Intrinsic Birefringence in Cubic Crystalline Optical Materials › mcsd › Seminars › 2004 ›...

36
Intrinsic Birefringence in Cubic Crystalline Optical Materials Eric L. Shirley, 1 J.H. Burnett, 2 Z.H. Levine 3 (1) Optical Technology Division (844) (2) Atomic Physics Division (842) (3) Electron and Optical Physics Division (841) Physics Laboratory National Institute of Standards and Technology Gaithersburg, MD 20899-8441 Tel: 301 975 2349 FAX: 301 975 2950 email: [email protected]

Transcript of Intrinsic Birefringence in Cubic Crystalline Optical Materials › mcsd › Seminars › 2004 ›...

Page 1: Intrinsic Birefringence in Cubic Crystalline Optical Materials › mcsd › Seminars › 2004 › 2004-06-10... · 2004-06-10 · Spatial-Dispersion-Induced Birefringence Origin of

Intr insic Birefr ingence in Cubic Crystalline Optical Mater ials

Eric L. Shirley,1 J.H. Burnett,2 Z.H. Levine3

(1) Optical Technology Division (844) (2) Atomic Physics Division (842)(3) Electron and Optical Physics Division (841)Physics LaboratoryNational Institute of Standards and TechnologyGaithersburg, MD 20899-8441

Tel: 301 975 2349FAX: 301 975 2950email: [email protected]

Page 2: Intrinsic Birefringence in Cubic Crystalline Optical Materials › mcsd › Seminars › 2004 › 2004-06-10... · 2004-06-10 · Spatial-Dispersion-Induced Birefringence Origin of

Conceptual view of a solid

Vibrational, valence electron & core electron degreesof freedom

EXCITATIONS

Phonon excitations

Valence excitations

Core excitations

F−−−−Li+Example: LiF

Page 3: Intrinsic Birefringence in Cubic Crystalline Optical Materials › mcsd › Seminars › 2004 › 2004-06-10... · 2004-06-10 · Spatial-Dispersion-Induced Birefringence Origin of

Optical proper ties throughout the spectrum

* infrared absorption by phonons

* absorption by inter-band transitions

* absorption at x-ray edges

Optical Constants:

n = index of refractionk = index of absorption

Proper ties can be approached withtheory. Theory is helpful when it ispredictive or complementary toexper iment.

L iF

Plot taken from Palik.

Goal: develop approach for unified (n,k)-curve from far-IR to x-ray region.

Page 4: Intrinsic Birefringence in Cubic Crystalline Optical Materials › mcsd › Seminars › 2004 › 2004-06-10... · 2004-06-10 · Spatial-Dispersion-Induced Birefringence Origin of

Outline

• Introduction to optical excitations

• Model used to describe excitations & excitation spectra

- developed in collab. with L.X. Benedict (LLNL), R.B. Bohn (ITL), and J.A. Soininen (U. Helsinki)

• Sample ultraviolet (UV) & x-ray absorption spectra

• Intrinsic birefringence in cubic solids

}A winding, sparsely detailed trajectorycircling between

quantummechanics

(for electronsin solids)

definitionsof optical constants

numericalcalculationaltechniques

Page 5: Intrinsic Birefringence in Cubic Crystalline Optical Materials › mcsd › Seminars › 2004 › 2004-06-10... · 2004-06-10 · Spatial-Dispersion-Induced Birefringence Origin of

Photon interaction with electrons: coupling electron p to photon AElectron Schrödinger equation:

Light interacts with electrons (approximately) via the replacement,

AAAppApp ⋅��

����

�+⋅+=+→ 2

2222

222)/(

2 mc

e

mc

e

mm

ce

m

The first term is the ordinary electron kinetic-energy operator.

The second term couples electric fields to electron currents.

-- absorption, emission The third termcouples to electrondensity.

--scatter ing

electron momentum p ↔ electron currentvector potential A ↔ electric field E ↔force on electrons

)()();,(d)(2

3ext

2

rrrrrrp

kkkkk nnnnnH EEVVm

ψψψ � =′′Σ′+�

��

++

self-energy (accounts for many-bodyelectron-electron interaction effects)

22

2∇−

m

electron wave function (n=band/core level, k=crystal momentum electronlevel energy

Page 6: Intrinsic Birefringence in Cubic Crystalline Optical Materials › mcsd › Seminars › 2004 › 2004-06-10... · 2004-06-10 · Spatial-Dispersion-Induced Birefringence Origin of

Light coupling to electronic degrees of freedomOptical electronic excitation mechanisms

