Interconect Delay Models

32
Interconnect Delay Models

Transcript of Interconect Delay Models

Page 1: Interconect Delay Models

8/6/2019 Interconect Delay Models

http://slidepdf.com/reader/full/interconect-delay-models 1/32

Interconnect Delay Models

Page 2: Interconect Delay Models

8/6/2019 Interconect Delay Models

http://slidepdf.com/reader/full/interconect-delay-models 2/32

Basic Circuit Analysis Techniques

• Output response

• Basic waveforms – Step input

 – Pulse input

 – Impulse Input

• Use simple input waveforms to understand the impact ofnetwork design

Network structures & state

Input waveform & zero-states

Natural response v N (t)(zero-input response)

Forced response v F (t)(zero-state response)

For linear circuits: )()()( t vt vt v  F  N  +=

Page 3: Interconect Delay Models

8/6/2019 Interconect Delay Models

http://slidepdf.com/reader/full/interconect-delay-models 3/32

unit step function

u(t)= 0

1

0<t 

0≥t 

1

pulse function of width T 

0

1/ T

-T/2 T/2

−−+= )

2()

2(

1)(

T t u

T t u

T t  P T 

unit impulse function

∫ − =

>

=

≠=→

ζ 

ζ δ 

ζ 

δ 

δ 

1)(

0anyfors.t.

0forsingular

0for0)(

0when)(:)(

dt t 

t t 

T t  P t  T 

dt t duδ(t)

dx xt ut 

)(or

)()( 

definitionBy

=

= ∫  ∞−δ 

Basic Input Waveforms

Page 4: Interconect Delay Models

8/6/2019 Interconect Delay Models

http://slidepdf.com/reader/full/interconect-delay-models 4/32

• Definitions:

  – (unit) step input u(t) (unit) step response g(t)

 – (unit) impulse input δ(t) (unit) impulse response h(t)

• Relationship

• Elmore delay

∫ ∫  =→=

=→=

∞−

t t 

dx xht  g dx xt u

dt 

t dg t h

dt 

t dut 

0)()()()(

)()(

)()(

δ 

δ 

Step Response vs. Impulse Response

(Input Waveform) (Output Waveform)

∫ ∫ 

∞ ∞⋅=⋅=

0 0

)()(' dt t t hdt t t  g T  D

Page 5: Interconect Delay Models

8/6/2019 Interconect Delay Models

http://slidepdf.com/reader/full/interconect-delay-models 5/32

Analysis of Simple RC Circuit

)()()(

)())(()( 

)()()( 

t vt vdt 

t dv RC 

dt 

t dvC 

dt 

t Cvd t i

t vt vt i R

=+⇒

==

=+⋅

first-order linear differential

equation withconstant coefficients

statevariable

Input

waveform

±v(t)C

R

v T (t)

i(t)

Page 6: Interconect Delay Models

8/6/2019 Interconect Delay Models

http://slidepdf.com/reader/full/interconect-delay-models 6/32

Analysis of Simple RC Circuit

0)()(

=+ t vdt 

t dv RC zero-input response:

(natural response)

step-input response:

match initial state:

output responsefor step-input:

v 0 

v 0 u(t)

v 0 (1-e RC/T  )u(t)

 RC t 

 N  Ke(t)v RC dt 

dv(t)

v(t)

=⇒−=

11

)()()(

0 t uvt v

dt 

t dv RC  =+

)()()()( 00 t uv Ket vt uvt v RC t 

 F  +=⇒=−

)()1()( 0 t uevt v RC t −

−=

0)( 0)0( 0 =+⇒= t uv K v

Page 7: Interconect Delay Models

8/6/2019 Interconect Delay Models

http://slidepdf.com/reader/full/interconect-delay-models 7/32

Delays of Simple RC Circuit

• v(t) = v0

(1 - e-t/RC) under step input v0

u(t)

• v(t)=0.9v0 ⇒ t = 2.3RCv(t)=0.5v0 ⇒ t = 0.7RC

• Commonly used metricTD = RC (Elmore delay to be defined later)

