Introducción a SPICE Dr. Marco Antonio Gurrola Navarro Departamento de Electrónica – CUCEI...

67
Introducción a SPICE Dr. Marco Antonio Gurrola Navarro Departamento de Electrónica – CUCEI Universidad de Guadalajara – Agosto de 2014

Transcript of Introducción a SPICE Dr. Marco Antonio Gurrola Navarro Departamento de Electrónica – CUCEI...

Page 1: Introducción a SPICE Dr. Marco Antonio Gurrola Navarro Departamento de Electrónica – CUCEI Universidad de Guadalajara – Agosto de 2014.

Introducción a SPICEDr. Marco Antonio Gurrola Navarro

Departamento de Electrónica – CUCEIUniversidad de Guadalajara – Agosto de 2014

Page 2: Introducción a SPICE Dr. Marco Antonio Gurrola Navarro Departamento de Electrónica – CUCEI Universidad de Guadalajara – Agosto de 2014.

2

CONTENIDO

I. IntroducciónII. Análisis BásicosIII. Análisis TransitorioIV. Evaluaciones en PostprocesamientoV. Simulación JerárquicaVI. Comandos Adicionales Bibliografía

Page 3: Introducción a SPICE Dr. Marco Antonio Gurrola Navarro Departamento de Electrónica – CUCEI Universidad de Guadalajara – Agosto de 2014.

I. Introducción

Page 4: Introducción a SPICE Dr. Marco Antonio Gurrola Navarro Departamento de Electrónica – CUCEI Universidad de Guadalajara – Agosto de 2014.

4

Qué es SPICE SPICE es un programa de simulación. Sus siglas vienen de Simulation Program

with Integrated Circuit Emphasis.

Con SPICE se pueden analizar y diseñar circuitos electrónicos complejos de manera rápida y precisa.

“Prácticamente cada chip electrónico desarrollado en cualquier parte del mundo en la actualidad emplea SPICE, o uno de los programas derivados de éste, durante etapas críticas durante su diseño”.

Las bases para la simulación de circuitos integrados se empezaron a desarrollar a mediados de los 60s, en el Dpto. de Ingeniería Eléctrica y Ciencias Computacionales (EECS) de la Universidad de California campus Berkeley.

El desarrollado de la primera versión de SPICE fue encabezado por el Prof. Donald O. Pederson la cuál se terminó en 1972.

Page 5: Introducción a SPICE Dr. Marco Antonio Gurrola Navarro Departamento de Electrónica – CUCEI Universidad de Guadalajara – Agosto de 2014.

5

Variedades de SPICE

SPICE

(UC campus Berkeley)

LTspice

(Linear Technology)

T-Spice

(Tanner)

Hspice

(Synopsys)

Pspice

(OrCAD)

Page 6: Introducción a SPICE Dr. Marco Antonio Gurrola Navarro Departamento de Electrónica – CUCEI Universidad de Guadalajara – Agosto de 2014.

6

Sintaxis básica Para poder ser simulado, el

circuito se debe capturar con la sintaxis de SPICE en un archivo de texto.

1V dc 5V ac

100

10u

vin

vout50m

Archivo de texto con extensión

.sp

Page 7: Introducción a SPICE Dr. Marco Antonio Gurrola Navarro Departamento de Electrónica – CUCEI Universidad de Guadalajara – Agosto de 2014.

7

Sintaxis básica Nota: La primera línea

siempre es un comentario.

Los comentarios adicionales se inician con *

Esta línea es un comentario* Este es otro comentario

1V dc 5V ac

100

10u

vin

vout50m

Page 8: Introducción a SPICE Dr. Marco Antonio Gurrola Navarro Departamento de Electrónica – CUCEI Universidad de Guadalajara – Agosto de 2014.

8

Sintaxis básica Cada nodo del circuito debe tener

un nombre.

Siempre debe haber un nodo de referencia con el nombre Gnd o el nombre 0.

Los nombres de nodos contienen caracteres alfanuméricos.

1V dc 5V ac

voutvin|

0

1

* Esta línea es un comentario* Este es otro comentario

100

10u 50m

vin

Page 9: Introducción a SPICE Dr. Marco Antonio Gurrola Navarro Departamento de Electrónica – CUCEI Universidad de Guadalajara – Agosto de 2014.

9

Sintaxis básica Todos los elementos deben

tener un nombre o etiqueta.

El nombre se forma con una letra inicial según el tipo de elemento (resistor, capacitor, fuente, etc.) y un identificador alfanumérico.

Esta línea es un comentario* Este es otro comentario

1V dc 5V ac

voutvin|

0

1

100

10u 50m

Vin

Rout

L1C1

Algunas letras iniciales según el tipo de elementoC – CapacitorD – DiodoE – Fuente de voltage controlada por voltajeF – Fuente de corriente controlada por corrienteG – Fuente de corriente controlada por voltajeH – Fuente de voltaje controlada por corrienteI – Fuente de corriente independiente

J – Transistor JFETL – InductorM – Transistor MOSFETQ – Transistor BipolarR – ResistorT – Línea de transmisión sin pérdidasV – Fuente de voltaje independiente

Page 10: Introducción a SPICE Dr. Marco Antonio Gurrola Navarro Departamento de Electrónica – CUCEI Universidad de Guadalajara – Agosto de 2014.