AAAppApp ⋅��

����

�+⋅+=+→ 2

2222

222)/(

2 mc

e

mc

e

mm

ce

m

Page 7: Intrinsic Birefringence in Cubic Crystalline Optical Materials › mcsd › Seminars › 2004 › 2004-06-10... · 2004-06-10 · Spatial-Dispersion-Induced Birefringence Origin of

Why are electronic excitations so hard to model?Electron-hole interaction or excitonic effects in excited state

Page 8: Intrinsic Birefringence in Cubic Crystalline Optical Materials › mcsd › Seminars › 2004 › 2004-06-10... · 2004-06-10 · Spatial-Dispersion-Induced Birefringence Origin of

D = ε ε ε ε ⋅⋅⋅⋅E = E + 4πP (atomic units)

E = total electric fieldD = electric displacementP = polarization of material

P = Pion + Pval + Pcore

Pval, Pcore= polarization because of val./core el.

� ⋅==ion

*ion

iii RZP δ

nk

kn

kn

2

)i(i

2

221

221

=−=

+=+=

εε

εεε

Connection between optical excitations and optical constants,which depend on wave-vector q and angular frequency ω:

(Born effective charge tensor Z* times displacement δR)

dielectric constant

index of refraction

index of absorption

Page 9: Intrinsic Birefringence in Cubic Crystalline Optical Materials › mcsd › Seminars › 2004 › 2004-06-10... · 2004-06-10 · Spatial-Dispersion-Induced Birefringence Origin of

Example: empirical pseudopotential method

* Non-interacting model* Optical absorption by electron inter-band transitions* Atomic pseudopotentials adjusted to match

observed spectral features

Samples of work by Marvin Cohen group(UCBerkeley):

Page 10: Intrinsic Birefringence in Cubic Crystalline Optical Materials › mcsd › Seminars › 2004 › 2004-06-10... · 2004-06-10 · Spatial-Dispersion-Induced Birefringence Origin of

Modeling excitation spectra(Standard time-dependent perturbation theory)

���

���

+−+−=

−+=

+−+=′

+

IOHE

OIA

EEIOFAS

tOHH

I

FIF

ˆi

1ˆIm

)(ˆ)(

have

h.c.,)iexp(ˆ

For

:RuleGolden sFermi'

2

ηωπ

ωδω

ω

We use the Haydock recursion method,which expresses final expectation value

as a continued fraction that depends on ω.

prefactor

state final,

state initial,

frequency excitation

onperturbatiˆ

nHamiltonia Normal

=====

=

A

EF

EI

O

H

F

I

ω

Page 11: Intrinsic Birefringence in Cubic Crystalline Optical Materials › mcsd › Seminars › 2004 › 2004-06-10... · 2004-06-10 · Spatial-Dispersion-Induced Birefringence Origin of

1ˆ)ˆˆ( 002/1

0 =→= −+ vvIOIOOIv

1221

210

1

01

01

11

)]}/(i/[iIm{ˆˆ

)i(Imˆˆ

ˆ)i(ˆIm)(

−+−

−+−

−+−

−+−+−+−+−=

+−+−=

+−+−=

�baEbaEIOOIA

vHEvIOOIA

IOHEOIAS

II

I

I

ηωηωπ

ηωπ

ηωπω

3322122

2211011

11000

vbvavbvH

vbvavbvH

vbvavH

++=++=

+=

Haydock recursion method (a.k.a. Lánczos method):

Introduce normalized vector,

Establish seq. of vectors,

And deduce spectrum (quickly!) from linear algebra...

{ }iv in which H=H† is tri-diagonal,

continued fraction

NOTE:

Don’t needto solveH. Just need to act with H. Use structureof H to speedthis up.

Page 12: Intrinsic Birefringence in Cubic Crystalline Optical Materials › mcsd › Seminars › 2004 › 2004-06-10... · 2004-06-10 · Spatial-Dispersion-Induced Birefringence Origin of

Excited state = linear superpositionof all states produced by a single electronexcitation.