Page 8: Interconect Delay Models

8/6/2019 Interconect Delay Models

http://slidepdf.com/reader/full/interconect-delay-models 8/32

Lumped Capacitance Delay Model

• R = driver resistance

• C = total interconnect capacitance + loading capacitance

• Sink Delay: td

= R·C

• 50% delay under step input = 0.7RC• Valid when driver resistance >> interconnect resistance

• All sinks have equal delay

driver

3 N 

2 N 

+ N 

Rd

Cload

Page 9: Interconect Delay Models

8/6/2019 Interconect Delay Models

http://slidepdf.com/reader/full/interconect-delay-models 9/32

( )g0d

gintdloaddD

CLCR

CCRCRt

+⋅⋅=

+⋅=⋅=

driver

3 N 

2

 N 

+ N 

Lumped RC Delay Model

• Minimize delay ⇔ minimize wire length

Rd

Cload

Page 10: Interconect Delay Models

8/6/2019 Interconect Delay Models

http://slidepdf.com/reader/full/interconect-delay-models 10/32

Delay of Distributed RC Lines

......!4!2

2)cosh(

cosh

1)(

42

+++=

+

=

=

 x x

ee

 x

 sRC  s sV 

 x x

out 

V out (t) V out (s)Laplace

Transform

RVIN VOUT

C

VOUTVIN

R

C

0.5

1.0

VOUT

DISTRIBUTED

LUMPED

1.0RC 2.0RC time

Step response of distributed and lumped RC networks.

A potential step is applied at VIN, and the resulting VOUT

is plotted. The time delays between commonly usedreference points in the output potential is also tabulated.

Page 11: Interconect Delay Models

8/6/2019 Interconect Delay Models

http://slidepdf.com/reader/full/interconect-delay-models 11/32

Delay of Distributed RC Lines (cont’d)

Output potential range Time elapsed

(Distributed RCNetwork)

Time elapsed

(Lumped RCNetwork)

0 to 90% 1.0 RC  2.3 RC 

10% to 90% (rise time) 0.9 RC  2.2 RC 

0 to 63% 0.5 RC  1.0 RC 

0 to 50% (delay) 0.4 RC  0.7 RC 

0 to 10% 0.1 RC  0.1 RC 

Page 12: Interconect Delay Models

8/6/2019 Interconect Delay Models

http://slidepdf.com/reader/full/interconect-delay-models 12/32

Distributed Interconnect Models

• Distributed RC circuit model

 – L,T or Π circuits

• Distributed RCL circuit model

• Tree of transmission lines

Page 13: Interconect Delay Models

8/6/2019 Interconect Delay Models

http://slidepdf.com/reader/full/interconect-delay-models 13/32

Distributed RC Circuit Models

Page 14: Interconect Delay Models

8/6/2019 Interconect Delay Models

http://slidepdf.com/reader/full/interconect-delay-models 14/32

0 Z 

0 Z 

Distributed RLC Circuit Model

Page 15: Interconect Delay Models

8/6/2019 Interconect Delay Models

http://slidepdf.com/reader/full/interconect-delay-models 15/32

Delays of Complex Circuits under Unit Step Input

• Circuits with monotonic response

• Easy to define delay & rise/fall time

• Commonly used definitions

 – Delay T 50% = time to reach half-value, v(T 50%  ) = 0.5V dd 

 – Rise/fall time T R = 1/v’(T 50%  ) where v’(t): rate of change of v(t)

w.r.t. t  – Or rise time = time from 10% to 90% of final value

• Problem: lack of general analytical formula for T 50% &

T R !

t

1

0.5

v(t)T 50%

T  R

Page 16: Interconect Delay Models

8/6/2019 Interconect Delay Models

http://slidepdf.com/reader/full/interconect-delay-models 16/32

t

Delays of Complex Circuits under Unit StepInput (cont’d)

• Circuits with non-monotonic response

• Much more difficult to define delay & rise/fall time

Page 17: Interconect Delay Models

8/6/2019 Interconect Delay Models

http://slidepdf.com/reader/full/interconect-delay-models 17/32

)(of changeof rate:)('

(monotone)responseoutput:)(

t vt v

t v

0.5

1

T 50%

v(t)

v’(t)

medianof v’(t)

(T 50% ) v'(t)

dt t tvT  D

of mean

)('0∫ ∞

=

Elmore Delay for Monotonic Responses

• Assumptions:

