Interdisciplinary ResearchInterdisciplinary Research ...-- Global Mean Temp 300 400-8 400 300 200...

64
Interdisciplinary Research & Interdisciplinary Research & Innovation (IDRI) For A Sustainable Energy Future Introduction The nature and scope of challenges facing humanity Meeting these challenges--A winning strategy IT IS Roop L. Mahajan IT IS ICTAS & Sustainable Energy The game changer technologies- A teaser Tucker Chair Professor Director, ICTAS [email protected] Concluding remarks

Transcript of Interdisciplinary ResearchInterdisciplinary Research ...-- Global Mean Temp 300 400-8 400 300 200...

Page 1: Interdisciplinary ResearchInterdisciplinary Research ...-- Global Mean Temp 300 400-8 400 300 200 100 0 225 200 175 Climate Change 2001: T he Scientific Basis, Fig 2.22 240 260 ...

Interdisciplinary Research &Interdisciplinary Research & Innovation (IDRI)

For A Sustainable Energy Future

Introduction

The nature and scope of challenges facing humanity

Meeting these challenges--A winning strategy IT IS

Roop L. Mahajan

IT IS ICTAS & Sustainable Energy

The game changer technologies- A teaser

Tucker Chair Professor Director, [email protected] 

Concluding remarks

Page 2: Interdisciplinary ResearchInterdisciplinary Research ...-- Global Mean Temp 300 400-8 400 300 200 100 0 225 200 175 Climate Change 2001: T he Scientific Basis, Fig 2.22 240 260 ...

Introduction

Top Ten problemsof Humanity for next 50 years

1. Energy2. Water3. Food4. Environment

• They are interconnected • They are global in nature• They are complex and challenging

5. Poverty6. Terrorism & War7. Disease8. Education

• They have a high level of uncertainty• They require multiple perspectives 

9. Democracy10. Population

Richard E. Smalley , noted scientist and Nobel prize winner

Source: Energy and Nanotechnology Conference, Rice University, May 3, 2003May 3, 2003

Page 3: Interdisciplinary ResearchInterdisciplinary Research ...-- Global Mean Temp 300 400-8 400 300 200 100 0 225 200 175 Climate Change 2001: T he Scientific Basis, Fig 2.22 240 260 ...

Demographics

6

8

10

mill

ions

)

OceaniaN. AmericaS. AmericaE

40% of the world’s

l ti i

2

4

6

Popu

latio

n (m Europe

AsiaAfrica

population is

in the fast developing

regions01750 1800 1850 1900 1950 2000 2050

AfricaOceana

N. America AfricaOceana

N. America Africa

OceanaN. America Africa

OceanaN. America

regions.

2005

S. America

Europe

20052005

S. America

Europe

2050

S. America

Europe

2050

S. America

Europe

6.5 Billion6.5 Billion6.5 Billion2050

8.9 Billion

20508.9 Billion

AsiaAsia AsiaAsia

Source: msd-energy-croatia.ppt

Page 4: Interdisciplinary ResearchInterdisciplinary Research ...-- Global Mean Temp 300 400-8 400 300 200 100 0 225 200 175 Climate Change 2001: T he Scientific Basis, Fig 2.22 240 260 ...

Prosperity, Energy Demand 

)

Energy demand and GDP per capita (1980‐2002)

apita

(GJ)

As GDP increases, 

rgy

per c

a

so does the demand for energy

mar

y en

er energy 

Prim

GDP per capita (purchasing power parity)( g y)

Page 5: Interdisciplinary ResearchInterdisciplinary Research ...-- Global Mean Temp 300 400-8 400 300 200 100 0 225 200 175 Climate Change 2001: T he Scientific Basis, Fig 2.22 240 260 ...

Net Result 

2100: 40-50 TW 2050: 25-30 TW2000: 13 TW

20 00

25.00

World Energy Demandtotal

Energy Gap 15.00

20.00

TW

d lgy p

2050: 14 TW

2100: 34 TW 5.00

10.00 industrial

developing

US

ee/fsu

1 TW= 1,000 GW

EIA Intl Energy Outlook 2004http://www.eia.doe.gov/oiaf/ieo/index.html

0.00

1970 1990 2010 2030

ee/fsu

How do we meet this gap? By building new power plants?  

Hoffert et al Nature 395, 883,1998; msd‐energy‐croatia.ppt

Building one 1‐GW power plant/day will take 38 years !!

What is the impact on environment? 

Page 6: Interdisciplinary ResearchInterdisciplinary Research ...-- Global Mean Temp 300 400-8 400 300 200 100 0 225 200 175 Climate Change 2001: T he Scientific Basis, Fig 2.22 240 260 ...

Environmental 

800+ 4

to

)

CH4(ppmv)

-- CO2

-- CH4

325

CO2(ppmv)

CO2 in 2004: 380 ppmv

380 1.5500

600

700

- 4

0

T

relative

tpr

esen

t (°C)CH4

-- T300

275

250

300

320

340

360

380

c CO

2(p

pmv) Tem

peratu0

0.5

1.0-- CO2-- Global Mean Temp

300

400

500

- 8

400 300 200 100 0

225

200

175

Climate Change 2001: T he Scientific Basis, Fig 2.22 240

260

280

300

Atm

osph

eri ure (°C)

- 1 5

- 1.0

- 0.5400 300 200 100Thousands of years before present

(Ky BP)

0

J. R. Petit et al, Nature 399, 429, 1999 Intergovernmental Panel on Climate Change, 2001

http://www.ipcc.chN. Oreskes, Science 306, 1686, 2004

D. A. Stainforth et al, Nature 433, 403, 2005

12001000 1400 1600 1800 2000Year AD

1.5

Tipping points on temperature and CO2 level indicate urgency

Page 7: Interdisciplinary ResearchInterdisciplinary Research ...-- Global Mean Temp 300 400-8 400 300 200 100 0 225 200 175 Climate Change 2001: T he Scientific Basis, Fig 2.22 240 260 ...

