) = dist(p, q), for all points p and q.

• If S and T are isometries, so is ST , where(ST )(p) = S(T (p)).

• If T is an isometry, so is T−1.

• Our goal is to find all the isometries.

Page 4: Introduction Orthogonal Geometric Transformations and ...drager/Classes/17-2-Summer/M5399/beamer/nslides02/n... · Final Classi cation Exercises Orthogonal Matrices A matrix A isorthogonalif

WallpaperGroups

Lance Drager

Introduction

OrthogonalMatrices

OrthogonalMatrices andDot Product

ClassifyingOrthogonalMatrices

Exercises

ClassifyingIsometries

Translations

FirstClassification

FinalClassification

Exercises

Orthogonal Matrices

• A matrix A is orthogonal if ‖Ax‖ = ‖x‖ for all x ∈ R2.

• An orthogonal matrix gives an isometry of the plane since

dist(Ap,Aq) = ‖Ap − Aq‖= ‖A(p − q)‖ = ‖p − q‖ = dist(p, q)

• If A and B are orthogonal, so is AB.

• If A is orthogonal, it is invertible and A−1 is orthogonal.

• Rotation matrices are orthogonal.

y

x

‖p− q‖

p

q

Page 5: Introduction Orthogonal Geometric Transformations and ...drager/Classes/17-2-Summer/M5399/beamer/nslides02/n... · Final Classi cation Exercises Orthogonal Matrices A matrix A isorthogonalif

WallpaperGroups

Lance Drager

Introduction

OrthogonalMatrices

OrthogonalMatrices andDot Product

ClassifyingOrthogonalMatrices

Exercises

ClassifyingIsometries

Translations

FirstClassification

FinalClassification

Exercises

Outline

1 Introduction

2 Orthogonal MatricesOrthogonal Matrices and Dot ProductClassifying Orthogonal MatricesExercises

3 Classifying IsometriesTranslationsFirst ClassificationFinal ClassificationExercises

Page 6: Introduction Orthogonal Geometric Transformations and ...drager/Classes/17-2-Summer/M5399/beamer/nslides02/n... · Final Classi cation Exercises Orthogonal Matrices A matrix A isorthogonalif

WallpaperGroups

Lance Drager

Introduction

OrthogonalMatrices

OrthogonalMatrices andDot Product

ClassifyingOrthogonalMatrices

Exercises

ClassifyingIsometries

Translations

FirstClassification

FinalClassification

Exercises

Dot Product 1

TheoremA is orthogonal if and only if Ax · Ay = x · y for all x , y ∈ R2.Thus, an orthogonal matrix preserves angles.

Proof.(=⇒)

‖Ax‖2 = Ax · Ax = x · x = ‖x‖2

(⇐=) Recall

2x · y = ‖x‖2 + ‖y‖2 − ‖x − y‖2.

Page 7: Introduction Orthogonal Geometric Transformations and ...drager/Classes/17-2-Summer/M5399/beamer/nslides02/n... · Final Classi cation Exercises Orthogonal Matrices A matrix A isorthogonalif

WallpaperGroups

Lance Drager

Introduction

OrthogonalMatrices

OrthogonalMatrices andDot Product

ClassifyingOrthogonalMatrices

Exercises

ClassifyingIsometries

Translations

FirstClassification

FinalClassification

Exercises

Dot Product 2

Proof Continued.So, we have

2Ax · Ay = ‖Ax‖2 + ‖Ay‖2 − ‖Ax − Ay‖2

= ‖Ax‖2 + ‖Ay‖2 − ‖A(x − y)‖2 (distributive law)

= ‖x‖2 + ‖y‖2 − ‖x − y‖2 (A is orthogonal)

= 2x · y ,

and dividing by 2 gives the result.

TheoremA matrix is orthogonal if and only if its columns are orthogonalunit vectors.

Page 8: Introduction Orthogonal Geometric Transformations and ...drager/Classes/17-2-Summer/M5399/beamer/nslides02/n... · Final Classi cation Exercises Orthogonal Matrices A matrix A isorthogonalif

WallpaperGroups

Lance Drager

Introduction

OrthogonalMatrices

OrthogonalMatrices andDot Product

ClassifyingOrthogonalMatrices

Exercises

ClassifyingIsometries

Translations

FirstClassification

FinalClassification

Exercises

Dot Product 3

Proof.(=⇒)

‖Aei‖ = ‖ei‖ = 1.

Ae1 · Ae2 = e1 · e2 = 0.

(⇐=) Let A = [u | v ] where u and v are orthogonal unitvectors. Note Ax = x1u + x2v .