In each such electron-hole pair state,

electron in band n′,with crystal momentum k+q.

hole in [band/core-level] n, with crystal momentum k,

Call such a state |n n′ k(q)�, total crystal momentum q.

momentum

Eel

Incorporation of electron-hole interaction:

Page 13: Intrinsic Birefringence in Cubic Crystalline Optical Materials › mcsd › Seminars › 2004 › 2004-06-10... · 2004-06-10 · Spatial-Dispersion-Induced Birefringence Origin of

Predictive electronband theory:

Needs:

* accurate band structuremethods (Schrödinger equation in solids)

* many-body corrections to band energies

GW self-energy of Hedin:

Uncorrectedband gaps

Correctedband gaps

“theory gap = expt. gap” curve

Page 14: Intrinsic Birefringence in Cubic Crystalline Optical Materials › mcsd › Seminars › 2004 › 2004-06-10... · 2004-06-10 · Spatial-Dispersion-Induced Birefringence Origin of

Bethe-Salpeter equation, motivation:

In a non-interacting picture, one has

H |n n′ k(q)� = [ Eel( n′ , k+q) − Eel ( n, k) ] |n n′ k(q)�.

Thus, the states { |n n′ k(q)�} diagonalize the Hamiltonian, H.

In an interacting picture, one has

H |n n′ k(q)� = [ Eel( n′ , k+q) − Eel ( n, k) ] |n n′ k(q)� +

Σ n′′ n′′′ k′ V(n′′ n′′′ k′, nn′ k) |n′′ n′′′ k′(q)�,

and the different states are coupled. Stationary states that diagonalizeH are linear combinations of many electron-hole pair states.

Resulting coupled, electron-hole-pair Schrödinger equation( “ Bethe-Salpeter” equation): difficult to solve, especially within a realistic treatment of a solid.

Page 15: Intrinsic Birefringence in Cubic Crystalline Optical Materials › mcsd › Seminars › 2004 › 2004-06-10... · 2004-06-10 · Spatial-Dispersion-Induced Birefringence Origin of

Interaction effects:

Electron-hole interaction matrix-element:

Attractive “direct part” ofinteraction: screened Coulombattraction. Gives excitons, shifts spectral weight.

Repulsive “exchange part”of interaction: leads toplasmons.

Not included in a realistic frameworkuntil 1998.

Page 16: Intrinsic Birefringence in Cubic Crystalline Optical Materials › mcsd › Seminars › 2004 › 2004-06-10... · 2004-06-10 · Spatial-Dispersion-Induced Birefringence Origin of

Improved results:

Incorporating effects of the electron-hole interaction in realisticcalculations was made feasible and efficient through use of a widevariety of numerical & computational innovations.

The outcome (e.g., GaAs):

Besides affecting absorption spectra, index dispersion is greatlyimproved, especially in wide-gap materials.

Meas.

Calc.

Page 17: Intrinsic Birefringence in Cubic Crystalline Optical Materials › mcsd › Seminars › 2004 › 2004-06-10... · 2004-06-10 · Spatial-Dispersion-Induced Birefringence Origin of

Consistently better resultsresults whenincorporatingelectron-holeinteractioneffects.

Meas.Calc.

Page 18: Intrinsic Birefringence in Cubic Crystalline Optical Materials › mcsd › Seminars › 2004 › 2004-06-10... · 2004-06-10 · Spatial-Dispersion-Induced Birefringence Origin of

MgO optical constants:

Page 19: Intrinsic Birefringence in Cubic Crystalline Optical Materials › mcsd › Seminars › 2004 › 2004-06-10... · 2004-06-10 · Spatial-Dispersion-Induced Birefringence Origin of

Core excitations in MgOExcitation of magnesium & oxygen 1s electrons

Expt data from Lindner et al., 1986

Page 20: Intrinsic Birefringence in Cubic Crystalline Optical Materials › mcsd › Seminars › 2004 › 2004-06-10... · 2004-06-10 · Spatial-Dispersion-Induced Birefringence Origin of

Page 21: Intrinsic Birefringence in Cubic Crystalline Optical Materials › mcsd › Seminars › 2004 › 2004-06-10... · 2004-06-10 · Spatial-Dispersion-Induced Birefringence Origin of

���

����

����

����

� ���

����

����

����

� �� ��

Bethe-Salpeter result:

no spin-orbit,no central core-hole potential,

no multipole interactions

central core-hole pot. only

Ti 2p spin-orbit splitting only

spin orbit and central core-hole pot. only

spin-orbit, central core-hole pot, and multipole interactions

����������

������

� ����� �

������

banding-induced widthincluded naturally

higher-lying spectral features

Page 22: Intrinsic Birefringence in Cubic Crystalline Optical Materials › mcsd › Seminars › 2004 › 2004-06-10... · 2004-06-10 · Spatial-Dispersion-Induced Birefringence Origin of

157 nm Lithography Index Specifications

~ 2 cm~ 2 cm

DOF ~ 0.2 µ

feature size ~ 65 nm (~ λ/3 for 157 nm)

To obtain resolution ~ 65nm (~ λλλλ/3):phase retardance for all rays dddd λλλλ/8���� index var iation ~ 1 ×××× 10-7

CaF2 cubic crystal(fluor ite crystal structure)

� isotropic optical properties?Mater ial problems extr insic

* index inhomogeneity* stress-induced birefr ingence

May 2001 announced an intr insicbirefr ingence and index anisotropy~11 ×××× 10-7 over 10 ×××× specs.