 – Unit step input

 – Monotone output response

• Basic idea: use of mean of v’(t)to approximate median of v’(t)

Page 18: Interconect Delay Models

8/6/2019 Interconect Delay Models

http://slidepdf.com/reader/full/interconect-delay-models 18/32

• T 50% : median of v’(t), since

• Elmore delay T D = mean of v’(t)

def.)(by)(of valuefinalof half  

)(')('%50

%500

t v

dt t vdt t vT 

=

=∫ ∫ +∞

∫ ∞

=0

)(' tdt t vT  D

Elmore Delay for Monotonic Responses

Page 19: Interconect Delay Models

8/6/2019 Interconect Delay Models

http://slidepdf.com/reader/full/interconect-delay-models 19/32

Why Elmore Delay?

• Elmore delay is easier to compute analytically in most cases

 – Elmore’s insight [Elmore, J. App. Phy 1948]

 – Verified later on by many other researchers, e.g.

• Elmore delay for RC trees [Penfield-Rubinstein, DAC’81]

• Elmore delay for RC networks with ramp input [Chan, T-

CAS’86]• .....

• For RC trees: [Krauter-Tatuianu-Willis-Pileggi, DAC’95]

T50% ≤ TD

• Note: Elmore delay is not 50% value delay in general!

Page 20: Interconect Delay Models

8/6/2019 Interconect Delay Models

http://slidepdf.com/reader/full/interconect-delay-models 20/32

Elmore Delay for RC Trees

• Definition

 – h(t) = impulse response

 – TD = mean of h(t)

=

• Interpretation

 – H(t) = output response (step process)

 – h(t) = rate of change of H(t)

 – T50%= median of h(t)

 – Elmore delay approximates the median of h(t) bythe mean of h(t)

∫ ∞

⋅0

dtth(t)

median

of v’(t)

(T 50% )v'(t)

dt t tvT  D

of mean

)('0∫ ∞

=

h(t) = impulse response

H(t) = step response

Page 21: Interconect Delay Models

8/6/2019 Interconect Delay Models

http://slidepdf.com/reader/full/interconect-delay-models 21/32

Elmore Delay of a RC Tree

[Rubinstein-Penfield-Horowitz, T-CAD’83]

ion!contradict 0)(' 

atcapacitorthechargecurrentsallSince

resistorsviaconnects&)()(Since 

at0istonodeanyfromcurrenttheThen,

at)(achievenodeLet

0)(' s.t. Then,0)(thatAssume

0)0(

atnodeanyof voltagemin.thebe)(Let

nodeeveryat0)(responseimpulse

))()('( nodeeveryat0)('

in treenodeeveryforinmonotonicis)( 

treeRCatoappliedisinputstepawhen

1min

minmin

min1min1

1min

11minmin

1min01

0min

min

min

⇒≥

<<∃<

≥+

≥⇔

=≥⇔

t h

iii

iit ht h

t ii

t t hi

t ht t t h

h

t t h

it h

t ht ivit v

it t v

i

i

ii

i

Lemma:

Proof:

Apply impulse func. at t=0:

imin

i

current i→imin

Page 22: Interconect Delay Models

8/6/2019 Interconect Delay Models

http://slidepdf.com/reader/full/interconect-delay-models 22/32

Elmore Delay in a RC Tree (cont’d)

∫ ∫ 

∫ ∫ 

∑∑

∞→∞→

∞∞

−+⋅−=−⋅=

−⋅=⋅=

=⋅=

⋅=

⋅==−

=

=

00

00

0

i

))(1()1)((lim])()([lim 

)(|)()(' 

)()( 

)andbetweenres.path(common)capo(current t 

)inscap'allcurrent to(ondropvoltageThe)(1

)( nodeof cap.current toThe 

nodedelay toElmore 

&input tofrom 

pathcommonof resistance:

atrootedsubtree: ;nodeinput tofrompath:

dt t vT T vdt t vT T v

dt t vt t vdt t t vT 

dt 

t dvC  R R

dt 

t dvC 

 P  P k 

S  R P t v

dt 

t dvC i

C  RT 

i

k  j P  P 

 R

i si P 

ii

ii

iii D

k k kiki

k k 

k i

 P k 

ik ii

i

k ki D

k  j

 jk 

ii

i

i

i

input

i

 jS i

path resistance Rii

 R jk 

Theorem :