‖Ax‖2 = Ax · Ax

= (x1u + x2v) · (x1u + x2v)

= x21 u · u + 2x1x2u · v + x2

2 v · v= x2

1 (1) + 2x1x2(0) + x22 (1)

= x21 + x2

2 = ‖x‖2

Page 9: Introduction Orthogonal Geometric Transformations and ...drager/Classes/17-2-Summer/M5399/beamer/nslides02/n... · Final Classi cation Exercises Orthogonal Matrices A matrix A isorthogonalif

WallpaperGroups

Lance Drager

Introduction

OrthogonalMatrices

OrthogonalMatrices andDot Product

ClassifyingOrthogonalMatrices

Exercises

ClassifyingIsometries

Translations

FirstClassification

FinalClassification

Exercises

Outline

1 Introduction

2 Orthogonal MatricesOrthogonal Matrices and Dot ProductClassifying Orthogonal MatricesExercises

3 Classifying IsometriesTranslationsFirst ClassificationFinal ClassificationExercises

Page 10: Introduction Orthogonal Geometric Transformations and ...drager/Classes/17-2-Summer/M5399/beamer/nslides02/n... · Final Classi cation Exercises Orthogonal Matrices A matrix A isorthogonalif

WallpaperGroups

Lance Drager

Introduction

OrthogonalMatrices

OrthogonalMatrices andDot Product

ClassifyingOrthogonalMatrices

Exercises

ClassifyingIsometries

Translations

FirstClassification

FinalClassification

Exercises

Classifying Orthogonal Matrices 1

• If A is orthogonal, Col1(A) = (cos(θ), sin(θ)) for some θ.So the possibilities are

A =

[cos(θ) − sin(θ)sin(θ) cos(θ)

]= R(θ),

A =

[cos(θ) sin(θ)sin(θ) − cos(θ)

]= S(θ).

• In the first case A = R(θ) is a rotation.

• What about S(θ)?

• There are orthogonal unit vectors u and v so thatS(θ)u = u and S(θ)v = −v .

Page 11: Introduction Orthogonal Geometric Transformations and ...drager/Classes/17-2-Summer/M5399/beamer/nslides02/n... · Final Classi cation Exercises Orthogonal Matrices A matrix A isorthogonalif

WallpaperGroups

Lance Drager

Introduction

OrthogonalMatrices

OrthogonalMatrices andDot Product

ClassifyingOrthogonalMatrices

Exercises

ClassifyingIsometries

Translations

FirstClassification

FinalClassification

Exercises

Classifying Orthogonal Matrices 1

• If A is orthogonal, Col1(A) = (cos(θ), sin(θ)) for some θ.So the possibilities are

A =

[cos(θ) − sin(θ)sin(θ) cos(θ)

]= R(θ),

A =

[cos(θ) sin(θ)sin(θ) − cos(θ)

]= S(θ).

• In the first case A = R(θ) is a rotation.

• What about S(θ)?

• There are orthogonal unit vectors u and v so thatS(θ)u = u and S(θ)v = −v .

Page 12: Introduction Orthogonal Geometric Transformations and ...drager/Classes/17-2-Summer/M5399/beamer/nslides02/n... · Final Classi cation Exercises Orthogonal Matrices A matrix A isorthogonalif

WallpaperGroups

Lance Drager

Introduction

OrthogonalMatrices

OrthogonalMatrices andDot Product

ClassifyingOrthogonalMatrices

Exercises

ClassifyingIsometries

Translations

FirstClassification

FinalClassification

Exercises

Classifying Orthogonal Matrices 2

• In fact, let u = (cos(θ/2), sin(θ/2)) andv = (− sin(θ/2), cos(θ/2)).

S(θ)u =

[cos(θ) sin(θ)sin(θ) − cos(θ)

] [cos(θ/2)sin(θ/2)

]=

[cos(θ) cos(θ/2) + sin(θ) sin(θ/2)sin(θ) cos(θ/2)− cos(θ) sin(θ/2)

]

Page 13: Introduction Orthogonal Geometric Transformations and ...drager/Classes/17-2-Summer/M5399/beamer/nslides02/n... · Final Classi cation Exercises Orthogonal Matrices A matrix A isorthogonalif

WallpaperGroups

Lance Drager

Introduction

OrthogonalMatrices

OrthogonalMatrices andDot Product

ClassifyingOrthogonalMatrices

Exercises

ClassifyingIsometries

Translations

FirstClassification

FinalClassification

Exercises

Classifying Orthogonal Matrices 2

• In fact, let u = (cos(θ/2), sin(θ/2)) andv = (− sin(θ/2), cos(θ/2)).

S(θ)u =

[cos(θ) sin(θ)sin(θ) − cos(θ)

] [cos(θ/2)sin(θ/2)

]=

[cos(θ) cos(θ/2) + sin(θ) sin(θ/2)sin(θ) cos(θ/2)− cos(θ) sin(θ/2)

]=

[cos(θ − θ/2)sin(θ − θ/2)

]=

[cos(θ/2)sin(θ/2)

]= u.