10

Sintaxis básica Cuando ya se tienen los nombres

de los nodos, los nombres de los elementos y sus valores, se procede a capturar el circuito.

Cada elemento del circuito requiere de una línea en el listado.

* Esta línea es un comentario* Este es otro comentarioC1 vin 1 10uL1 1 vout 50e-3Rout vout 0 100

No se distinguen entre mayúsculas y minúsculas

1V dc 5V ac

voutvin

0

1

100

10u 50m

Vin

Rout

L1C1

Page 11: Introducción a SPICE Dr. Marco Antonio Gurrola Navarro Departamento de Electrónica – CUCEI Universidad de Guadalajara – Agosto de 2014.

11

Sintaxis básica En el caso de resistores,

capacitores e inductores sus nombres inician con R, C y L respectivamente.

Después de sus nombres se anotan sus nodos y al final su valor en ohms, faradios o henrios.

* Esta línea es un comentarioC1 vin 1 10uL1 1 vout 50e-3Rout vout 0 100

1V dc 5V ac

voutvin|

0

1

100

10u 50m

Vin

Rout

L1C1

Page 12: Introducción a SPICE Dr. Marco Antonio Gurrola Navarro Departamento de Electrónica – CUCEI Universidad de Guadalajara – Agosto de 2014.

12

Sintaxis básica

* Esta línea es un comentarioC1 vin 1 10uL1 1 vout 50e-3Rout vout 0 100

Para anotar los valores de los elementos normalmente se emplean los múltiplos de ingeniería:

T 1e12G 1e9MEG 1e6X 1e6K 1e3M 1e–3 U 1e–6N 1e–9P 1e–12F 1e–15A 1e–18

1V dc 5V ac

voutvin|

0

1

100

10u 50m

Vin

Rout

L1C1

Page 13: Introducción a SPICE Dr. Marco Antonio Gurrola Navarro Departamento de Electrónica – CUCEI Universidad de Guadalajara – Agosto de 2014.

13

Sintaxis básica

* Esta línea es un comentarioC1 vin 1 10uL1 1 vout 50e-3Rout vout 0 100Vin vin 0 DC=1 AC=5

Para las fuentes se requiere indicar la polaridad en el circuito.

En el listado primero se pone el nodo positivo.

Si no se incluyen, los valores de DC o de AC se supone que son de cero

1V dc 5V ac

voutvin|

0

1

100

10u 50m

Vin

Rout

L1C1+

Page 14: Introducción a SPICE Dr. Marco Antonio Gurrola Navarro Departamento de Electrónica – CUCEI Universidad de Guadalajara – Agosto de 2014.

II. Análisis Básicos

Page 15: Introducción a SPICE Dr. Marco Antonio Gurrola Navarro Departamento de Electrónica – CUCEI Universidad de Guadalajara – Agosto de 2014.

15

Comandos punto Para realizar una simulación se deben incluir comandos en el

listado.

El renglón de cualquier comando inicia con un punto.

Los análisis básicos en SPICE son los siguientes:

Punto de operación DC (comando .op) Barrido de DC (comando .dc) Pequeña señal linealizada AC (comando .ac) Análisis transitorio (comando .tran)

Nota: el comando .ac es muy usado en circuitos analógicos y generalmente no se usa en análisis de circuitos digitales.

Page 16: Introducción a SPICE Dr. Marco Antonio Gurrola Navarro Departamento de Electrónica – CUCEI Universidad de Guadalajara – Agosto de 2014.

16

Comando .OPPunto de operación

* Circuito RLC de pruebaC1 vin 1 10uL1 1 vout 50e-3Rout vout 0 100Vin vin 0 DC=1 AC=5.OP

El comando .OP se emplea cuando lo único que se desea es el punto de operación de DC.

El punto de operación se encuentra como parte de los demás tipos de análisis.

Page 17: Introducción a SPICE Dr. Marco Antonio Gurrola Navarro Departamento de Electrónica – CUCEI Universidad de Guadalajara – Agosto de 2014.

17

Comando .ACAnálisis de pequeña señal linealizada

*Ejemplo.AC dec 90 1m 1meg

Spice obtiene los voltajes complejos de cada nodo en función de la frecuencia.

Con oct y dec se realiza el análisis sobre Nsteps puntos exponencialmente distribuidos por cada octava o por cada década.

Mediante lin se determina un total de Nsteps puntos linealmente distribuidos.

*Sintaxis.ac <oct, dec, lin> <Nsteps> <StartFreq>+ <EndFreq>

El carácter + al inicio del renglón indica la continuación de la línea anterior

Page 18: Introducción a SPICE Dr. Marco Antonio Gurrola Navarro Departamento de Electrónica – CUCEI Universidad de Guadalajara – Agosto de 2014.