Proof :

Page 23: Interconect Delay Models

8/6/2019 Interconect Delay Models

http://slidepdf.com/reader/full/interconect-delay-models 23/32

Elmore Delay in a RC Tree (cont’d)• We shall show later on that

i.e. 1-v i (T) goes to 0 at a much faster rate than 1/ T when T →∞

• Let

0))(1(lim =⋅−∞→

T T viT 

 )( 

)](1[))(1(lim 

)( 

)](1[ 

)( 

)()( 

)](1[)( 

0

0

0

∑∫ 

∑ ∑∑

∫ ∑

∫ 

=∞=

−+−=∴

=∞

−−=

=

=

−=

∞→

k kii

iiT 

 D

k kii

k k 

k k kik ki

k k ki

k k kii

ii

C  R f 

dt t vT T vT 

C  R f 

t vC  RC  R

t vC  R

dxdx

 xdvC  Rt  f 

dx xvt  f 

i

(1)

vi(t)

1

0 t 

area ∫  −=t 

ii dx xvt  f 0

)](1[)(

Page 24: Interconect Delay Models

8/6/2019 Interconect Delay Models

http://slidepdf.com/reader/full/interconect-delay-models 24/32

)&(since Then,

)( 

Recall Let

2

kiiikikk  p D R

ii

k ki R

k ki D

k kk  p

 R R R RT T T 

 RC  RT 

C  RT C  RT 

ii

i

i

≥≥≤≤

=

==

∑∑

Some Definitions For Signal Bound Computation

Page 25: Interconect Delay Models

8/6/2019 Interconect Delay Models

http://slidepdf.com/reader/full/interconect-delay-models 25/32

Signal Bounds in RC Trees

• Theorem

ii

i Ri R

i Ri D

i

i

i

 p p

 Ri p

i

ii

i

 R D

T t 

T T 

 p

 R

i

 p

 D

 R p

T t 

T T 

 p

 D

 R D

 Ri

 D

i

T T t ee

t v

t T 

t T 

T T t ee

T T t t T t 

T t v

−≥⋅−

≥−

−≥⋅−

−≥≥+

−≥

−−

−−

 

)(

)(

)(

 0 1 

boundsUpper

)whentrivial-(non 0 1 )(

0 0 

boundsLower 

Page 26: Interconect Delay Models

8/6/2019 Interconect Delay Models

http://slidepdf.com/reader/full/interconect-delay-models 26/32

Proofs of Signal Bounds in RC Trees

• Lemma:

• Lemma:

monotonic)is)((Since

0 )(

)(

)()(

)](1[)](1[

 

),min( ),max(

)](1[)](1[

t v

dt 

t dvC  R R R R

dt 

t dvC  R R

dt 

t dvC  R R

t v Rt v R R R R R

 R R R R R R

t v Rt v R

 j

 j

 j

 j jiki jk ii

 j j

 j

 j jiki

 j

 j jk ii

ikik ii

 jiki jk ii

 jiki jk  jikiii

ikik ii

≥−=

−=

−−−⋅≥⋅∴

≥≥

−≥−

∑ ∑

Proof:

(2)

)](1[)](1[ t v Rt v R ikk k ki −≤− (3)

S C

Page 27: Interconect Delay Models

8/6/2019 Interconect Delay Models

http://slidepdf.com/reader/full/interconect-delay-models 27/32

Proofs of Signal Lower Bounds in RC Trees

t t vt  f t t t 

t  f t  f t vt t 

t v

et  f T 

t  f T e

T t (t t  f T 

T t (t t t 

T dt 

t df 

t  f T T 

t  f T 

dt 

t df 

t vT 

t  f T 

t vT t  f T t vT 

t vC  Rt  f T 

ii

iii

i

T t t 

i D

i DT t t 

 R

t i D p

 R

i

i D p

 R

i Di

i p

i D

i pi Di R

k k kii D

i R

i

i p

i

i

ii

i

ii

ii

i

⋅−≥==

−≤−−

≥−

−≥

−≤−−≤−

≤⋅−

≤=−≤

−≤−≤−

−=−

−−−−

)](1[)( ,0Let

)()()](1)[( 

monotonicis)(sinceAlso,

)(

)( i.e. 