Page 14: Introduction Orthogonal Geometric Transformations and ...drager/Classes/17-2-Summer/M5399/beamer/nslides02/n... · Final Classi cation Exercises Orthogonal Matrices A matrix A isorthogonalif

WallpaperGroups

Lance Drager

Introduction

OrthogonalMatrices

OrthogonalMatrices andDot Product

ClassifyingOrthogonalMatrices

Exercises

ClassifyingIsometries

Translations

FirstClassification

FinalClassification

Exercises

Classifying Orthogonal Matrices 3

S(θ)v =

[cos(θ) sin(θ)sin(θ) − cos(θ)

] [− sin(θ/2)

cos(θ/2)

]=

[− cos(θ) sin(θ/2) + sin(θ) cos(θ/2)− sin(θ) sin(θ/2)− cos(θ) cos(θ/2)

]=

[sin(θ − θ/2)

− cos(θ − θ/2)

]=

[sin(θ/2)

− cos(θ/2)

]= −

[− sin(θ/2)

cos(θ/2)

]= −v .

Page 15: Introduction Orthogonal Geometric Transformations and ...drager/Classes/17-2-Summer/M5399/beamer/nslides02/n... · Final Classi cation Exercises Orthogonal Matrices A matrix A isorthogonalif

WallpaperGroups

Lance Drager

Introduction

OrthogonalMatrices

OrthogonalMatrices andDot Product

ClassifyingOrthogonalMatrices

Exercises

ClassifyingIsometries

Translations

FirstClassification

FinalClassification

Exercises

Classifying Orthogonal Matrices 4

• S(θ)u = u and S(θ)v = −v . If x = tu + sv , thenS(θ)x = tu − sv .

x

y

u

tu

v

sv

−sv

M

x

S(θ)x

• S(θ) is a reflection with its mirror line at an angle of θ/2.

Page 16: Introduction Orthogonal Geometric Transformations and ...drager/Classes/17-2-Summer/M5399/beamer/nslides02/n... · Final Classi cation Exercises Orthogonal Matrices A matrix A isorthogonalif

WallpaperGroups

Lance Drager

Introduction

OrthogonalMatrices

OrthogonalMatrices andDot Product

ClassifyingOrthogonalMatrices

Exercises

ClassifyingIsometries

Translations

FirstClassification

FinalClassification

Exercises

Classifying Orthogonal Matrices 4

• S(θ)u = u and S(θ)v = −v . If x = tu + sv , thenS(θ)x = tu − sv .

x

y

u

tu

v

sv

−sv

M

x

S(θ)x

• S(θ) is a reflection with its mirror line at an angle of θ/2.

Page 17: Introduction Orthogonal Geometric Transformations and ...drager/Classes/17-2-Summer/M5399/beamer/nslides02/n... · Final Classi cation Exercises Orthogonal Matrices A matrix A isorthogonalif

WallpaperGroups

Lance Drager

Introduction

OrthogonalMatrices

OrthogonalMatrices andDot Product

ClassifyingOrthogonalMatrices

Exercises

ClassifyingIsometries

Translations

FirstClassification

FinalClassification

Exercises

Outline

1 Introduction

2 Orthogonal MatricesOrthogonal Matrices and Dot ProductClassifying Orthogonal MatricesExercises

3 Classifying IsometriesTranslationsFirst ClassificationFinal ClassificationExercises

Page 18: Introduction Orthogonal Geometric Transformations and ...drager/Classes/17-2-Summer/M5399/beamer/nslides02/n... · Final Classi cation Exercises Orthogonal Matrices A matrix A isorthogonalif

WallpaperGroups

Lance Drager

Introduction

OrthogonalMatrices

OrthogonalMatrices andDot Product

ClassifyingOrthogonalMatrices

Exercises

ClassifyingIsometries

Translations

FirstClassification

FinalClassification

Exercises

Orthogonal Matix Exercises 1

Exercises

• S(θ)2 = I , so S(θ)−1 = S(θ).

• Let A be an orthogonal matrix. Then A is a rotation (orthe identity) if and only if det(A) = 1 and A is a reflectionif and only if det(A) = −1.

• If A =

[a cb d

]define the transpose of A by

AT =

[a bc d

]. Show that A is orthogonal if and only if

A−1 = AT .

Page 19: Introduction Orthogonal Geometric Transformations and ...drager/Classes/17-2-Summer/M5399/beamer/nslides02/n... · Final Classi cation Exercises Orthogonal Matrices A matrix A isorthogonalif

WallpaperGroups

Lance Drager

Introduction

OrthogonalMatrices

OrthogonalMatrices andDot Product

ClassifyingOrthogonalMatrices

Exercises

ClassifyingIsometries

Translations

FirstClassification

FinalClassification

Exercises

Exercises on Orthogonal Matrices2

Exercises Continued

• Use the addition laws for sine and cosine to verify theimportant identities

R(θ)S(φ) = S(θ + φ),

S(φ)R(θ) = S(φ− θ),

S(θ)S(φ) = R(θ − φ)

Page 20: Introduction Orthogonal Geometric Transformations and ...drager/Classes/17-2-Summer/M5399/beamer/nslides02/n... · Final Classi cation Exercises Orthogonal Matrices A matrix A isorthogonalif