18

Comando .ACAnálisis de pequeña señal linealizada

Ejemplo:

Se pueden poner comentarios al final de un renglón del listado anteponiendo un carácter ; (T-Spice también acepta $)

* Circuito RLC de pruebaC1 vin 1 10uL1 1 vout 50e-3Rout vout 0 100Vin vin 0 DC=1 AC=5.AC dec 90 1m 1meg ; comentario

Nota: Las graficas son de LTspice. Otras versiones de SPICE tienen graficadores similares.

Page 19: Introducción a SPICE Dr. Marco Antonio Gurrola Navarro Departamento de Electrónica – CUCEI Universidad de Guadalajara – Agosto de 2014.

19

Comando .END

Ejemplo:

El comando .END nos indica el final del listado y cualquier línea posterior a éste se considera comentario

* Circuito RLC de pruebaC1 vin 1 10uL1 1 vout 50e-3Rout vout 0 100Vin vin 0 DC=1 AC=5.AC dec 90 1m 1meg $ comentario

.ENDEste es un comentarioOtro comentario

Para comentarios al final de una línea se pone un signo de pesos $

Page 20: Introducción a SPICE Dr. Marco Antonio Gurrola Navarro Departamento de Electrónica – CUCEI Universidad de Guadalajara – Agosto de 2014.

20

Comando .PROBE

Ejemplo:

Con el comando .PROBE se guardan los resultados de simulación en un archivo de salida que incluye solo las variables de voltaje y corriente indicadas. Este archivo se usa por otro programa que grafica los resultados.

Nota: Para que .PROBE funcione se debe usar también .OPTION PROBE, de lo contrario el archivo de salida guardará los voltajes de todos los nodos y corrientes de todas las ramas del circuito, lo cual producirá archivos de salida innecesariamente grandes.

* Circuito RLC de pruebaC1 vin 1 10uL1 1 vout 50e-3Rout vout 0 100Vin vin 0 DC=1 AC=5.AC dec 90 1m 1meg ; comentario.OPTION PROBE.PROBE v(vout) i(r1).end

Page 21: Introducción a SPICE Dr. Marco Antonio Gurrola Navarro Departamento de Electrónica – CUCEI Universidad de Guadalajara – Agosto de 2014.

21

Transistor MOS

L

W

( Poly )

Nd

Ng

Ns

Nb

PMOS

Ng

Nd

Nb

NsNMOS

Mxxx Nd Ng Ns Nb <model> L=<len> W=<width>+ AD=<area> AS=<area> PD=<perim> PS=<perim>

El MOSFET es un dispositivo de 4 terminales.A continuación se muestra como describir en SPICE los nodos de las terminales del transistor, su modelo y

sus dimensiones

Page 22: Introducción a SPICE Dr. Marco Antonio Gurrola Navarro Departamento de Electrónica – CUCEI Universidad de Guadalajara – Agosto de 2014.

22

Modelos del transistor MOS para cálculos manuales

Región lineal: VGS > VT pero VDS < VGS – VT

Región de saturación: VGS > VT pero VDS > VGS – VT

Región de subumbral: VGS < VT

m1

VGS

VDS

W=1.5u L=0.6u

2

2DS

D n GS T DS

W VI k V V V

L

21

2n

D GS T DS

k WI V V V

L

1 1GS DS

T T

V V

nD S DSI I e e V

Page 23: Introducción a SPICE Dr. Marco Antonio Gurrola Navarro Departamento de Electrónica – CUCEI Universidad de Guadalajara – Agosto de 2014.

23

L

W

( Poly )

m2

VGS=0V

VDS=3VW=1.5u L=0.6u

m2

VGS=3V

VDS=3VW=1.5u L=0.6u

ON Semiconductor C5 (0.5 um)

NMOS PMOS UNITS

Vth 0.78 -0.91 volts

m2

VGS=0V

VDS=3V

m2

VGS=3V

VDS=3V

RON,N ≈ 15kΩ

Transistor NMOS visto como un interruptor

ROFF,N > 15TΩ

Un valor más aproximado de RON,N se obtiene con el modelo del MOS en región de saturación

Page 24: Introducción a SPICE Dr. Marco Antonio Gurrola Navarro Departamento de Electrónica – CUCEI Universidad de Guadalajara – Agosto de 2014.

24

m1

VGS=0V

VDS= −3V

ON Semiconductor C5

NMOS PMOS UNITS

Vth 0.78 -0.91 volts

m1 m1

RON,P ≈ 15kΩ

Transistor PMOS visto como un interruptor

m1

VGS= −3VVDS= −3V

W=1.5u L=0.6u

VGS=0V

VDS= −3VVGS= −3V

VDS= −3V

W=1.5u L=0.6u

Un valor más aproximado de RON,P se obtiene con el modelo del MOS en región de saturación

ROFF,P > 15TΩ

Page 25: Introducción a SPICE Dr. Marco Antonio Gurrola Navarro Departamento de Electrónica – CUCEI Universidad de Guadalajara – Agosto de 2014.

