Interacciones Proteína - Proteína

28
Interacciones Proteína - Proteína Fuertes (t = s, min) Complejos proteicos (estables) Débiles (t = s, ms) Complejo intermediario (transitorio) en una reacción enzimática

description

Interacciones Proteína - Proteína. Fuertes (t = s, min) Complejos proteicos (estables) Débiles (t = m s, ms) Complejo intermediario (transitorio) en una reacción enzimática. Interactions between functional group s. Schwikowski et al . (2000) Nature Biotec h. 18, 1257 - 1261. - PowerPoint PPT Presentation

Transcript of Interacciones Proteína - Proteína

Page 1: Interacciones Proteína - Proteína

InteraccionesProteína - Proteína

Fuertes (t = s, min) Complejos proteicos (estables)

Débiles (t = s, ms)Complejo intermediario (transitorio)en una reacción enzimática

Page 2: Interacciones Proteína - Proteína

Schwikowski et al.(2000) Nature Biotech. 18, 1257 - 1261

Interactions between functional groups

Page 3: Interacciones Proteína - Proteína

Interactions between proteins of different compartments

Schwikowski et al.(2000) Nature Biotech. 18, 1257 - 1261

Page 4: Interacciones Proteína - Proteína

Tong et al. (2002) Science 295, 321-324

Yeast SH3 domains — which recognize proline-rich peptides — generated a network containing 394 interactions among 206 proteins

Page 5: Interacciones Proteína - Proteína

An interaction map of the yeast proteome assembled from published interactions

Schwikowski et al.(2000) Nature Biotech. 18, 1257 - 1261

Page 6: Interacciones Proteína - Proteína

..\..\LINKS\Ho Nature(2002).pdf

Ho et al. (2002) Nature 415, 180

Protein network in Saccharomyces cerevisiae

Page 7: Interacciones Proteína - Proteína

Kumar & Snyder (2002) Nature 415, 123-124Ho, Y et al. (2002) Nature 415, 180 - 183

Analysing protein interactions:Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry

Page 8: Interacciones Proteína - Proteína

T. Iiri et al. (1998) Nature 394, 35-38

How does a trimeric G protein on the inside of a cell membrane respond to activation by a transmembrane receptor?

Trimeric () G proteins relay signals from transmembrane receptors to intracellular enzymesand ion channels, thereby mediating vision, smell, taste and the actions of many hormones andneurotransmitters

Page 9: Interacciones Proteína - Proteína

T. Iiri et al. (1998) Nature 394, 35-38

The GTPase cycle of trimeric G proteins

The 'turn-on' step begins when the activated receptor (R*) associates with the trimer of (GDP), causing dissociation of GDP. Then GTP binds to the complex of R* with the trimer in its 'empty' state (e), and the resulting GTP-induced conformational change causes GTP to dissociate from R* and from . After the 'turn-off' step (hydrolysis of bound GTP to GDP and inorganic phosphate, Pi), GDP reassociates with .

Page 10: Interacciones Proteína - Proteína

T. Iiri et al. (1998) Nature 394, 35-38

Contacts between G (left) and G-GDP (right)

Red dashed lines indicate contacts that appear to be required for receptor activation but not for G–G association; green dashed lines indicate contacts that are important for both functions

Page 11: Interacciones Proteína - Proteína

T. Iiri et al. (1998) Nature 394, 35-38

How does a trimeric G protein on the inside of a cell membrane respond to activation by a transmembrane receptor?

Biomedical relevance:G-protein mutations in patients with hypertension and inherited endocrine disorders enhance or block signals from stimulated receptors.

Page 12: Interacciones Proteína - Proteína

A. Chiarugi & M.A. Moskowitz (2002) Science 297, 200

PARP-1: A Perpetrator of Apoptotic Cell Death

Apoptotic cell death is triggered by activation of the nuclear enzyme poly(ADP-ribose) polymerase-1 (PARP-1).

Through unknown mechanisms, PAR formation and NAD+ depletion may trigger a cascade of events.