WallpaperGroups

Lance Drager

Introduction

OrthogonalMatrices

OrthogonalMatrices andDot Product

ClassifyingOrthogonalMatrices

Exercises

ClassifyingIsometries

Translations

FirstClassification

FinalClassification

Exercises

Outline

1 Introduction

2 Orthogonal MatricesOrthogonal Matrices and Dot ProductClassifying Orthogonal MatricesExercises

3 Classifying IsometriesTranslationsFirst ClassificationFinal ClassificationExercises

Page 21: Introduction Orthogonal Geometric Transformations and ...drager/Classes/17-2-Summer/M5399/beamer/nslides02/n... · Final Classi cation Exercises Orthogonal Matrices A matrix A isorthogonalif

WallpaperGroups

Lance Drager

Introduction

OrthogonalMatrices

OrthogonalMatrices andDot Product

ClassifyingOrthogonalMatrices

Exercises

ClassifyingIsometries

Translations

FirstClassification

FinalClassification

Exercises

Translations

• For v ∈ R2, define Tv : R2 → R2 by Tv (x) = x + v . Wesay Tv is translation by v.

• TuTv = Tu+v and T−1v = T−v .

• Translations are isometries

dist(Tv (x),Tv (y)) = ‖Tv (x)− Tv (y)‖= ‖(x + v)− (y + v)‖= ‖x + v − y − v‖= ‖x − y‖= dist(x , y).

Page 22: Introduction Orthogonal Geometric Transformations and ...drager/Classes/17-2-Summer/M5399/beamer/nslides02/n... · Final Classi cation Exercises Orthogonal Matrices A matrix A isorthogonalif

WallpaperGroups

Lance Drager

Introduction

OrthogonalMatrices

OrthogonalMatrices andDot Product

ClassifyingOrthogonalMatrices

Exercises

ClassifyingIsometries

Translations

FirstClassification

FinalClassification

Exercises

Outline

1 Introduction

2 Orthogonal MatricesOrthogonal Matrices and Dot ProductClassifying Orthogonal MatricesExercises

3 Classifying IsometriesTranslationsFirst ClassificationFinal ClassificationExercises

Page 23: Introduction Orthogonal Geometric Transformations and ...drager/Classes/17-2-Summer/M5399/beamer/nslides02/n... · Final Classi cation Exercises Orthogonal Matrices A matrix A isorthogonalif

WallpaperGroups

Lance Drager

Introduction

OrthogonalMatrices

OrthogonalMatrices andDot Product

ClassifyingOrthogonalMatrices

Exercises

ClassifyingIsometries

Translations

FirstClassification

FinalClassification

Exercises

Three Distances Determine a Point

• Let p1, p2 and p3 be noncolinear points. A point x isuniquely determined by the three numbers r1 = dist(x , p1),r2 = dist(x , p2) and r3 = dist(x , p3).

p1 p2

p3

Page 24: Introduction Orthogonal Geometric Transformations and ...drager/Classes/17-2-Summer/M5399/beamer/nslides02/n... · Final Classi cation Exercises Orthogonal Matrices A matrix A isorthogonalif

WallpaperGroups

Lance Drager

Introduction

OrthogonalMatrices

OrthogonalMatrices andDot Product

ClassifyingOrthogonalMatrices

Exercises

ClassifyingIsometries

Translations

FirstClassification

FinalClassification

Exercises

First Classification

• If an isometry T fixes three noncolinear points p1, p2, p3

then T is the identity.

dist(x , pi ) = dist(T (x),T (pi )) = dist(T (x), pi ), i = 1, 2, 3,

=⇒ x = T (x).

TheoremEvery isometry T can be written as T (x) = Ax + v where A isan orthogonal matrix, i.e., T is multiplication by an orthogonalmatrix followed by a translation.

Page 25: Introduction Orthogonal Geometric Transformations and ...drager/Classes/17-2-Summer/M5399/beamer/nslides02/n... · Final Classi cation Exercises Orthogonal Matrices A matrix A isorthogonalif

WallpaperGroups

Lance Drager

Introduction

OrthogonalMatrices

OrthogonalMatrices andDot Product

ClassifyingOrthogonalMatrices

Exercises

ClassifyingIsometries

Translations

FirstClassification

FinalClassification

Exercises

Proof of First Classification

Proof.

1 The points 0, e1, e2 are noncolinear.

2 Let u = −T (0). Then TuT (0) = 0.

3 dist(TuT (e1), 0) = 1, so we can find a rotation matrix Rso that RTuT (e1) = e1.

4 RTuT (e2) = ±e2.

5 If RTuT (e2) = −e2, let S = S(0) be reflection throughthe x-axis, otherwise let S = I .

6 SRTu(0) = 0, SRTuT (e1) = e2, and SRTuT (e2) = e2

7 SRTuT = I , so T = T−uR−1S−1

8 Let A = R−1S−1 and v = −u. Then T (x) = Ax + v

Page 26: Introduction Orthogonal Geometric Transformations and ...drager/Classes/17-2-Summer/M5399/beamer/nslides02/n... · Final Classi cation Exercises Orthogonal Matrices A matrix A isorthogonalif

WallpaperGroups

Lance Drager

Introduction

OrthogonalMatrices

OrthogonalMatrices andDot Product

ClassifyingOrthogonalMatrices

Exercises

ClassifyingIsometries

Translations

FirstClassification

FinalClassification

Exercises

Proof of First Classification

Proof.