Challenge

“The supreme reality of our 

time is the vulnerability oftime is the vulnerability of 

the planet.”J h F K d J 28 1963‐ John F. Kennedy, June 28, 1963  

President’s address before a Joint Session

of the Dail and  Seanad, Dublin, Ireland.

More true today than 

ever beforeever before

Page 8: Interdisciplinary ResearchInterdisciplinary Research ...-- Global Mean Temp 300 400-8 400 300 200 100 0 225 200 175 Climate Change 2001: T he Scientific Basis, Fig 2.22 240 260 ...

However…

• Developing countries want to alleviate poverty and aspire to be Developed

– To sustain a >10% growth rate/yr, China is adding ~1 coal‐fired power plant/week  and has overtaken the US as the largest polluter

– India cannot sustain its ~8% growth rate/yr without an order of magnitude increase in power generation and industrial output and hence, Green House Gas (GHG) emissions

• Developed countries do not want to reduce GHG emissions fast enough as it will impact their already troubled economies

Page 9: Interdisciplinary ResearchInterdisciplinary Research ...-- Global Mean Temp 300 400-8 400 300 200 100 0 225 200 175 Climate Change 2001: T he Scientific Basis, Fig 2.22 240 260 ...

2010 Cancun Climate Summit29 Nov-Dec 10

Cancun Climate Change Conferenceagrees plan to cut carbon emissions

CLIMATE CHANGEHIGH HOPES, SLOW PROGRESS

Page 10: Interdisciplinary ResearchInterdisciplinary Research ...-- Global Mean Temp 300 400-8 400 300 200 100 0 225 200 175 Climate Change 2001: T he Scientific Basis, Fig 2.22 240 260 ...

Who wants this?

Page 11: Interdisciplinary ResearchInterdisciplinary Research ...-- Global Mean Temp 300 400-8 400 300 200 100 0 225 200 175 Climate Change 2001: T he Scientific Basis, Fig 2.22 240 260 ...

Bottom Line

Clearly, the focus has to be onmeeting the energy needsto stimulate economies and yet preserve our environmentyet preserve our environment.

hi k bl ?Think Renewables? 

Page 12: Interdisciplinary ResearchInterdisciplinary Research ...-- Global Mean Temp 300 400-8 400 300 200 100 0 225 200 175 Climate Change 2001: T he Scientific Basis, Fig 2.22 240 260 ...

Role of solar energy and other renewablesRole of solar energy and other renewables in US energy system, 2005

29.9 quadrillion BTU= 1 TW-year

Page 13: Interdisciplinary ResearchInterdisciplinary Research ...-- Global Mean Temp 300 400-8 400 300 200 100 0 225 200 175 Climate Change 2001: T he Scientific Basis, Fig 2.22 240 260 ...

World‐wide picture a little better but not by much   

50 2003

30

35

40

45

50 2003

10

15

20

25

0

50.5%

Page 14: Interdisciplinary ResearchInterdisciplinary Research ...-- Global Mean Temp 300 400-8 400 300 200 100 0 225 200 175 Climate Change 2001: T he Scientific Basis, Fig 2.22 240 260 ...

Projected share in 2050

Between now and 2050 we need advances in all aspects ofBetween now and 2050, we need advances in all aspects of energy sources, change, distribution, storage and usage.

Page 15: Interdisciplinary ResearchInterdisciplinary Research ...-- Global Mean Temp 300 400-8 400 300 200 100 0 225 200 175 Climate Change 2001: T he Scientific Basis, Fig 2.22 240 260 ...

Challenges 

For renewable energy, how do we get from ~10 % share of a smaller total demand to    

l 0% f h l d d?almost 50% of a much larger demand?

How do we meet near‐term needs while sustainable energy gysolutions are developed?

We need game changersWe need game‐changersin the whole energy chain   

S h di ib iSource‐change‐distribution‐storage‐usage 

Public policy

Page 16: Interdisciplinary ResearchInterdisciplinary Research ...-- Global Mean Temp 300 400-8 400 300 200 100 0 225 200 175 Climate Change 2001: T he Scientific Basis, Fig 2.22 240 260 ...

Game Changer

A Game Changer could be a Black Swan  

A Black Swan is an event that has three characteristics; it i tli it is an outlier it carries an extreme impact it has retrospective predictability. 

"The Black Swan",Nassim Nicholas Taleb

Page 17: Interdisciplinary ResearchInterdisciplinary Research ...-- Global Mean Temp 300 400-8 400 300 200 100 0 225 200 175 Climate Change 2001: T he Scientific Basis, Fig 2.22 240 260 ...

Game‐ changer

A black swan or not, a game changer, in my view, is characterized by ‐ a healthy dose of innovationI t di i li h l hi‐ Interdisciplinary scholarship 

‐ Sustainability 

Buds of creativity bloom at the intersections!!

Page 18: Interdisciplinary ResearchInterdisciplinary Research ...-- Global Mean Temp 300 400-8 400 300 200 100 0 225 200 175 Climate Change 2001: T he Scientific Basis, Fig 2.22 240 260 ...

Game‐changer TechnologyEquationq

Game Changer = IT IS

Interdisciplinary Technology that is  Innovative and Sustainable 

Page 19: Interdisciplinary ResearchInterdisciplinary Research ...-- Global Mean Temp 300 400-8 400 300 200 100 0 225 200 175 Climate Change 2001: T he Scientific Basis, Fig 2.22 240 260 ...

Technology MixLow cost, high efficiency PV’s **

BatteriesBio‐fuels—3rd gen, algae, heliocultureStealth turbine for wind power 

• Next industrial revolution• New phenomena, materials• Environmental issues

Smarter gridTraveling wave nuclear reactorHydrogen economyClean coal technologies 

Nano

Sustainability Advanced EnergyT h l i

• High performance computing • Computer design tools for 

• Meeting needs of the present without

Technologies

Co pute des g too s obuildings –complex system

present without compromising the ability of future generations to meet their needs

HPC

**Game‐changer TechnologiesStrategic Foresight: Navigating UncertaintyDr. Alexander Van de Putte; IE Business SchoolMadrid, March 2010

Page 20: Interdisciplinary ResearchInterdisciplinary Research ...-- Global Mean Temp 300 400-8 400 300 200 100 0 225 200 175 Climate Change 2001: T he Scientific Basis, Fig 2.22 240 260 ...