Cannot be reduced!

Page 23: Intrinsic Birefringence in Cubic Crystalline Optical Materials › mcsd › Seminars › 2004 › 2004-06-10... · 2004-06-10 · Spatial-Dispersion-Induced Birefringence Origin of

Spatial-Dispersion-Induced Birefr ingenceOrigin of effect:

Finite wave vector of light, q, breaks symmetry of light-matter interaction.

History:H.A Lorentz (Lorentz contraction) considered this small symmetry-breaking

effect in “ regular crystals” in 1879,PRIOR to verified existence crystal lattices! (Laue1912, Bragg 1913)Worked out simple theory by 1921 - measured in NaCl?H.A. Lorentz, “Double Refraction by Regular Crystals,” Proc. Acad. Amsterdam. 24, 333 (1921).

First convincingly demonstrated by Pastrnak and Vedam in Si (1971).J. Pastrnak and K. Vedam, “Optical Anisotropy of Silicon Single Crystals,” Phys. Rev. B 3, 2567 (1971).

Confirmed, extended by others, esp. Cardona & colleagues – academic curiosityValues “ too” small to have implications for optics – Optics industry oblivious!

We measured in CaF2, material for precision UV optics for 193 nm and 157 nm lithography, and worked out the implications for optics - alerted industry.J.H. Burnett, Z.H. Levine, E.L. Shirley, “ Intrinsic birefringence in calcium fluorideand barium fluoride,” Phys. Rev. B 64, 241102 (2001).

Page 24: Intrinsic Birefringence in Cubic Crystalline Optical Materials › mcsd › Seminars › 2004 › 2004-06-10... · 2004-06-10 · Spatial-Dispersion-Induced Birefringence Origin of

Wave Vector Dependence of the Index in Cubic Crystalsspatial-dispersion-induced birefr ingence

q

Symmetry arguments “prove” natural birefringence forbidden in cubic crystals

Isotropy “proof” assumes D linearly related to E by 2nd-rank tensor indept. of q

Ei = Σjε−1ijDj (ε−1

ij inverse dielectric constant) - but assumes λ large!

Actually D = D0e iq·r = D0(1 + iq.r − (q.r )2/2 + …) (q = 2πn/λ)

Cannot neglect (q.r ) terms if (aunit cell/λ) ~ 1 or equivalently (q/Kreciprocal lattice) ~ 1

Perturbation due to (q.r ) terms: azimuthal symmetry about q

For crystal axes w/ 3-fold or 4-fold symmetry (q.r ) reduces isotropic to uniaxial

� NO birefringence for q || <111> or q || <001>

Page 25: Intrinsic Birefringence in Cubic Crystalline Optical Materials › mcsd › Seminars › 2004 › 2004-06-10... · 2004-06-10 · Spatial-Dispersion-Induced Birefringence Origin of

1 1( , ) (0, ) ( ) ( )ij ij ijk k ijkl k lk klq q qε ω ε ω δ γ ω α ω− −= + +� �q ( ijklα respects cubic symmetry)

Cubic crystals (classes 43 ,432, 3m m m) symmetry � ijklα has 3 indep. comp. 11 12 44, ,α α α

11 12 12

12 11 12

12 12 11

44

44

44

0 0 0

0 0 0

0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

ij

α α αα α αα α α

αα

αα

� �� �� �� �

= � �� �� �� �� �� �

(same form as for piezo-optic tensor)

Using the 2 independent scalar invariants of a 4th rank tensor to separate terms:

( ) 21 1 2 2 212 44 11 12 44( , ) (0, ) 2 2 5ij ij i j ij iq q l l q lε ω ε ω α δ α α α α δ− − = + + + − −� q

���

���

100

010

001

���

���

232313

322212

312121

lllll

lllll

lllll

���

���

23

22

21

00

00

00

l

l

l

isotropic longitudinal anisotropic

� anisotropy governed by one parameter (α11 − α12 − 2α44)

� angular dependence determined by ONE measurement: q along <110>, meas. n<110>- n<001>

Theory of Intr insic Birefr ingence0

isotropic index shift isotropic L-T splitting • induces dir. dep. birefringence• induces dir. dep. index variation

q |q|

[010]

[100]

l2

l1

l3

J.H. Burnett, Z.H. Levine, E.L. Shirley, and J.H. Bruning, “Symmetry of Intrinsic Birefringence and its Implications for CaF2 UV Optics,” J. Microlith., Microfab., Microsyst., 1, 213 (2002).