1 The points 0, e1, e2 are noncolinear.

2 Let u = −T (0). Then TuT (0) = 0.

3 dist(TuT (e1), 0) = 1, so we can find a rotation matrix Rso that RTuT (e1) = e1.

4 RTuT (e2) = ±e2.

5 If RTuT (e2) = −e2, let S = S(0) be reflection throughthe x-axis, otherwise let S = I .

6 SRTu(0) = 0, SRTuT (e1) = e2, and SRTuT (e2) = e2

7 SRTuT = I , so T = T−uR−1S−1

8 Let A = R−1S−1 and v = −u. Then T (x) = Ax + v

Page 27: Introduction Orthogonal Geometric Transformations and ...drager/Classes/17-2-Summer/M5399/beamer/nslides02/n... · Final Classi cation Exercises Orthogonal Matrices A matrix A isorthogonalif

WallpaperGroups

Lance Drager

Introduction

OrthogonalMatrices

OrthogonalMatrices andDot Product

ClassifyingOrthogonalMatrices

Exercises

ClassifyingIsometries

Translations

FirstClassification

FinalClassification

Exercises

Proof of First Classification

Proof.

1 The points 0, e1, e2 are noncolinear.

2 Let u = −T (0). Then TuT (0) = 0.

3 dist(TuT (e1), 0) = 1, so we can find a rotation matrix Rso that RTuT (e1) = e1.

4 RTuT (e2) = ±e2.

5 If RTuT (e2) = −e2, let S = S(0) be reflection throughthe x-axis, otherwise let S = I .

6 SRTu(0) = 0, SRTuT (e1) = e2, and SRTuT (e2) = e2

7 SRTuT = I , so T = T−uR−1S−1

8 Let A = R−1S−1 and v = −u. Then T (x) = Ax + v

Page 28: Introduction Orthogonal Geometric Transformations and ...drager/Classes/17-2-Summer/M5399/beamer/nslides02/n... · Final Classi cation Exercises Orthogonal Matrices A matrix A isorthogonalif

WallpaperGroups

Lance Drager

Introduction

OrthogonalMatrices

OrthogonalMatrices andDot Product

ClassifyingOrthogonalMatrices

Exercises

ClassifyingIsometries

Translations

FirstClassification

FinalClassification

Exercises

Proof of First Classification

Proof.

1 The points 0, e1, e2 are noncolinear.

2 Let u = −T (0). Then TuT (0) = 0.

3 dist(TuT (e1), 0) = 1, so we can find a rotation matrix Rso that RTuT (e1) = e1.

4 RTuT (e2) = ±e2.

5 If RTuT (e2) = −e2, let S = S(0) be reflection throughthe x-axis, otherwise let S = I .

6 SRTu(0) = 0, SRTuT (e1) = e2, and SRTuT (e2) = e2

7 SRTuT = I , so T = T−uR−1S−1

8 Let A = R−1S−1 and v = −u. Then T (x) = Ax + v

Page 29: Introduction Orthogonal Geometric Transformations and ...drager/Classes/17-2-Summer/M5399/beamer/nslides02/n... · Final Classi cation Exercises Orthogonal Matrices A matrix A isorthogonalif

WallpaperGroups

Lance Drager

Introduction

OrthogonalMatrices

OrthogonalMatrices andDot Product

ClassifyingOrthogonalMatrices

Exercises

ClassifyingIsometries

Translations

FirstClassification

FinalClassification

Exercises

Proof of First Classification

Proof.

1 The points 0, e1, e2 are noncolinear.

2 Let u = −T (0). Then TuT (0) = 0.

3 dist(TuT (e1), 0) = 1, so we can find a rotation matrix Rso that RTuT (e1) = e1.

4 RTuT (e2) = ±e2.

5 If RTuT (e2) = −e2, let S = S(0) be reflection throughthe x-axis, otherwise let S = I .

6 SRTu(0) = 0, SRTuT (e1) = e2, and SRTuT (e2) = e2

7 SRTuT = I , so T = T−uR−1S−1

8 Let A = R−1S−1 and v = −u. Then T (x) = Ax + v

Page 30: Introduction Orthogonal Geometric Transformations and ...drager/Classes/17-2-Summer/M5399/beamer/nslides02/n... · Final Classi cation Exercises Orthogonal Matrices A matrix A isorthogonalif

WallpaperGroups

Lance Drager

Introduction

OrthogonalMatrices

OrthogonalMatrices andDot Product

ClassifyingOrthogonalMatrices

Exercises

ClassifyingIsometries

Translations

FirstClassification

FinalClassification

Exercises

Proof of First Classification

Proof.