Technology Mix

Consider NT One of the powerful, converging technologies  Recall NBICRecall NBIC

Projected global market ‐‐$3 3 trillion Projected global market  $3.3 trillion

Will impact all aspects of our lives, including Energy

Source –change‐distribution‐storage‐usage

Page 21: Interdisciplinary ResearchInterdisciplinary Research ...-- Global Mean Temp 300 400-8 400 300 200 100 0 225 200 175 Climate Change 2001: T he Scientific Basis, Fig 2.22 240 260 ...

NT & Energy Sources 

RegenerativePhotovoltaics: Nano‐optimized cells, (polymeric, dye, quantum dot, thin film, multiple junction), antireflective coatings

Wind Energy: Nano‐composites for lighter and stronger rotor blades, wear and corrosion protection nano‐coatings for bearings and power trains, etc. 

Geothermal: Nano coatings and composites for wear resistant drilling equipment

Hydro/Tidal Power: Nano‐coatings for corrosion protection

Biomass Energy: Yield optimization by nano‐based precision forming (nanosensors, controlled release and storage of pesticides and nutrients)controlled release and storage of pesticides and nutrients)

Fossil FuelsWear and corrosion protection of oil and gas drilling equipment, nanoparticles for improved oil yields

Nuclear Nano composites for radiation shielding and protection (personal equipmentNano‐composites for radiation shielding and protection (personal equipment, container, etc.), long term option for nuclear fusion reactors

Page 22: Interdisciplinary ResearchInterdisciplinary Research ...-- Global Mean Temp 300 400-8 400 300 200 100 0 225 200 175 Climate Change 2001: T he Scientific Basis, Fig 2.22 240 260 ...

NT & Energy Change 

Heat and corrosion protection of turbine blades (e.g. ceramic or intermetallic nano‐coatings) for more efficient turbine power plants. 

Gas Turbines 

Th l iThermoelectricsNanostructured compounds (interface design, nanorods) for efficient thermoelectricalpower generation (e.g. usage of waste heat in automobiles or body heat for personal electronics (long term)) 

Fuel Cells Nano‐optimized membranes and electrodes for efficient fuel cells (PEM) for applications in automobiles/mobile electronics 

Hydro GenerationHydro Generation Nano‐catalysts and new processes for more efficient hydrogen generation (e.g. photoelectrical electrolysis  biophotonic)

Combustion EnginesCombustion EnginesWear and corrosion protection of engine components (nanocomposites/‐coatings, nanoparticles as fuel additive etc.

Electrical MotorsNano‐composites for superconducting components in electro motors (e.g. ship engines)

Page 23: Interdisciplinary ResearchInterdisciplinary Research ...-- Global Mean Temp 300 400-8 400 300 200 100 0 225 200 175 Climate Change 2001: T he Scientific Basis, Fig 2.22 240 260 ...

NT & Energy Distribution

High‐Voltage Transmission: Nanofillers for electrical isolation systems, soft magnetic nanomaterials for efficient current transformation 

Power Transmission

Super Conductors: Optimized high temperature SC’s based on nanoscale interface design for loss‐less power transmission 

CNT Power Lines: Super conducting cables based on carbon nanotubes (long term)CNT Power Lines: Super conducting cables based on carbon nanotubes (long term) 

Wireless Power Transmission: Power transmission by laser, microwaves or electromagnetic resonance based on nano‐optimized components (long term) 

Smart GridsNanosensors (e.g. magnetoresistive ) for intelligent and flexible grid management capable of managing highly decentralized power feeds

Heat TranferEfficient heat in‐ and outflow based on nano optimized heat exchangers and conductors (e.g. based on CNT‐composites) in industries and buildings

Page 24: Interdisciplinary ResearchInterdisciplinary Research ...-- Global Mean Temp 300 400-8 400 300 200 100 0 225 200 175 Climate Change 2001: T he Scientific Basis, Fig 2.22 240 260 ...

Energy Storage

Batteries: Optimized Li‐ion‐batteries by nanostructured electrodes and flexible, ceramic separator‐foils, application in mobile electronics, automobile, flexible load management in power grids (mid term)

Electrical Energy

power grids (mid term)

Supercapacitors:  Nanomaterials for electrodes (carbon aerogels CNT, metallK‐oxides and electrolytes for higher energy densities)

Chemical EnergyHydrogen:  Nanoporous materials (organometals, metal hydrides) for application in micro fuel cells for mobile electronics or in automobiles (long term)

Fuel Reforming/Refining: Nano catalysts for optimized fuel production (oil refiningFuel Reforming/Refining: Nano‐catalysts for optimized fuel production (oil refining, desulphurization, coal liquefaction

Fuel Tanks: Gas tight fuel tanks based on nanocomposites for reduction of hydrocarbon emissions 

Thermal EnergyPhase Change Materials: Encapsulated PCM for air condition of buildings 

Adsorptive Storage: Nano porous materials (e.g. zeolites) for reversible heat storage in buildings and heating nets

Page 25: Interdisciplinary ResearchInterdisciplinary Research ...-- Global Mean Temp 300 400-8 400 300 200 100 0 225 200 175 Climate Change 2001: T he Scientific Basis, Fig 2.22 240 260 ...

NT & Energy Usage

Nanoporous foams and gels ( aerogels, polymer foams) for thermal insulation of buildings or in industrial processes

Thermal Insulation 

or in industrial processes 

Air Conditioning Intelligent management of light and heat flux in buildings by electrochromic windows,  micro mirror arrays or IR reflectors

Lightweight Construction Lightweight construction materials using nano‐composites (carbon nanotubes, metal‐matrix‐composites, nanocoated light metals, ultra performance concrete, polymer composites)

Industrial Processes Substitution of energy intensive processes based on nanotech process innovations, ( t l t lf bli t )(e.g. nano‐catalysts, self‐assembling processes etc.)