25

Inversor CMOS

m2

m1

RON,P

m2

Vin=0VVdd=3V

Vout=3V

m1

m2

m1

RON,N

m2

m1

Vdd=3V Vin=0VVout = ?

Vin=3VVdd=3V

Vout=0V

Vdd=3V Vin=3VVout = ?

Obsérvese que el flujo de corriente en estado estático es aproximadamente de cero, ya sea para entrada baja o alta

ID < 1pA

ID < 1pA

Page 26: Introducción a SPICE Dr. Marco Antonio Gurrola Navarro Departamento de Electrónica – CUCEI Universidad de Guadalajara – Agosto de 2014.

26

0V≤Vin≤3V0V≤Vin≤3V

Flujo de corriente en un Inversor CMOS durante la conmutación

m2

m1

RP

m2

Vdd=3V

Vout

m1

Vdd=3V

Vout

ID

RN

Manualmente la corriente ID máxima (o cercana al máximo) se determina resolviendo simultáneamente las ecuaciones de la región de saturación para el NMOS y el PMOS.

ID

Page 27: Introducción a SPICE Dr. Marco Antonio Gurrola Navarro Departamento de Electrónica – CUCEI Universidad de Guadalajara – Agosto de 2014.

27

0V≤Vin≤3V

Flujo de corriente en un Inversor CMOS durante la conmutación

m2

m1

Vdd=3V

Vout

ID

W=1.5u L=0.6u AD=1.5p AS=1.5p PD=3.5u PS=3.5u

W=1.5u L=0.6u AD=1.5p AS=1.5p PD=3.5u PS=3.5u

Ejercicio: Obtenga manualmente la corriente máxima ID,max, considerando

valores para que los parámetros de modulación de largo de canal λP=0 y λN=0

ON Semiconductor C5 (antes AMIS C5)

NMOS PMOS UNITS

K'/2 57.3 -19.0 uA/V^2

Page 28: Introducción a SPICE Dr. Marco Antonio Gurrola Navarro Departamento de Electrónica – CUCEI Universidad de Guadalajara – Agosto de 2014.

28

Va Vb Vout

L L H

L H H

H L H

H H L

Compuertas: Inversor y NAND

m2

m1

Vin Vout

m3

m1

Va

Vb

Vout

m2

m4

Inversor NAND

Vin Vout

L H

H LVa

Vb

Vout

Page 29: Introducción a SPICE Dr. Marco Antonio Gurrola Navarro Departamento de Electrónica – CUCEI Universidad de Guadalajara – Agosto de 2014.

29

Compuertas: Compuerta de Transmisión y NOR

m2

m1

Vin Vout

NOR

C Vout

L Vin

H Vin

Vout

VddVcc

C

C

High Z

C

C

Vin Vout

TG

Va

Vb

Va Vb Vout

L L H

L H L

H L L

H H L

m2

m3

Vb

Va

Vout

m4

m1

Page 30: Introducción a SPICE Dr. Marco Antonio Gurrola Navarro Departamento de Electrónica – CUCEI Universidad de Guadalajara – Agosto de 2014.

30

Sintaxis para el transistor MOSFET Se debe incluir una

declaración .model para incluir cada modelo empleado.

Un modelo puede ser compartido por muchos elementos.

* Curvas de un transistor NMOSM1 vd vg 0 0 miModeloN L=0.6u W=1.5uVg vg 0 1.2Vd vd 0 0.8.MODEL miModeloN NMOS ( LEVEL=49 VERSION=3.1+ TNOM=27 TOX=1.38E-8 XJ=1.5E-7 NCH=1.7E17+ ...

m1

Vg

Vdvg

vd

0

W=1.5u L=0.6u

También se emplean modelos para los diodos, transistores bipolares, etc.

Page 31: Introducción a SPICE Dr. Marco Antonio Gurrola Navarro Departamento de Electrónica – CUCEI Universidad de Guadalajara – Agosto de 2014.

31

Comando .DCBarrido de DC

.dc <srcnam> <Vstart> <Vstop> <Vincr>+ [<srcnam2> <Vstart2> <Vstop2> <Vincr2>]

*Ejemplo.DC Vd 0 3 0.1 Vg 0 3 0.5

El simulador realiza análisis de DC mientras se barre el valor de DC de la fuente especificada.

Se emplea para calcular la función de transferencia de DC de un amplificador o para trazar las curvas características de un transistor. También para trazar la curva de transferencia de voltaje de una compuerta lógica.

Page 32: Introducción a SPICE Dr. Marco Antonio Gurrola Navarro Departamento de Electrónica – CUCEI Universidad de Guadalajara – Agosto de 2014.