1 The points 0, e1, e2 are noncolinear.

2 Let u = −T (0). Then TuT (0) = 0.

3 dist(TuT (e1), 0) = 1, so we can find a rotation matrix Rso that RTuT (e1) = e1.

4 RTuT (e2) = ±e2.

5 If RTuT (e2) = −e2, let S = S(0) be reflection throughthe x-axis, otherwise let S = I .

6 SRTu(0) = 0, SRTuT (e1) = e2, and SRTuT (e2) = e2

7 SRTuT = I , so T = T−uR−1S−1

8 Let A = R−1S−1 and v = −u. Then T (x) = Ax + v

Page 31: Introduction Orthogonal Geometric Transformations and ...drager/Classes/17-2-Summer/M5399/beamer/nslides02/n... · Final Classi cation Exercises Orthogonal Matrices A matrix A isorthogonalif

WallpaperGroups

Lance Drager

Introduction

OrthogonalMatrices

OrthogonalMatrices andDot Product

ClassifyingOrthogonalMatrices

Exercises

ClassifyingIsometries

Translations

FirstClassification

FinalClassification

Exercises

Proof of First Classification

Proof.

1 The points 0, e1, e2 are noncolinear.

2 Let u = −T (0). Then TuT (0) = 0.

3 dist(TuT (e1), 0) = 1, so we can find a rotation matrix Rso that RTuT (e1) = e1.

4 RTuT (e2) = ±e2.

5 If RTuT (e2) = −e2, let S = S(0) be reflection throughthe x-axis, otherwise let S = I .

6 SRTu(0) = 0, SRTuT (e1) = e2, and SRTuT (e2) = e2

7 SRTuT = I , so T = T−uR−1S−1

8 Let A = R−1S−1 and v = −u. Then T (x) = Ax + v

Page 32: Introduction Orthogonal Geometric Transformations and ...drager/Classes/17-2-Summer/M5399/beamer/nslides02/n... · Final Classi cation Exercises Orthogonal Matrices A matrix A isorthogonalif

WallpaperGroups

Lance Drager

Introduction

OrthogonalMatrices

OrthogonalMatrices andDot Product

ClassifyingOrthogonalMatrices

Exercises

ClassifyingIsometries

Translations

FirstClassification

FinalClassification

Exercises

Proof of First Classification

Proof.

1 The points 0, e1, e2 are noncolinear.

2 Let u = −T (0). Then TuT (0) = 0.

3 dist(TuT (e1), 0) = 1, so we can find a rotation matrix Rso that RTuT (e1) = e1.

4 RTuT (e2) = ±e2.

5 If RTuT (e2) = −e2, let S = S(0) be reflection throughthe x-axis, otherwise let S = I .

6 SRTu(0) = 0, SRTuT (e1) = e2, and SRTuT (e2) = e2

7 SRTuT = I , so T = T−uR−1S−1

8 Let A = R−1S−1 and v = −u. Then T (x) = Ax + v

Page 33: Introduction Orthogonal Geometric Transformations and ...drager/Classes/17-2-Summer/M5399/beamer/nslides02/n... · Final Classi cation Exercises Orthogonal Matrices A matrix A isorthogonalif

WallpaperGroups

Lance Drager

Introduction

OrthogonalMatrices

OrthogonalMatrices andDot Product

ClassifyingOrthogonalMatrices

Exercises

ClassifyingIsometries

Translations

FirstClassification

FinalClassification

Exercises

Outline

1 Introduction

2 Orthogonal MatricesOrthogonal Matrices and Dot ProductClassifying Orthogonal MatricesExercises

3 Classifying IsometriesTranslationsFirst ClassificationFinal ClassificationExercises

Page 34: Introduction Orthogonal Geometric Transformations and ...drager/Classes/17-2-Summer/M5399/beamer/nslides02/n... · Final Classi cation Exercises Orthogonal Matrices A matrix A isorthogonalif

WallpaperGroups

Lance Drager

Introduction

OrthogonalMatrices

OrthogonalMatrices andDot Product

ClassifyingOrthogonalMatrices

Exercises

ClassifyingIsometries

Translations

FirstClassification

FinalClassification

Exercises

Notation and Algebra

• If T (x) = Ax + v write T = (A | v).

• Calculate the product (composition) in this notation

(A | u)(B | v)x = (A | u)(Bx + v)

= A(Bx + v) + u

= ABx + Av + u

= (AB | u + Av)x .

• (A | u)(B | v) = (AB | u + Av)

• The identity transformation is (I | 0). Translation by v is(I | v).

• (A | u)−1 = (A−1 | − A−1u)

Page 35: Introduction Orthogonal Geometric Transformations and ...drager/Classes/17-2-Summer/M5399/beamer/nslides02/n... · Final Classi cation Exercises Orthogonal Matrices A matrix A isorthogonalif

WallpaperGroups

Lance Drager

Introduction

OrthogonalMatrices

OrthogonalMatrices andDot Product

ClassifyingOrthogonalMatrices

Exercises

ClassifyingIsometries

Translations

FirstClassification

FinalClassification

Exercises

Rotations

• Consider (R | v) where R = R(θ) 6= I is a rotation.