LightingEnergy efficient lighting systems (e.g. LED, OLED)gy g g y ( g )

Page 26: Interdisciplinary ResearchInterdisciplinary Research ...-- Global Mean Temp 300 400-8 400 300 200 100 0 225 200 175 Climate Change 2001: T he Scientific Basis, Fig 2.22 240 260 ...

Technology MixLow cost, high efficiency PV’s **

BatteriesBio‐fuels—3rd gen, algae, heliocultureStealth turbine for wind power 

• Next industrial revolution• New phenomena, materials• Environmental issues

Smarter gridTraveling wave nuclear reactorHydrogen economyClean coal technologies 

Nano

Sustainability Advanced EnergyT h l i

• High performance computing • Computer design tools for 

• Meeting needs of the present without

Technologies

Co pute des g too s obuildings –complex system

present without compromising the ability of future generations to meet their needs

HPC

**Game‐changer TechnologiesStrategic Foresight: Navigating UncertaintyDr. Alexander Van de Putte; IE Business SchoolMadrid, March 2010

Page 27: Interdisciplinary ResearchInterdisciplinary Research ...-- Global Mean Temp 300 400-8 400 300 200 100 0 225 200 175 Climate Change 2001: T he Scientific Basis, Fig 2.22 240 260 ...

Game ChangersIn EnergyIn Energy DOE Secretary Steve Chu’s List

• Photovoltaic solar power with a fully installed cost four times cheaper than today’s technologytoday s technology

• Gasoline and diesel-like biofuels generated from lumber waste, crop wastes, solid waste, and non-food cropssolid waste, and non food crops

• Automobile batteries with three times today’s energy density that can survive 15 years of deep dischargesy p g

• Computer design tools for commercial and residential buildings that enable reductions in energy consumption of up to 80 percent with investments that will pay for themselves in less than 10 years

Utility scale energy storage systems so that variable renewable energy• Utility-scale energy storage systems so that variable renewable energy sources such as wind or solar power can become base-load power generators

Page 28: Interdisciplinary ResearchInterdisciplinary Research ...-- Global Mean Temp 300 400-8 400 300 200 100 0 225 200 175 Climate Change 2001: T he Scientific Basis, Fig 2.22 240 260 ...

A few examples from VT ICTASVT-ICTAS

Institute for Critical Technology & Applied Science

Page 29: Interdisciplinary ResearchInterdisciplinary Research ...-- Global Mean Temp 300 400-8 400 300 200 100 0 225 200 175 Climate Change 2001: T he Scientific Basis, Fig 2.22 240 260 ...

As a catalyst for high impact IDREconomic 

Development 

• Meeting needs of the present without compromising the ability of future generations to meet their needsAn agent of

Student educational Experience enhancement 

V I S I O NTo be among the top‐ranked  global institutes in 

innovation 

transformative technologies  for a sustainable future

Page 30: Interdisciplinary ResearchInterdisciplinary Research ...-- Global Mean Temp 300 400-8 400 300 200 100 0 225 200 175 Climate Change 2001: T he Scientific Basis, Fig 2.22 240 260 ...

Infrastructuref

ICTAS HQ ICTAS CRC ICTAS LSC ICTAS NCR

176,000 SF Lab Space

$12 5 million in NCFL$12.5 million in NCFL

Page 31: Interdisciplinary ResearchInterdisciplinary Research ...-- Global Mean Temp 300 400-8 400 300 200 100 0 225 200 175 Climate Change 2001: T he Scientific Basis, Fig 2.22 240 260 ...

What characteristics will define ICTAS IDR?define ICTAS IDR?

• Cutting‐edge

• Transformative 

• Built on VT strengths

• Non‐linear growth 

• Among the top three

• Innovative with a blue‐skies componentInnovative with a blue skies component

• Faculty‐centric 

Page 32: Interdisciplinary ResearchInterdisciplinary Research ...-- Global Mean Temp 300 400-8 400 300 200 100 0 225 200 175 Climate Change 2001: T he Scientific Basis, Fig 2.22 240 260 ...

Disruptive Innovationand

l kA Black Swan

Page 33: Interdisciplinary ResearchInterdisciplinary Research ...-- Global Mean Temp 300 400-8 400 300 200 100 0 225 200 175 Climate Change 2001: T he Scientific Basis, Fig 2.22 240 260 ...

Research Thrusts

Sustainable EnergyRenewable Materials

Nano‐Bio Interface

Nanoscale Science and Engineering

Cognition and Communication

Emerging

Sustainable Water

Emerging Technologies

National Security

Sustainable Water

Page 34: Interdisciplinary ResearchInterdisciplinary Research ...-- Global Mean Temp 300 400-8 400 300 200 100 0 225 200 175 Climate Change 2001: T he Scientific Basis, Fig 2.22 240 260 ...

Sustainable Energygy

Technology to meet society’s energy Advance science and technology to achieveenergy systems with long-term availability,gy y gy

needs – renewably and responsibly reduced environmental impact, and lowercost.

Principle areas of researchPrinciple areas of research Renewable energy resources

Solar Organic Photovoltaic cells Multi-junction solar cells

Wind Bio-fuels Energy harvestingEnergy harvesting

Cleaner more efficient energy conversion systems Fuel cells

Thrust Leader:  Michael Ellis (ME)Associated Faculty: More than 30 faculty members from  7 departments in the Colleges of Science and Engineering.  

Page 35: Interdisciplinary ResearchInterdisciplinary Research ...-- Global Mean Temp 300 400-8 400 300 200 100 0 225 200 175 Climate Change 2001: T he Scientific Basis, Fig 2.22 240 260 ...
Page 36: Interdisciplinary ResearchInterdisciplinary Research ...-- Global Mean Temp 300 400-8 400 300 200 100 0 225 200 175 Climate Change 2001: T he Scientific Basis, Fig 2.22 240 260 ...