32

Comando .DCBarrido de DC

* Curvas de un transistor NMOSM1 vd vg 0 0 miModeloN L=0.6u W=1.5uVg vg 0 1.2Vd vd 0 0.8.DC Vd 0 3 0.1 Vg 0 3 0.5.MODEL miModeloN NMOS ( LEVEL=49 VERSION=3.1+ TNOM=27 TOX=1.38E-8 XJ=1.5E-7 NCH=1.7E17+ ...

Ejemplo:

Nota: Las graficas son de LTspice. Otras versiones de SPICE tienen graficadores similares.

Page 33: Introducción a SPICE Dr. Marco Antonio Gurrola Navarro Departamento de Electrónica – CUCEI Universidad de Guadalajara – Agosto de 2014.

33

0V≤Vin≤3V

Flujo de corriente en un Inversor CMOS durante la conmutación

m2

m1

Vdd=3V

Vout

ID

W=1.5u L=0.6u AD=1.5p AS=1.5p PD=3.5u PS=3.5u

W=1.5u L=0.6u AD=1.5p AS=1.5p PD=3.5u PS=3.5u

Ejercicio: Empleando SPICE, realice un barrido .DC para obtener la corriente

ID cuando la entrada Vin pasa de 0V a 3V compare la corriente máxima con el valor obtenido mediante

cálculos manuales

Tecnología

ON Semiconductor C5 (0.5 um)

Page 34: Introducción a SPICE Dr. Marco Antonio Gurrola Navarro Departamento de Electrónica – CUCEI Universidad de Guadalajara – Agosto de 2014.

34

* Curvas de un transistor NMOSM1 vd vg 0 0 miModeloN L=0.6u W=1.5uVg vg 0 1.2Vd vd 0 0.8.DC Vd 0 3 0.1 Vg 0 3 0.5.INCLUDE "C5 Last.sp"

Comando .INCLUDE Se emplea para incluir en el listado modelos, circuitos o

subcircuitos guardados en otros archivos.

Esto ayuda a que el listado no se haga muy extenso y a no repetir modelos o subcircuitos empleados en listados diferentes.

En este caso, la declaración del modelo miModeloN se encuentra en el archivo C5 Last.sp

Page 35: Introducción a SPICE Dr. Marco Antonio Gurrola Navarro Departamento de Electrónica – CUCEI Universidad de Guadalajara – Agosto de 2014.

III. Análisis Transitorio

Page 36: Introducción a SPICE Dr. Marco Antonio Gurrola Navarro Departamento de Electrónica – CUCEI Universidad de Guadalajara – Agosto de 2014.

36

Comando .TRANAnálisis transitorio

.TRAN <Tstep> <Tstop> <Tstart>

*Ejemplo.TRAN 100u 5m 3m

Realiza un análisis transitorio.

Esta es la simulación más precisa sobre el circuito pues incluye las no linealidades de los transistores.

Nos dice qué es lo que sucede cuando el circuito se energiza.

Generalmente, las señales de prueba se aplican como fuentes independientes.

Page 37: Introducción a SPICE Dr. Marco Antonio Gurrola Navarro Departamento de Electrónica – CUCEI Universidad de Guadalajara – Agosto de 2014.

37

Fuentes para análisis transitorio:pulso trapezoidal periódico

Vxxx n+ n-+ PULSE(V1 V2 Tdelay Trise Tfall Ton Tperiod)

*EjemploVa va 0 pulse(-2 2 1m 100u 200u 200u 1m)

TriseTonTdelay

TfallTperiod

t=0Tperiod Tperiod

V1

V2

Page 38: Introducción a SPICE Dr. Marco Antonio Gurrola Navarro Departamento de Electrónica – CUCEI Universidad de Guadalajara – Agosto de 2014.

38

Fuentes para análisis transitorio:pulso trapezoidal periódico

*Fuente de pulso y simulación con .TRANVa va 0 pulse(-2 2 1m 100u 200u 200u 1m)Rout va 0 1meg.TRAN 10u 5m 0.END

Ejemplo:

Nota: Las graficas son de LTspice. Otras versiones de SPICE tienen graficadores similares.

Page 39: Introducción a SPICE Dr. Marco Antonio Gurrola Navarro Departamento de Electrónica – CUCEI Universidad de Guadalajara – Agosto de 2014.

39

Fuentes para análisis transitorio:onda sinusoidal

Vxxx n+ n- + SINE(Voffset Vamp Freq Td Theta Phi)

Page 40: Introducción a SPICE Dr. Marco Antonio Gurrola Navarro Departamento de Electrónica – CUCEI Universidad de Guadalajara – Agosto de 2014.

40

Fuentes para análisis transitorio:onda senoidal

Ejemplo:

Nota: Las graficas son de LTspice. Otras versiones de SPICE tienen graficadores similares.

Page 41: Introducción a SPICE Dr. Marco Antonio Gurrola Navarro Departamento de Electrónica – CUCEI Universidad de Guadalajara – Agosto de 2014.

41

Fuentes para análisis transitorio:otros tipos de fuentes transitorias

EXP: Fuente exponencial.

PWL: Fuente lineal a segmentos arbitrarios (piece-wise linear).