Page 26: Intrinsic Birefringence in Cubic Crystalline Optical Materials › mcsd › Seminars › 2004 › 2004-06-10... · 2004-06-10 · Spatial-Dispersion-Induced Birefringence Origin of

[001]

[100]

[010]

[110]

[011]

[101]

Angular Dependence of Intr insic Birefr ingence1/2

21 2 3 4 4 6 4, , 5 2 1 5 2 4 4 1n l l l S S S S

� �� �� � � �� � � �� � � �� �� �� � � �� �� � � �� �� � � �� � ��

= − ± − − + − , 1 2 3n n n

nS l l l= + +

One octant - scaled according to ∆nmax = 1, for q || [110]

Has 12 lobes

Page 27: Intrinsic Birefringence in Cubic Crystalline Optical Materials › mcsd › Seminars › 2004 › 2004-06-10... · 2004-06-10 · Spatial-Dispersion-Induced Birefringence Origin of

Ar mini-arcor Hg lamp

parabolicmirror

aperture

CsI or CsSbPMT detector

filter MgF2 Rochonlinear polarizer

aperture

MgF2 Rochonlinear polarizercrossed polarized aperture

aperture

shutter

chopper

parabolicmirror

lock-in amplifierspherical

collectionmirror to chopper

MgF2 Soleil-Babinet Compensator

sample

rotationstage

Birefr ingence Measurement

I/I0=sin2(πd∆n/λ)sin2(2θ) ∆n = (λ/d)(RPS/2π)

∆n = n[-110] − n[001]

MgF2 Compensator

45°

θ

polarizationdirection

sample

Intensity Through Crossed Pol Relative Phase Shift

[110]

[1-10]

[001]

CaF2 sample

propagationdirection

[001]

[100]

[010]

axes

[110]

Page 28: Intrinsic Birefringence in Cubic Crystalline Optical Materials › mcsd › Seminars › 2004 › 2004-06-10... · 2004-06-10 · Spatial-Dispersion-Induced Birefringence Origin of

Intr insic birefr ingencein CaF2, BaF2, diamond,and four semiconductors.

CaF2 and BaF2 meas.results by J.H. Burnett (NIST); semiconductormeasurements found inliterature as cited by Burnett et al.

Page 29: Intrinsic Birefringence in Cubic Crystalline Optical Materials › mcsd › Seminars › 2004 › 2004-06-10... · 2004-06-10 · Spatial-Dispersion-Induced Birefringence Origin of

150 200 250 300 350 400-30

-20

-10

0

10

20

30

40

50

60

193.4 nm

157.6 nm

CaF2

SrF2

BaF2

In

trin

sic

Bire

frin

genc

e (1

0-7)

λ (nm)

Mater ial 193.39 nm (10-7)(meas)

157.63 nm (10-7)(int/extrap)

CaF2 −3.4±0.2 −11.2±0.4 SrF2 6.60±0.2 5.66±0.2 BaF2 19±2 33±3

Intr insic Birefr ingence of CaF2, SrF2, and BaF2

SEMATECH 157nm target:1×10-7=1 nm/cm

polarized phase fronts

Page 30: Intrinsic Birefringence in Cubic Crystalline Optical Materials › mcsd › Seminars › 2004 › 2004-06-10... · 2004-06-10 · Spatial-Dispersion-Induced Birefringence Origin of

Industry Concern

Science News, July 21, 2001

WaferfabNews, July 2001 New Technology Week, July 16, 2001

Page 31: Intrinsic Birefringence in Cubic Crystalline Optical Materials › mcsd › Seminars › 2004 › 2004-06-10... · 2004-06-10 · Spatial-Dispersion-Induced Birefringence Origin of

Possible Alternative Solution: Mixed Crystals• CaF2, SrF2, and BaF2 all have same fluor ite crystal structure.• Mixed crystals that retain the cubic symmetry can be made: Ca1-xSr xF2 (all x),

Sr1-xBaxF2 (all x), Ca1-xBaxF2 (some x), Sr1-xMgxF2 (some x) • SrF2 and BaF2 have birefr ingence of opposite sign compared to CaF2 ����

x ≈≈≈≈ |∆∆∆∆n(CaF2)/[∆∆∆∆n(CaF2)] −−−− ∆∆∆∆n(YF2)] | , Y = Ba,Sr nulls birefr ingence• Ca0.3Sr0.7F2 nulls IBR at 157.9 nm, Ca0.7Sr0.3F2 nulls IBR at 193.4 nm• Have made Ca1-xSr xF2 for x=0.1-0.9 – character izing now!