Polymer‐Fullerene Photovoltaic Films

Organic solar cells have current  efficiencies of 5%.  Large‐scale plastic roll‐to‐roll processing  can enable inexpensive, light‐weight, flexible, large area polymer solar cellscells.  Efficiency improvements require  nanoscale control of materials. Need ~10% efficiency for cost‐competitiveness

The open circuit voltage of organic sloar cells is determined by the lowest unoccupied molecular 

orbital (LUMO) energy level. The LUMO levels of endohedral fullerenes synthesized by H.C. Dorn and H.W. Gibson show LUMO levels of 0.3‐0.5 V higher than PCBM.  Given such an increase in V of P3HT/PCBM solar Given such an increase in VOC of P3HT/PCBM solar cells, efficiencies as high as 9% should be achievable.H.C. Dorn (Chemistry‐VT) has discovered a new 

class of trimetallic nitride template fullerenes encapsulating a nitrogen atom and three transition metal atoms inside the fullerene cage.

Page 37: Interdisciplinary ResearchInterdisciplinary Research ...-- Global Mean Temp 300 400-8 400 300 200 100 0 225 200 175 Climate Change 2001: T he Scientific Basis, Fig 2.22 240 260 ...

3rd3rd generation PV’s

n-InAlP window

n+-GaAs cap

Contact

n-InAlP window

n+-GaAs cap

Contact

n-InAlP window

n+-GaAs cap

ContactMulti-junction Solar Cells

InGaP (1.90 eV)

n-InGaP emitter

p-InGaP base

n-AlGaAs windowTJInGaP (1.90 eV)InGaP (1.90 eV)InGaP (1.90 eV)

n-InGaP emitter

p-InGaP base

n-AlGaAs windowTJ

n-InGaP emitter

p-InGaP base

n-AlGaAs windowTJ

In0.7Ga0.3AsInAsInSb

In0.53Ga0.47As

Si

GaAs (1.42 eV)

InGaAs (1.05 eV)

n-GaAs emitter

p-GaAs base

n-AlGaAs window

TJ

GaAs (1.42 eV)

InGaAs (1.05 eV)

GaAs (1.42 eV)

InGaAs (1.05 eV)

GaAs (1.42 eV)

InGaAs (1.05 eV)

n-GaAs emitter

p-GaAs base

n-AlGaAs window

TJ

n-GaAs emitter

p-GaAs base

n-AlGaAs window

TJ

2000K

1500K

fici

ency

[%

]

InGaAs (0.67 eV) n-InGaAs emitter

p-InGaAs base

n-InGaAsP window

TJ

InGaAs (0.67 eV)InGaAs (0.67 eV)InGaAs (0.67 eV) n-InGaAs emitter

p-InGaAs base

n-InGaAsP window

TJ

n-InGaAs emitter

p-InGaAs base

n-InGaAsP window

TJ

1200K

1000K

Eff

p-Si substrateContact

Buffer layerp-Si substrate

Contact

Buffer layerp-Si substrate

Contact

Buffer layerBandgap of the cell [eV]

Hi h ffi i ll d l b d III V t i lHigher efficiency cell needs low band gap III-V materials

Page 38: Interdisciplinary ResearchInterdisciplinary Research ...-- Global Mean Temp 300 400-8 400 300 200 100 0 225 200 175 Climate Change 2001: T he Scientific Basis, Fig 2.22 240 260 ...

Thermophoto oltaic (TPV) is the se of PV cells to con ert heat

ThermoThermo--photovoltaic Cells photovoltaic Cells •Thermophotovoltaic (TPV) is the use of PV cells to convert heat radiation into electricity

•Temperature range about 1500-2000K rather than 5800K of the SunTemperature range about 1500 2000K rather than 5800K of the Sun

pn

VDark

urre

nt

Voc

EgPhoton Voltage

VocCu

Vmp

ImpIL

Isc

mp

Band diagram I-V characteristicscharacteristics

G-Number3838

Page 39: Interdisciplinary ResearchInterdisciplinary Research ...-- Global Mean Temp 300 400-8 400 300 200 100 0 225 200 175 Climate Change 2001: T he Scientific Basis, Fig 2.22 240 260 ...

Examples of research at VT‐ICTAS

Biofuels

Agricultural ResiduesEnergy Crops

Poultry litter biooil

Page 40: Interdisciplinary ResearchInterdisciplinary Research ...-- Global Mean Temp 300 400-8 400 300 200 100 0 225 200 175 Climate Change 2001: T he Scientific Basis, Fig 2.22 240 260 ...

Major research directions

I. Bio‐Mass (corn/sugarcane)to Bio‐ethanol via biochemical processes

1st generation: corn/sugarcane to ethanol 1 generation: corn/sugarcane  to ethanol 

2nd generation: Cellulosic feedstock (wood/grass) to ethanol/butanol

II. Bio‐Mass (wood, chicken feathers..) to Bio‐ethanol via thermochemical catalysis

Low temperature (400‐600 C ) pryolysis to bio‐oil, gasoline  High temperature partial oxidation to syngas, bio‐gasoline, green diesel  Biomass (cellulose) to syngas/phenols 

l bi di lIII. Algae to biodiesel

IV. Biomass to fuels and proteins via biotransformation 

Page 41: Interdisciplinary ResearchInterdisciplinary Research ...-- Global Mean Temp 300 400-8 400 300 200 100 0 225 200 175 Climate Change 2001: T he Scientific Basis, Fig 2.22 240 260 ...

Major research directions

I. Bio‐Mass to Bio‐ethanol/bio‐butanol via biochemical processes

1st generation: corn/sugarcane to ethanol  Challenges:

high cost of distillation: ethanol content lowg food competition (corn)  disposal of by‐products 

2nd generation: Cellulosic feedstock (wood/grass) to ethanol/butanol Challenges:

increasing accessibility to cellulose in feedstockf i b h l d l fermentation to convert both glucose and xylose

o natural yeast for glucose but need micro‐engineered yeast to ferment xylose

distillation (concentration of ethanol is low) distillation (concentration of ethanol is low) cheap production of enzymes 

Page 42: Interdisciplinary ResearchInterdisciplinary Research ...-- Global Mean Temp 300 400-8 400 300 200 100 0 225 200 175 Climate Change 2001: T he Scientific Basis, Fig 2.22 240 260 ...