• Look for a fixed point p, i.e., (R | v)p = p

Rp + v = p

⇐⇒ p − Rp = v

⇐⇒ (I − R)p = v .

• If (I − R) is invertible, there is a unique solution p.

• (I − R) is invertible because(I − R)x = 0 ⇐⇒ x = Rx ⇐⇒ x = 0. (Use the BigTheorem.)

• There is a unique fixed point p, and we can write(R | v) = (R | p − Rp).

• (R | p − Rp)x = Rx + p − Rp = p + R(x − p).

Page 36: Introduction Orthogonal Geometric Transformations and ...drager/Classes/17-2-Summer/M5399/beamer/nslides02/n... · Final Classi cation Exercises Orthogonal Matrices A matrix A isorthogonalif

WallpaperGroups

Lance Drager

Introduction

OrthogonalMatrices

OrthogonalMatrices andDot Product

ClassifyingOrthogonalMatrices

Exercises

ClassifyingIsometries

Translations

FirstClassification

FinalClassification

Exercises

Picture of Rotation

• y = (R | p − Rp)x = p + R(x − p) says that this isometryis rotation though angle θ around the point p,which iscalled the center of rotation or rotocenter.

x

y

p

xx− pθ

R(x− p)

y

Page 37: Introduction Orthogonal Geometric Transformations and ...drager/Classes/17-2-Summer/M5399/beamer/nslides02/n... · Final Classi cation Exercises Orthogonal Matrices A matrix A isorthogonalif

WallpaperGroups

Lance Drager

Introduction

OrthogonalMatrices

OrthogonalMatrices andDot Product

ClassifyingOrthogonalMatrices

Exercises

ClassifyingIsometries

Translations

FirstClassification

FinalClassification

Exercises

Isometries with a Reflection Matrix

• Consider (S |w) where S = S(θ) is a reflection matrix.

• Let u and v be the vectors with Su = u and Sv = −v .We can write w = αu + βv , so (S |w) = (S |αu + βv).

• First Case: α = 0. So we have (S |βv).

• The point p = βv/2 is fixed.

(S |βv)p = S(βv/2) + βv = −βv/2 + βv = βv/2 = p.

• The fixed points are exactly x = p + tu.

(S | 2p)(p + tu) = Sp + tSu + 2p = −p + tu + 2p = p + tu.

Page 38: Introduction Orthogonal Geometric Transformations and ...drager/Classes/17-2-Summer/M5399/beamer/nslides02/n... · Final Classi cation Exercises Orthogonal Matrices A matrix A isorthogonalif

WallpaperGroups

Lance Drager

Introduction

OrthogonalMatrices

OrthogonalMatrices andDot Product

ClassifyingOrthogonalMatrices

Exercises

ClassifyingIsometries

Translations

FirstClassification

FinalClassification

Exercises

Isometries with a Reflection Matrix

• Consider (S |w) where S = S(θ) is a reflection matrix.

• Let u and v be the vectors with Su = u and Sv = −v .We can write w = αu + βv , so (S |w) = (S |αu + βv).

• First Case: α = 0. So we have (S |βv).

• The point p = βv/2 is fixed.

(S |βv)p = S(βv/2) + βv = −βv/2 + βv = βv/2 = p.

• The fixed points are exactly x = p + tu.

(S | 2p)(p + tu) = Sp + tSu + 2p = −p + tu + 2p = p + tu.

Page 39: Introduction Orthogonal Geometric Transformations and ...drager/Classes/17-2-Summer/M5399/beamer/nslides02/n... · Final Classi cation Exercises Orthogonal Matrices A matrix A isorthogonalif

WallpaperGroups

Lance Drager

Introduction

OrthogonalMatrices

OrthogonalMatrices andDot Product

ClassifyingOrthogonalMatrices

Exercises

ClassifyingIsometries

Translations

FirstClassification

FinalClassification

Exercises

Isometries with a Reflection Matrix

• Consider (S |w) where S = S(θ) is a reflection matrix.

• Let u and v be the vectors with Su = u and Sv = −v .We can write w = αu + βv , so (S |w) = (S |αu + βv).

• First Case: α = 0. So we have (S |βv).

• The point p = βv/2 is fixed.

(S |βv)p = S(βv/2) + βv = −βv/2 + βv = βv/2 = p.

• The fixed points are exactly x = p + tu.

(S | 2p)(p + tu) = Sp + tSu + 2p = −p + tu + 2p = p + tu.