Lines=theoryPoints=data

Birefr ingence of cubicBaF2, SrF2,CaF2,MgF2 (theo.), and

Ca1−−−−xSr xF2 (x shown)

Page 32: Intrinsic Birefringence in Cubic Crystalline Optical Materials › mcsd › Seminars › 2004 › 2004-06-10... · 2004-06-10 · Spatial-Dispersion-Induced Birefringence Origin of

0

+10

-10

+8+6+4+2

-2-4-6-8

[nm]Scale

60 deg.Rotated

[111] Axis

[111] Axis 15mm

45 deg.Rotated

15mm

10mm

10mm

[100] Axis

[100] Axis

Group of 4 Lenses

Wave aberration isperfectly corrected.

Combination of [111] Pair and [100] PairSimulated 2D-Distr ibution of Intr insic Birefr ingence – Nikon Corporation

However, must then give up “clocking” to reduce figure errors! � higher figure specs.

Page 33: Intrinsic Birefringence in Cubic Crystalline Optical Materials › mcsd › Seminars › 2004 › 2004-06-10... · 2004-06-10 · Spatial-Dispersion-Induced Birefringence Origin of

New Crystal Optics

isotropic1 principal ε

cubic

uniaxial2 principal ε’s

hexagonaltetragonaltrigonal

biaxial3 principal ε’sorthorhombicmonoclinictriclinic

heptaxial

conventional optics classification with spatial dispersion(e.g, cubic fluor ite structure)

all prop. dir’snon-birefringent

1 prop. dir.non-birefringent

2 prop. dir’snon-birefringent

7 prop. dir’snon-birefringent

optic axis2 optic axes

7 optic axes

Page 34: Intrinsic Birefringence in Cubic Crystalline Optical Materials › mcsd › Seminars › 2004 › 2004-06-10... · 2004-06-10 · Spatial-Dispersion-Induced Birefringence Origin of

Sensitivity of birefr ingence to interaction (exciton) effects:

Behavior: ∆n(ω) ~ Aω2 + B / (ω2−ω02) + C / (ω2 − ω0

2)2

“ Interband” contribution

Contribution fromexciton peak because

of anisotropy in exciton oscillator strengths

Contribution fromexciton peak becauseof splitting of exciton

energies

Each effect can dominate!

Page 35: Intrinsic Birefringence in Cubic Crystalline Optical Materials › mcsd › Seminars › 2004 › 2004-06-10... · 2004-06-10 · Spatial-Dispersion-Induced Birefringence Origin of

Spur ious symmetry breaking culpr its:

H=He+Hh+Heh,D+Heh,X, plus matrix elements!

He, Hh: for faster convergence,k-point meshes can be displacedfrom having complete symmetry.DON’T SHIFT! (Or shift &average birefringences obtainedfor certain “equivalent” directions.)

Heh,D: for convenience,might cut off e-h interactionin real-space in non-symmetricway, e.g., related to supercellimplied by k-point mesh spacing. USE LENGTH!

Heh,X: for convenience,might have G-vectors for treating off-diagonal dielectricscreening organized in a parallelepiped. USE LENGTH!

Basis-set can convey bias from non-symmetric k-point & bandsampling (PRB 54, 16464, 1996). Form basis set symmetrically,In regards to k-points and degenerate band partners!

Basis set for unk(r ), for ψnk( r ) = unk( r ) e i k ⋅⋅⋅⋅ r.

Page 36: Intrinsic Birefringence in Cubic Crystalline Optical Materials › mcsd › Seminars › 2004 › 2004-06-10... · 2004-06-10 · Spatial-Dispersion-Induced Birefringence Origin of

Summary

* Theoretical investigation relating- optical constants- quantum mechanics of electrons in solids- numerical modeling of physical systems

* Method results shown for -semiconductors-wide-gap insulators-core excitations

* Intrinsic birefringence in cubic crystalline materials

Acknowledgements:

JB: Office of microelectronic programs,SEMATECH International