Bioethanol

Switchgrass Green Biorefinery Bioethanol

PretreatmentEnzymatic 

Fermentation

CellulasesCellulosic

Bioethanol,BiobasedPretreatment

HydrolysisFermentation

FeedstockBiobased Products

• Developed a Novel Lignocellulose Pretreatment – Based on New Principles

• Engineering Cellulases – Based on New Hypothesis • Hydrolysis Mechanism and Modeling Based on New Model and Insights• Hydrolysis Mechanism and Modeling – Based on New Model and Insights

Page 43: Interdisciplinary ResearchInterdisciplinary Research ...-- Global Mean Temp 300 400-8 400 300 200 100 0 225 200 175 Climate Change 2001: T he Scientific Basis, Fig 2.22 240 260 ...

Major research directions

II. Biomass (wood, chicken feathers..) to bio-gasoline and green diesel via thermo-chemical catalysis

Low temperature (400-600 C ) pyrolysis to bio-oil

Bio-oil not stable, turns to molasses -like, dries up have developed a patented stabilization process

High Temperature Pyrolysis (partial Oxidation) to syngas

Page 44: Interdisciplinary ResearchInterdisciplinary Research ...-- Global Mean Temp 300 400-8 400 300 200 100 0 225 200 175 Climate Change 2001: T he Scientific Basis, Fig 2.22 240 260 ...

Major research directions

III. Algae biodiesel

Cultivate high lipid expressing algae Cultivate high lipid expressing algae

Direct conversion of algae to biodiesel using acid/base catalysis

Status:Developing solid surface photosynthetic algae culture– Developing solid surface photosynthetic algae culture system for producing lipid containing algae

– Developing heterotrophic algae fermentation using crude glycerol (nutrient) for lipid production

Page 45: Interdisciplinary ResearchInterdisciplinary Research ...-- Global Mean Temp 300 400-8 400 300 200 100 0 225 200 175 Climate Change 2001: T he Scientific Basis, Fig 2.22 240 260 ...

Major research directions

IV. Biotransformation for fuel productionProtein expression and purificationp pRecombinant protein (potentially therapeutic and

vaccine) expression in transgenic plantsD l t f i l fDevelopment of economical processes for

recombinant protein purificationFuel production from residue after drug recoveryFuel production from residue after drug recovery

Active site pocket Inhibitor

Surface bindingSurface binding sites

Page 46: Interdisciplinary ResearchInterdisciplinary Research ...-- Global Mean Temp 300 400-8 400 300 200 100 0 225 200 175 Climate Change 2001: T he Scientific Basis, Fig 2.22 240 260 ...

Fuel Cells

MissionTo conduct fundamental and applied research that improves our understanding of fuel cell materials and 

d th t k f l ll t

100 nm

processes and that makes fuel cell systems more efficient, economical, and durable.

tage

(V)

0 6

0.8

1.0

1.2

ty (m

W/c

m2 )

1000

1200

1400

1600

18000% TBA+ 100% Na+

25% TBA+ 75% Na+

50% TBA+ 50% Na+

75 %TBA+ 25% Na+

100% TBA+ 0% Na+

2x better

Research Highlights

x = 14.5 kg/moly = 19.2 kg/mol

30Tref = 70° CaT80° C=0.63

Current Density (mA/cm2)

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Cel

l Vol

t

0.0

0.2

0.4

0.6

Pow

er D

ensi

t

0

200

400

600

800

Developed an ion conducting polymer, BPSH, that is a leading alternative to Nafion based fuel cell membranes.

Developed the framework for durability assessment of fuel cell membrane materials currently used by one of the 0

5

10

15

20

25

Gore 57 70° C Gore 57 80° C Gore 57 90° C

Bur

st S

tren

gth

(MPa

)

aT 80 C 0.63aT 90° C= 1.10

world’s largest fuel cell systems manufacturers.

Developed methods of processing Nafion that yield membrane electrode assemblies with more than twice the performance of traditional membrane casting techniques.

Novel materials, processes, test methods and analyses to improve fuel cell efficiency, durability, and cost

1 10 100 1000 10000Time to failure (sec)

Developed novel composite bipolar plate materials that reduce the cost and weight of fuel cell stacks.

Developed novel stack architectures that provide weight savings and improve systems integration.

Lead  Faculty :  David Dillard (ESM)Associated Faculty:  11

Page 47: Interdisciplinary ResearchInterdisciplinary Research ...-- Global Mean Temp 300 400-8 400 300 200 100 0 225 200 175 Climate Change 2001: T he Scientific Basis, Fig 2.22 240 260 ...

Wind Power – technological trends 

Li it t l d f l i d t Limits to larger and powerful wind generators 

Increase in power ~ D2

Increase in mass~ D3

Poses challenges re the mechanical capacity of materials and components 

Needs &Trends 

Light weight and high‐strength rotor blades ( think composite materials using  NT)

Designs that make use of aero‐elastically tailored bladesDesigns that make use of aero elastically tailored blades

Stealth turbine Blade 

Improved aerodynamic and structural analysis capabilities for accurate prediction of gust loads stall effects etcprediction of gust loads, stall effects, etc.

Advanced concepts for rotor control and drive train control

Active and passive flow control strategies to increase energy capture

novel mechanical power transmission & electric generator systems

Page 48: Interdisciplinary ResearchInterdisciplinary Research ...-- Global Mean Temp 300 400-8 400 300 200 100 0 225 200 175 Climate Change 2001: T he Scientific Basis, Fig 2.22 240 260 ...

St lth T bi Bl dStealth  Turbine Blade The problem: the tips of the blades travel at about the same speed as a light 

aircraft making it difficult for radar operators to determine what they see (i.e., a light aircraft, something real or interference or a shadow from the wind turbines). The confusion is caused by radar bouncing off moving wind turbines, creating a cloud of reflected signals.

Denmark‘s VestasWind Systems is experimenting with stealth technology, developed to help warplanes escape notice, to reduce a turbine blade's radar 

h f h bl k ff ll ' dsignature‐‐the size of the blip it makes on an air traffic controller's radar screen.