SFFM: Fuente de frecuencia simple FM.

AM: Fuente de frecuencia simple AM.

Además se pueden leer archivos de señales en función del tiempo, creados externamente en formato de texto.

Page 42: Introducción a SPICE Dr. Marco Antonio Gurrola Navarro Departamento de Electrónica – CUCEI Universidad de Guadalajara – Agosto de 2014.

42

Comando .TRANAnálisis transitorio

Pasabajas 1er ordenC1 vout 0 1uRout vin vout 1kVin vin 0 PULSE(0 2 1m 1u 2u 500u 1m).TRAN 10u 5m 0

Ejemplo:

1V dc 5V ac

voutvin|

0

1k

1u

Vin

Rout

C1

Page 43: Introducción a SPICE Dr. Marco Antonio Gurrola Navarro Departamento de Electrónica – CUCEI Universidad de Guadalajara – Agosto de 2014.

43

Comando .TRANAnálisis transitorio

Ejemplo:

Nota: Las graficas son de LTspice. Otras versiones de SPICE tienen graficadores similares.

Page 44: Introducción a SPICE Dr. Marco Antonio Gurrola Navarro Departamento de Electrónica – CUCEI Universidad de Guadalajara – Agosto de 2014.

IV. Evaluaciones en Postprocesamiento

Page 45: Introducción a SPICE Dr. Marco Antonio Gurrola Navarro Departamento de Electrónica – CUCEI Universidad de Guadalajara – Agosto de 2014.

45

Comando .MEASUREEvaluación en postprocesamiento

.MEASURE – 1er Tipo de evaluación

Se busca el valor correspondiente a un punto sobre el eje de las abscisas.

Se emplea para imprimir el valor de un dato (o una expresión de un dato) ya sea en un punto específico o cuando se satisface una condición dada.

Page 46: Introducción a SPICE Dr. Marco Antonio Gurrola Navarro Departamento de Electrónica – CUCEI Universidad de Guadalajara – Agosto de 2014.

46

Comando .MEASUREEvaluación en postprocesamiento

Ejemplo

1er tipo:

Nota: Las graficas son de LTspice. Otras versiones de SPICE tienen graficadores similares.

Page 47: Introducción a SPICE Dr. Marco Antonio Gurrola Navarro Departamento de Electrónica – CUCEI Universidad de Guadalajara – Agosto de 2014.

47

Comando .MEASUREEvaluación en postprocesamiento

Ejemplo 1er tipo:

.MEASURE AC MAG60 FIND V(vout) AT=60

.MEASURE AC F0dBa when mag(V(vout))=1

.MEASURE AC F0dBb when mag(V(vout))=1 fall=last

.MEAS AC MAGmax max mag(V(vout))

.MEAS AC FRECmax when mag(V(vout))=MAGmax

mag60: v(vout)=(5.48411dB,67.9105°) at 60f0dba: mag(v(vout))=1 AT 31.8374f0dbb: mag(v(vout))=1 AT 1591.37magmax: MAX(mag(v(vout)))=(13.9788dB,0°) FROM 1 TO 100000frecmax: mag(v(vout))=magmax AT 226.754

Page 48: Introducción a SPICE Dr. Marco Antonio Gurrola Navarro Departamento de Electrónica – CUCEI Universidad de Guadalajara – Agosto de 2014.

48

Comando .MEASUREEvaluación en postprocesamiento

.MEASURE – 2o Tipo de evaluación

Se refiere a un rango a lo largo del eje de las abscisas.

El rango sobre la abscisa se especifica con los puntos definidos mediante TRIG y TARG.

Las operaciones de medición que se pueden aplicar sobre un intervalo son: AVG (promedio), MAX, MIN, PP (pico-pico), RMS, INTEG (integración numérica).

Si no se especifica ninguna operación de medición, el resultado del enunciado .MEAS es la distancia a lo largo del eje de las abscisas entre los puntos TRIG y TARG.

Page 49: Introducción a SPICE Dr. Marco Antonio Gurrola Navarro Departamento de Electrónica – CUCEI Universidad de Guadalajara – Agosto de 2014.

49

Comando .MEASUREEvaluación en postprocesamiento

m2

Vin

W=1.5u L=0.6u

AD=1.5p AS=1.5p PD=3.5u PS=3.5u

Vdd

0

vdd

voutvin

m1W=1.5u L=0.6u

AD=1.5p AS=1.5p PD=3.5u PS=3.5u

3

0

Ejemplo 2o tipo:

Inversor lógico

Inversor lógicom1 vout vin vdd vdd miModeloP W=1.5u L=0.6u + AD=1.5p AS=1.5p PD=3.5u PS=3.5um2 vout vin 0 0 miModeloN W=1.5u L=0.6u + AD=1.5p AS=1.5p PD=3.5u PS=3.5uVdd vdd 0 3Vin vin 0 0.INCLUDE "C5modelos.sp"

Page 50: Introducción a SPICE Dr. Marco Antonio Gurrola Navarro Departamento de Electrónica – CUCEI Universidad de Guadalajara – Agosto de 2014.