Page 40: Introduction Orthogonal Geometric Transformations and ...drager/Classes/17-2-Summer/M5399/beamer/nslides02/n... · Final Classi cation Exercises Orthogonal Matrices A matrix A isorthogonalif

WallpaperGroups

Lance Drager

Introduction

OrthogonalMatrices

OrthogonalMatrices andDot Product

ClassifyingOrthogonalMatrices

Exercises

ClassifyingIsometries

Translations

FirstClassification

FinalClassification

Exercises

The Line of Fixed Points

• The line through p parallel to u is parametrized byx = p + tu, for t ∈ R.

x

y

x

p

tu

v u

Page 41: Introduction Orthogonal Geometric Transformations and ...drager/Classes/17-2-Summer/M5399/beamer/nslides02/n... · Final Classi cation Exercises Orthogonal Matrices A matrix A isorthogonalif

WallpaperGroups

Lance Drager

Introduction

OrthogonalMatrices

OrthogonalMatrices andDot Product

ClassifyingOrthogonalMatrices

Exercises

ClassifyingIsometries

Translations

FirstClassification

FinalClassification

Exercises

Reflection Picture

• We can write a point x as x = p + tu + sv . Theny = (S | 2p)x = p + tu − sv .

x

y

M

p

x

y

tu

sv

−sv

tu + sv

tu− sv

v u

Page 42: Introduction Orthogonal Geometric Transformations and ...drager/Classes/17-2-Summer/M5399/beamer/nslides02/n... · Final Classi cation Exercises Orthogonal Matrices A matrix A isorthogonalif

WallpaperGroups

Lance Drager

Introduction

OrthogonalMatrices

OrthogonalMatrices andDot Product

ClassifyingOrthogonalMatrices

Exercises

ClassifyingIsometries

Translations

FirstClassification

FinalClassification

Exercises

Reflections and Glides

• (S |βv) = (S | 2p) is reflection through the mirror line Mgiven by y = p + tu.

• Second Case: α 6= 0. We have (S |αu + βv).

(S |αu + βv) = (I |αu)(S |βv)

This is a reflection followed by a translation parallel to themirror line. This is called a glide refection or just a glide.The mirror line of the reflection is called the glide line.

• A glide has no fixed points.

Page 43: Introduction Orthogonal Geometric Transformations and ...drager/Classes/17-2-Summer/M5399/beamer/nslides02/n... · Final Classi cation Exercises Orthogonal Matrices A matrix A isorthogonalif

WallpaperGroups

Lance Drager

Introduction

OrthogonalMatrices

OrthogonalMatrices andDot Product

ClassifyingOrthogonalMatrices

Exercises

ClassifyingIsometries

Translations

FirstClassification

FinalClassification

Exercises

Glide Reflection Picture

• A glide with a horizontal glide line, and the translationvector shown in blue.

Page 44: Introduction Orthogonal Geometric Transformations and ...drager/Classes/17-2-Summer/M5399/beamer/nslides02/n... · Final Classi cation Exercises Orthogonal Matrices A matrix A isorthogonalif

WallpaperGroups

Lance Drager

Introduction

OrthogonalMatrices

OrthogonalMatrices andDot Product

ClassifyingOrthogonalMatrices

Exercises

ClassifyingIsometries

Translations

FirstClassification

FinalClassification

Exercises

Classification Theorem

TheoremEvery isometry of the plane falls into on of the following fivemutually exclusive classes.

1 The identity.

2 A translation (not the identity).

3 A rotation about some point (not the identity);

4 A reflection through some mirror line.

5 A glide along some glide line.

Page 45: Introduction Orthogonal Geometric Transformations and ...drager/Classes/17-2-Summer/M5399/beamer/nslides02/n... · Final Classi cation Exercises Orthogonal Matrices A matrix A isorthogonalif

WallpaperGroups

Lance Drager

Introduction

OrthogonalMatrices

OrthogonalMatrices andDot Product

ClassifyingOrthogonalMatrices

Exercises

ClassifyingIsometries

Translations

FirstClassification

FinalClassification

Exercises

Outline

1 Introduction

2 Orthogonal MatricesOrthogonal Matrices and Dot ProductClassifying Orthogonal MatricesExercises

3 Classifying IsometriesTranslationsFirst ClassificationFinal ClassificationExercises

Page 46: Introduction Orthogonal Geometric Transformations and ...drager/Classes/17-2-Summer/M5399/beamer/nslides02/n... · Final Classi cation Exercises Orthogonal Matrices A matrix A isorthogonalif

WallpaperGroups

Lance Drager

Introduction

OrthogonalMatrices

OrthogonalMatrices andDot Product

ClassifyingOrthogonalMatrices

Exercises

ClassifyingIsometries

Translations

FirstClassification

FinalClassification

Exercises

Exercises on Isometries

Exercises

1 Consider the cases for the product T1T2 of two isometriesT1 and T2. Describe what happens geometrically (e.g.,rotation angle, location of the mirror line, etc.). In whatcases do the isometries commute, i.e., when doesT1T2 = T2T1

2 Project: For a rotation (R | v) give a geometric descriptionof how to find the rotocenter p = (I − R)−1v .

3 As part of the first exercise, given two rotations (withpossibly different rotocenters) show that the compositionis a rotation or a translation.

4 Project: Given two rotations with different rotocentersgive a geometric description of how to find the rotocenterof the composition.