• Stealth blade: the 44 meter (144 ft) long blade incorporates two layers of glass cloth printed with a special ink (a radar absorbing material, RAM) 

b dd d i h f h l f iembedded in the structure as part of the normal manufacturing process. The radar passes through the first layer, but bounces off the second and is effectively trapped between the two. Turbine blade becomes essentially invisible to radar―invisible to radar.

If successful, wind farms will get a big boost

Source Dr. Alexander Van de Putte; IE Business School,  Madrid, March 2010

Page 49: Interdisciplinary ResearchInterdisciplinary Research ...-- Global Mean Temp 300 400-8 400 300 200 100 0 225 200 175 Climate Change 2001: T he Scientific Basis, Fig 2.22 240 260 ...

Improved analysis

Aerodynamic  analysis tools and capabilities and accurate prediction of gust loads, stall effects

Computational fluid dynamics

gust loads, stall effects

Simulation of atmospheric turbulence, gust loads on larger rotors placed on higher towers; important in jet flows of some class 4 areas.

Uncertainty quantification

Atmospheric Gust LoadWake

y q

Page 50: Interdisciplinary ResearchInterdisciplinary Research ...-- Global Mean Temp 300 400-8 400 300 200 100 0 225 200 175 Climate Change 2001: T he Scientific Basis, Fig 2.22 240 260 ...

Center for Energy Harvesting

28 faculty members in 3 different  universities i ll f icovering  all aspects of energy generation 

and storage. 

Excellent infrastructure for energy related research Excellent infrastructure for energy related research.

Incubated as ICTAS‐ I/UCRC.

Now an NSF‐I/UCRC

Membership:•10 industry members $40 000/year•10 industry members ‐‐$40,000/year

Lead Faculty: Profs. Dan Inman and Shashank Priya ICTAS Center for Energy Harvesting Material Systems (CEHMS)

Page 51: Interdisciplinary ResearchInterdisciplinary Research ...-- Global Mean Temp 300 400-8 400 300 200 100 0 225 200 175 Climate Change 2001: T he Scientific Basis, Fig 2.22 240 260 ...

Interdisciplinary Research &Interdisciplinary Research & Innovation (IDRI)

For A Sustainable Energy Future

Introduction

The nature and scope of challenges facing humanity

Meeting these challenges--A winning strategy IT IS

Roop L. Mahajan

IT IS ICTAS & Sustainable Energy

The game changer technologies- A teaser

Tucker Chair Professor Director, [email protected] 

Concluding remarks

Page 52: Interdisciplinary ResearchInterdisciplinary Research ...-- Global Mean Temp 300 400-8 400 300 200 100 0 225 200 175 Climate Change 2001: T he Scientific Basis, Fig 2.22 240 260 ...

• It takes on average 5 stages of technology development to reach commercialization and diffusionTh d f t h l d l t i d i b• The speed of technology development is driven by Technological ‘Clock Speed‘

Page 53: Interdisciplinary ResearchInterdisciplinary Research ...-- Global Mean Temp 300 400-8 400 300 200 100 0 225 200 175 Climate Change 2001: T he Scientific Basis, Fig 2.22 240 260 ...

Game  Description Current status  Application  Likely obsolete Changer 

Technologyof the 

technologyareas technologies

3rd‐generation • Advanced thin‐film solar 3: Ongoing Electric power • Fossil fuels3rd generation Photovoltaics

Advanced thin film solar cells (low cost, high efficiency) as opposed to 1st and 2nd generation cells (silicon wafers and l l ffi i

3: Ongoing research& early prototypes

Electric power generation and integration within Smart Grids

Fossil fuels• Other renewable 

technologies

low‐cost, low‐efficiency thin films, respectively).

• Includes dye‐sensitized, nanocrystalline, and polymer solar cells.

Page 54: Interdisciplinary ResearchInterdisciplinary Research ...-- Global Mean Temp 300 400-8 400 300 200 100 0 225 200 175 Climate Change 2001: T he Scientific Basis, Fig 2.22 240 260 ...

Development of a New Manufacturing Technology  to 

2nd Generation Solar Cells

CSU

p g gyreduce the cost of PV generated electricity Team Members

Materials Engineering Lab (Lead): W. S. Sampath, Robert Enzenroth andKurt Barth

Industrial Engineering: Bill Duff: manufacturing model PV Testing Lab: J. Sites and students Chemistry Central Instrument Facility: S. Kohli, P. MaCurdy

CU Nano/Thermal Laboratory: R.L. Mahajan

National CdTe R&D Team: consortium of industries leading academic

Thermal modeling and PV/LED lamp Pacific Northwest Natl. Lab: L. Olsen, S. Kundu

National CdTe R&D Team: consortium of industries, leading academic researchers and national laboratory members working to advance CdTe PV.

Industry:y• AVA Technology: local company, P.Noronha, CEO

Support from NSF, NREL, US DOE, UN, USAID and NSC

Page 55: Interdisciplinary ResearchInterdisciplinary Research ...-- Global Mean Temp 300 400-8 400 300 200 100 0 225 200 175 Climate Change 2001: T he Scientific Basis, Fig 2.22 240 260 ...

Completed DeviceGlass SubstrateVacuum Boundary Air to Vacuum to

Air Seal

Process Schematic Semiconductor Fab.

Sub CdS CdTe CdCl2 Back

Glass Substrate

Sub CdS CdTe CdCl2 Back Heat Contact

Continuous Conveyor

I. Semiconductor Processing Vacuum thin film deposition Sublimation of solid materials 7 process deposition, annealing and heat treatment process steps All process heads similar

II Manufacturing efficiencyII. Manufacturing efficiency Fully lean, automated continuous 2 min cycle time

Glass in / Completed device out every 2 min.

Page 56: Interdisciplinary ResearchInterdisciplinary Research ...-- Global Mean Temp 300 400-8 400 300 200 100 0 225 200 175 Climate Change 2001: T he Scientific Basis, Fig 2.22 240 260 ...

Pilot Scale System for Process Development

Page 57: Interdisciplinary ResearchInterdisciplinary Research ...-- Global Mean Temp 300 400-8 400 300 200 100 0 225 200 175 Climate Change 2001: T he Scientific Basis, Fig 2.22 240 260 ...