)|))(ln() :tofromgIntegratin

1)(

)(

11 Thus, 

)()(

)(1

)(

 i.e. 

)](1[)()](1[ :(3)&(2)From

))(1()( :(1)From

43

34434

)(

1

2)(

121221

1212

2

1

 f i(t 4 )-f i(t 3 )

(t4-t3)[1-vi(t4)]

t3 t4

(4)

(5)

(7)

(6)

P f f Si l L B d i RC T

Page 28: Interconect Delay Models

8/6/2019 Interconect Delay Models

http://slidepdf.com/reader/full/interconect-delay-models 28/32

Proofs of Signal Lower Bounds in RC Trees

 p p

i R p

i pi

 p

i

ii

 p

ii

i

i

i

i

i

i

iii

T T 

 p

 DT 

 p

 Di

T t 

 Di p

i Di R

T t 

 Di D

iii R p

 R p

 R

 D

i

 R

 D

i

i Di Di R

eeT 

T e

T t v

eT t vT 

t  f T (t)vT 

eT t  f T 

t t t 

t  f t  f t vT T 

t t T T t t 

T t 

T t v

T t 

T t v

t t vT t  f T t vT 

−−−−

⋅−=−≥∴

≤−

++

−≤−

≤−

==

−≤−−

=+−=

+−≥∴

+≤−⇒

−−≤−≤−

)(

3

321

3

43

11)( 

)](1[ 

:)10()9()8(

)(]1[ 

(4)of half -leftFrom

)( 

(5)of half -leftinand 0Let

)()()](1)[( 

(6)inLet

1)( )(1 

)](1[)()](1[ 

(7)and(4)of half -leftFrom

3

3

3

(8)

(9)

(10)

Page 29: Interconect Delay Models

8/6/2019 Interconect Delay Models

http://slidepdf.com/reader/full/interconect-delay-models 29/32

Delay Bounds in RC Trees

[ ]

[ ]

[ ] p

 D

i

i p

 Di p R p

 R

i

 D

 p

 R

i

i p

 R

 R R D

i p

T t v

t vT 

T T T T t 

T t v

T t 

T t v

t vT 

T T T T t 

t vT T t 

i

i

i

i

ii

iii

−≥−

+−≤

−−

−≥−

+−≥

−−≥

1)(when)(1

ln

)(1

:boundsUpper

1)(henw)(1

ln

)(1

:boundsLower

iD

Page 30: Interconect Delay Models

8/6/2019 Interconect Delay Models

http://slidepdf.com/reader/full/interconect-delay-models 30/32

Computation of Elmore Delay & Delay Bounds

in RC Trees

• Let C(T k  ) be total capacitance of subtree rooted at k 

• Elmore delay 

fashion

 up-bottomainyrecursivelelinear timincomputed becanformulathreeall*

 

:boundlower

)( 

:boundupper

)( 

2∑

⋅=

⋅=

⋅=∈

k  ii

k ki R

k k k  p

 pk 

k k  D

 R

C  RT 

T C  RT 

T C  RT 

i

i

i

Page 31: Interconect Delay Models

8/6/2019 Interconect Delay Models

http://slidepdf.com/reader/full/interconect-delay-models 31/32

Comments on Elmore Delay Model

• Advantages – Simple closed-form expression

• Useful for interconnect optimization

 – Upper bound of 50% delay [Gupta et al., DAC’95, TCAD’97]

• Actual delay asymptotically approaches Elmore delay as inputsignal rise time increases

 – High fidelity [Boese et al., ICCD’93],[Cong-He, TODAES’96]

• Good solutions under Elmore delay are good solutions underactual (SPICE) delay

Page 32: Interconect Delay Models

8/6/2019 Interconect Delay Models

http://slidepdf.com/reader/full/interconect-delay-models 32/32

Comments on Elmore Delay Model

• Disadvantages

 – Low accuracy, especially poor for slope computation

 – Inherently cannot handle inductance effect• Elmore delay is first moment of impulse response

• Need higher order moments