Page 13: Interacciones Proteína - Proteína

PS II

h

e

e*

cyt b6-fcomplex

OUT

IN

H2O

QPS I

h

e

e*

Pc (Cu )+

cyt c6 (Fe )2+

Fd

Navarro et al. (1997) J. Biol. Inorg. Chem. 2, 11-22

Page 14: Interacciones Proteína - Proteína

Cyt c6Pc

PS I

b6f

PSI-driven Electron Transfer

Fdlight

Page 15: Interacciones Proteína - Proteína

CytPc

From Cytochrome c6 to Plastocyanin

II IIII

II IIII

Navarro et al. (1997) J. Biol. Inorg. Chem. 2, 11-22

Page 16: Interacciones Proteína - Proteína

PROKARYOTES

Time (109 years ago)4 3 2 1 0

Atm

osph

eric

Lev

el(f

ract

ions

of 2

1% v

/v)

0.001

0.01

0.1

1

(Adapted from Peschek, 1996)

Oxygen content of the earth's atmosphere

EUKARYOTESPhotosyntheticO2 production

Pasteur Point(O2 respiration)

Berkner-Marshall Point(Terrestrial life)

Page 17: Interacciones Proteína - Proteína

Cu

FeS2-

SO42-

Time (109 years ago)4 3 2 1 0

Ava

ilabi

lity

(Adapted from Williams & Silva, 1997)

Page 18: Interacciones Proteína - Proteína

Plastocyanin

Cu ligands:His-35 Cys-84 His-87 Met-92

Page 19: Interacciones Proteína - Proteína

Heme ligands:His-19 Met-61

Cytochrome c6

Page 20: Interacciones Proteína - Proteína

___________________________________________________

Organism Protein pI___________________________________________________

Spinach Plastocyanin 4.2

Monoraphidium Plastocyanin 3.7 Cytochrome c6

3.6

Anabaena Plastocyanin 9.0 Cytochrome c6

9.0

Synechocystis Plastocyanin 5.5 Cytochrome c6 5.6

____________________________________________________

Isoelectric point of cytochrome c6 and plastocyaninisolated from different organisms

Page 21: Interacciones Proteína - Proteína

Cytochrome c6

Plastocyanin

De la Rosa et al. (2002) Bioelectrochemistry 55, 41-45

Page 22: Interacciones Proteína - Proteína

Photosyntheticorganisms growingunder controlledconditions

Page 23: Interacciones Proteína - Proteína
Page 24: Interacciones Proteína - Proteína

A

= 2

x 10

-3

Spinach PC

Monoraphidium PC

Monoraphidium Cyt c6

Anabaena PC

Synechocystis PC

200 s

200 s

200 s

7 ms

500 s

A =

2 x

10-3

Page 25: Interacciones Proteína - Proteína

Routes

c: 1 2 3 3' 4hb: 1 2 2' 3' 4ha: 1 1' 2' 3' 4h

Protred + PSIred1

[Protred ... PSIred]*KR

3

Protox + PSIred

ket

4

[Protred ... PSIox]*

h

3'Protred + PSIox [Protred ... PSIox]

h h

K'RK'A

1' 2'

[Protred ... PSIred]KA

2

De la Rosa et al. (2002) Bioelectrochemistry 55, 41-45

Page 26: Interacciones Proteína - Proteína
Page 27: Interacciones Proteína - Proteína

KINETIC TYPES FOR THE REACTION MECHANISM

Type I

Protred + PSIox Protox + PSIred

Type II

Protred + PSIox [Protred ... PSIox] Protox + PSIred

Type III

Protred + PSIox [Protred ... PSIox] [Protred ... PSIox]* Protox + PSIred

KINETIC TYPES FOR THE REACTION MECHANISM

Type I

Protred + PSIox Protox + PSIred

Type II

Protred + PSIox [Protred ... PSIox] Protox + PSIred

Type III

Protred + PSIox [Protred ... PSIox] [Protred ... PSIox]* Protox + PSIred

KINETIC TYPES FOR THE REACTION MECHANISM

Type I

Protred + PSIox Protox + PSIred

Type II

Protred + PSIox [Protred ... PSIox] Protox + PSIred

Type III

Protred + PSIox [Protred ... PSIox] [Protred ... PSIox]* Protox + PSIred

KINETIC TYPES FOR THE REACTION MECHANISM

Type I

Protred + PSIox Protox + PSIred

Type II

Protred + PSIox [Protred ... PSIox] Protox + PSIred

Type III

Protred + PSIox [Protred ... PSIox] [Protred ... PSIox]* Protox + PSIred

Navarro et al. (1997) J. Biol. Inorg. Chem. 2, 11-22

Page 28: Interacciones Proteína - Proteína

Flexibilidad estructural de la plastocianina