50

Comando .MEASUREEvaluación en postprocesamientoEjemplo 2o tipo:

Inversor lógico

Nota: Las graficas son de LTspice. Otras versiones de SPICE tienen graficadores similares.

Page 51: Introducción a SPICE Dr. Marco Antonio Gurrola Navarro Departamento de Electrónica – CUCEI Universidad de Guadalajara – Agosto de 2014.

51

Comando .MEASUREEvaluación en postprocesamiento

Ejemplo 2o tipo: Inversor lógico

*Inversor lógicom1 vout vin vdd vdd miModeloP W=1.5u L=0.6u + AD=1.5p AS=1.5p PD=3.5u PS=3.5um2 vout vin 0 0 miModeloN W=1.5u L=0.6u + AD=1.5p AS=1.5p PD=3.5u PS=3.5uVdd vdd 0 3Vin vin 0 pulse(0 3 500p 1p 1p 250p 500p 1).INCLUDE "C5modelos.sp".TRAN 1p 1.25n 0.MEAS TRAN Tfall trig V(vin)=1.5 rise=1 targ V(vout)=1.5 fall=1.MEAS TRAN Trise trig V(vin)=1.5 fall=1 targ V(vout)=1.5 rise=1.END

tfall=3.43565e-011 FROM 5.005e-010 TO 5.34857e-010trise=7.1505e-011 FROM 7.515e-010 TO 8.23005e-010

Page 52: Introducción a SPICE Dr. Marco Antonio Gurrola Navarro Departamento de Electrónica – CUCEI Universidad de Guadalajara – Agosto de 2014.

52

Ejercicio .MEASURE

Circuito RLC de pruebaC1 vin 1 10uL1 1 vout 50e-3Rout vout 0 100Vin vin 0 DC=1 AC=5.AC dec 90 1m 1meg$$$$ ¿CÓMO ENCONTRAR EL ANCHO DE BANDA DEL FILTRO $$$$ EMPLEANDO EL COMANDO .MEASURE?.END

Page 53: Introducción a SPICE Dr. Marco Antonio Gurrola Navarro Departamento de Electrónica – CUCEI Universidad de Guadalajara – Agosto de 2014.

V. Simulación Jerárquica

Page 54: Introducción a SPICE Dr. Marco Antonio Gurrola Navarro Departamento de Electrónica – CUCEI Universidad de Guadalajara – Agosto de 2014.

54

Comandos .SUBCKT y .ENDSDefinición de Subcircuito

Las partes del circuito que se repiten mucho se pueden agrupar en una definición de subcircuito para emplearse en múltiples instancias.

Antes de la simulación, SPICE expande el circuito hasta un listado plano, sin niveles jerárquicos, reemplazando cada invocación de subcircuito con los elementos contenidos en su definición.

El principio de una definición de subcircuito se indica con una línea .SUBCKT, mientras que el final debe estar indicado mediante una línea .ENDS

Page 55: Introducción a SPICE Dr. Marco Antonio Gurrola Navarro Departamento de Electrónica – CUCEI Universidad de Guadalajara – Agosto de 2014.

55

*Subcircuito de un Inversor lógico* Definición del subcircuito.SUBCKT Inversor X Y VD VSm1 Y X VD VD miModeloP W=1.5u L=0.6u + AD=1.5p AS=1.5p PD=3.5u PS=3.5um2 Y X VS VS miModeloN W=1.5u L=0.6u + AD=1.5p AS=1.5p PD=3.5u PS=3.5u.ENDS* Circuito principalVdd vdd 0 3Vin vin 0 pulse(0 3 500p 1p 1p 250p 500p)xInv1 vin vout vdd 0 Inversor.INCLUDE "C5modelos.sp".TRAN 1p 1.25n START=0.PROBE TRAN V(VOUT).END

Comandos .SUBCKT y .ENDSDefinición de Subcircuito

m2

W=1.5u L=0.6u

AD=1.5p AS=1.5p PD=3.5u PS=3.5u

VS

VD

YX

m1

W=1.5u L=0.6u

AD=1.5p AS=1.5p PD=3.5u PS=3.5u

Ejemplo: Inversor lógico

Page 56: Introducción a SPICE Dr. Marco Antonio Gurrola Navarro Departamento de Electrónica – CUCEI Universidad de Guadalajara – Agosto de 2014.

56

Comandos .SUBCKT y .ENDSDefinición de Subcircuito

Ejemplo: Inversor lógico

Nota: Las graficas son de LTspice. Otras versiones de SPICE tienen graficadores similares.

Page 57: Introducción a SPICE Dr. Marco Antonio Gurrola Navarro Departamento de Electrónica – CUCEI Universidad de Guadalajara – Agosto de 2014.

57

Diseño JerárquicoEjemplo: Oscilador de anillo

Inv1 Inv2 Inv3 Inv4 Inv5 voutA B C D

Nota: Las graficas son de LTspice. Otras versiones de SPICE tienen graficadores similares.