Recognition .. 

“Low-cost Solar Power Lighting up the Grid”Mechanical engineering Professor W.S. Sampath, one of the leading researchersin solar technology, is helping to move Colorado State into mass production of high-efficiency, low-cost solar panels.g y

“A sheet of AVA Solar glass uses 100 times less semiconductor material in themanufacturing process and produces a new solar panel every two minutesmanufacturing process, and produces a new solar panel every two minutes….The cost to the consumer could be as low as $2 per watt, about half the current cost ofsolar panels, and the cost is competitive with cost of power from the electrical grid in many parts of the world.”

Published May 2008

CleanTechnica, part of the Green Options Media Blog Network.

Page 58: Interdisciplinary ResearchInterdisciplinary Research ...-- Global Mean Temp 300 400-8 400 300 200 100 0 225 200 175 Climate Change 2001: T he Scientific Basis, Fig 2.22 240 260 ...

Game  Description Current status of  Application  Likely Changer 

Technologythe technology areas obsolete 

technologies

Biofuels • 1st generation: fuel ethanol and biodiesel

5: Diffusion & ongoing    d l

Electric power generation

Fossil fuelsethanol and biodiesel produced from food crops

• 2nd generation: cellulosic ethanol 

development

4:  Pilot plants & early commercialization

generation

from non‐food crops• 3rd generation: algae

fuel • Helioculture: 

converts sunlight and

2:  Applied research & early experiments

converts sunlight and CO2 to liquid biofuels.

Page 59: Interdisciplinary ResearchInterdisciplinary Research ...-- Global Mean Temp 300 400-8 400 300 200 100 0 225 200 175 Climate Change 2001: T he Scientific Basis, Fig 2.22 240 260 ...

Game  Description Current status of  Application  Likely obsolete Changer 

Technologythe technology areas technologies

Clean coal technologies

Technologies that reduce the

• Commercial syngas plants

Clean(er) energy production

Dirty coal technologiestechnologies reduce the 

environmental footprint of coal power plants, generally via carbon capture and 

syngas plants already available in Europe & USA.

• 1st clean coal power plant went 

production technologies 

storage/se‐questration(CCS), coal preparation, coal gasification (syngas), pollutant reduction (e g sulphur

online in September 2008 in Germany.

• Clean coal is a controversialreduction (e.g., sulphur

dioxide, nitrogen oxides).

controversial notion and has been described as an oxymoron or a myth by critics.

Page 60: Interdisciplinary ResearchInterdisciplinary Research ...-- Global Mean Temp 300 400-8 400 300 200 100 0 225 200 175 Climate Change 2001: T he Scientific Basis, Fig 2.22 240 260 ...

Game Changer 

Technology

Description Current status of the technology

Application areas

Likely obsolete technologies

Nanowirequantum wire) anode

Lithium‐ion anodescomposed of siliconnanowires

3. Ongoing research & early prototypes

Energy density/ storage

Conventional batteries

Ultracapacitor Nanotube enhanced 3 O i h • Energy ConventionalUltracapacitor Nanotube‐enhanced ultracapacitor

3. Ongoing research & early prototypes

• Energy density/ storage

• Significant reductions 

Conventional batteries

in cost of hybrid/electric vehicles and grid‐scalescale storage.

Wireless power transmission (or wireless energy 

Wireless transfer of electrical power

5: Diffusion & ongoing development

Wirelessly powered equipment, 

Conventional batteries

gytransfer)

q p ,battery charging

Page 61: Interdisciplinary ResearchInterdisciplinary Research ...-- Global Mean Temp 300 400-8 400 300 200 100 0 225 200 175 Climate Change 2001: T he Scientific Basis, Fig 2.22 240 260 ...

Game  Description Current status of  Application  Likely Changer 

Technologythe technology areas obsolete 

technologies

Nuclear fusion Nuclear energy generated by the fusion of two light

2: Applied research d l i

Electric power generation

Fossil fuels, renewable energyby the fusion of two light 

elements.and early experiments  generation renewable energy

Nuclear power: Travelling‐wave 

New design for nuclear reactor, requires very little 

1: Fundamental research

• Electric power 

Conventional nuclear reactor g

reactorq y

enriched uranium and could run for decades without refuelling.

research pgeneration

• Safer, cheaper nuclear power

technology

power

Page 62: Interdisciplinary ResearchInterdisciplinary Research ...-- Global Mean Temp 300 400-8 400 300 200 100 0 225 200 175 Climate Change 2001: T he Scientific Basis, Fig 2.22 240 260 ...

Game  Description Current status of  Application  Likely Changer 

Technologythe technology areas obsolete 

technologies

Smart grid technologies

Smart grids utilize wireless sensor networks

5: Diffusion & ongoing d l

Smart energy deployment/ustechnologies 

such as smart meters, smart power outlets,superconductors

wireless sensor networks, software, and computing to enable energy providers and consumers to see how much and 

development

High‐temperature superconductivityrecently demonstrated

deployment/usage

Engineering materials with 

where energy is being consumed, and if problems exist in the network.

yin layered films of copper oxide

tunable super‐conductivity

Page 63: Interdisciplinary ResearchInterdisciplinary Research ...-- Global Mean Temp 300 400-8 400 300 200 100 0 225 200 175 Climate Change 2001: T he Scientific Basis, Fig 2.22 240 260 ...

M ti l b l d d f i d l t

Concluding Remarks

Meeting global energy demand for economic development “sustainably” one of the top ten humanity’s challenges 

Significant research on‐going,  and in different stages of g g g, gdevelopment,  for the whole valued added chain of energy‐‐energy source –change‐distribution‐storage‐usage –and  

supplemented by Public policy and global considerationssupplemented by Public policy and  global considerations

Solutions will vary from nation to nation

Common Need: Innovative solutions; powered by IDR

THE NEXT BLACK SWAN(s) 

Page 64: Interdisciplinary ResearchInterdisciplinary Research ...-- Global Mean Temp 300 400-8 400 300 200 100 0 225 200 175 Climate Change 2001: T he Scientific Basis, Fig 2.22 240 260 ...