Page 58: Introducción a SPICE Dr. Marco Antonio Gurrola Navarro Departamento de Electrónica – CUCEI Universidad de Guadalajara – Agosto de 2014.

VI. Comandos Adicionales

Page 59: Introducción a SPICE Dr. Marco Antonio Gurrola Navarro Departamento de Electrónica – CUCEI Universidad de Guadalajara – Agosto de 2014.

59

Comando .GLOBALDefinición de nodos globales

El comando .GLOBAL permite declarar nodos que serán reconocidos en cualquier nivel jerárquico de subcircuito incluyendo el top-level.

Se emplea para nodos importantes tales como las fuentes de alimentación.

El nodo 0 o Gnd siempre es reconocido globalmente.* Ejemplo

.global VDD VCC

Page 60: Introducción a SPICE Dr. Marco Antonio Gurrola Navarro Departamento de Electrónica – CUCEI Universidad de Guadalajara – Agosto de 2014.

60

Comando .PARAMParámetros definidos por el usuario

.PARAM es de utilidad para asociar un nombre a un valor con propósitos de claridad o legibilidad, o para realizar diseños parametrizables.

También es útil para parametrizar subcircuitos de modo que los circuitos abstractos se puedan guardar en librerías.

El enunciado .param se puede incluir dentro de una definición de subcircuito para limitar el alcance de los valores de los parámetros a dicho subcircuito y a los subcircuitos a que éste hace referencia.

Ejemplo.PAR A=SQRT(2) B=A**3R1 nodo1 nodo2 ‘A*2’

Para evaluar una expresión, ésta debe encerrarse en comillas simples

Page 61: Introducción a SPICE Dr. Marco Antonio Gurrola Navarro Departamento de Electrónica – CUCEI Universidad de Guadalajara – Agosto de 2014.

61

Comando .PARAMParámetros definidos por el usuario

Ejemplo: Empleo de .PARAM en subcircuitos*.param x=y y=z z=‘1k*tan(pi/4+.1)’X1 a b 0 divider top=x bot=zV1 a 0 pulse(0 1 0 .5u .5u 0 1u)**.subckt divider n1 n2 n3r1 n1 n2 topr2 n2 n3 bot.ends*.tran 3u.end

Page 62: Introducción a SPICE Dr. Marco Antonio Gurrola Navarro Departamento de Electrónica – CUCEI Universidad de Guadalajara – Agosto de 2014.

62

Comando .OPTIONEspecificar opciones para simulación

Para la lista completa consúltese el manual

abstol – tolerancia absoluta del error de corriente. cshunt – capacitancia opcional añadida entre cada nodo y

tierra. gmin – conductancia añadida a cada unión PN como ayuda

para la convergencia. method – método para la integración numérica. tnom – temperatura por defecto de los elementos. probe – limita los datos guardados en el archivo de salida

de la simulación. post – especifica el formato de los archivos de salida de

simulación.

Page 63: Introducción a SPICE Dr. Marco Antonio Gurrola Navarro Departamento de Electrónica – CUCEI Universidad de Guadalajara – Agosto de 2014.

63

Comando .IC Establecer condiciones iniciales

Mediante el comando .ic se especifican las condiciones iniciales empleadas en el análisis transitorio.

Se pueden especificar voltajes iniciales en capacitores y corrientes iniciales en inductores.

Se realiza una solución en DC empleando las restricciones establecidas por las condiciones iniciales.

Ejemplo

.ic V(in)=2 V(out)=5 V(vc)=1.8 I(L1)=300m

Page 64: Introducción a SPICE Dr. Marco Antonio Gurrola Navarro Departamento de Electrónica – CUCEI Universidad de Guadalajara – Agosto de 2014.

64

Comando .FOUR Calcular componentes de Fourier

Este comando se ejecuta después de un análisis transitorio.

Sintaxis.four <frequency> [Nharmonics] [Nperiods]+ <data trace1> [<data trace2> ...]

Page 65: Introducción a SPICE Dr. Marco Antonio Gurrola Navarro Departamento de Electrónica – CUCEI Universidad de Guadalajara – Agosto de 2014.

65

Comando .FOUR Calcular componentes de Fourier

Ejemplo:

Nota: Las graficas son de LTspice. Otras versiones de SPICE tienen graficadores similares.

Page 66: Introducción a SPICE Dr. Marco Antonio Gurrola Navarro Departamento de Electrónica – CUCEI Universidad de Guadalajara – Agosto de 2014.

66

Bibliografía

HSPICE Simulation and Analysis User Guide Release U-2003.03-PA, March 2003, Synopsys

Menú de ayuda de la herramienta LTspice® del software SwitcherCAD III proporcionado de manera gratuita por Linear Technology Inc. en la página

Page 67: Introducción a SPICE Dr. Marco Antonio Gurrola Navarro Departamento de Electrónica – CUCEI Universidad de Guadalajara – Agosto de 2014.

Gracias