Integration of excimer laser micromachining in a ... 2016_CSL_pgailly_v2.pdfIntegration of excimer...

20
2016/06/29 JNPLI 2016 1 Integration of excimer laser micromachining in a biomedical sensor microfabrication process P. Gailly, J. Hastanin, C. Lenaerts, and K. FleuryFrenette Centre Spatial de Liège Université de Liège Surface Micro & Nano Engineering Division, Space sciences, Technologies and Astrophysics Research (STAR) Angleur, Belgium

Transcript of Integration of excimer laser micromachining in a ... 2016_CSL_pgailly_v2.pdfIntegration of excimer...

Page 1: Integration of excimer laser micromachining in a ... 2016_CSL_pgailly_v2.pdfIntegration of excimer laser micromachining in a biomedical sensor microfabrication process P. Gailly, J.

2016/06/29 JNPLI 2016 1

Integration of excimer laser micromachining in a biomedical sensor 

microfabrication process

P. Gailly, J. Hastanin, C. Lenaerts, and K. Fleury‐Frenette

Centre Spatial de Liège ‐ Université de LiègeSurface Micro & Nano Engineering Division,  Space sciences, Technologies and Astrophysics Research (STAR) Angleur, Belgium

Page 2: Integration of excimer laser micromachining in a ... 2016_CSL_pgailly_v2.pdfIntegration of excimer laser micromachining in a biomedical sensor microfabrication process P. Gailly, J.

Outline

• Introduction• Microchip layout• Measurement principle• Micromachining of capillary structures by excimerlaser

• Microfabrication of the biochip by replication• Experimental validation• Conclusions

2

Page 3: Integration of excimer laser micromachining in a ... 2016_CSL_pgailly_v2.pdfIntegration of excimer laser micromachining in a biomedical sensor microfabrication process P. Gailly, J.

Introduction

3

MID*‐based smart homecare diagnostic  network

*   MID → “Mobile Internet Devices” (PC tablets, smart‐phone, …)

Lab‐on‐chipMID

MIDLab‐on‐chip

Inexpensive compact diagnostic tool for body fluid assays (≈100€)

Page 4: Integration of excimer laser micromachining in a ... 2016_CSL_pgailly_v2.pdfIntegration of excimer laser micromachining in a biomedical sensor microfabrication process P. Gailly, J.

Biochip

Readout device

Remote user tablet

Tablet PC

4

Low‐cost homecare diagnostic toolFirst proof‐of‐concept prototype

Page 5: Integration of excimer laser micromachining in a ... 2016_CSL_pgailly_v2.pdfIntegration of excimer laser micromachining in a biomedical sensor microfabrication process P. Gailly, J.

USB port

5

Diagnostic tool layout

Biochip

Readout box

LED

CMOS

Polarizer Bandpass filter

Page 6: Integration of excimer laser micromachining in a ... 2016_CSL_pgailly_v2.pdfIntegration of excimer laser micromachining in a biomedical sensor microfabrication process P. Gailly, J.

Working principle

θ

LEDCollimator

6

Polarizer

Input prismOutput prism

Sensing area Liquid sample

PMMA Slide

1. Biochip optical readout principle

CMOS camera

MID

Sensing area structure based on SPR (Surface Plasmon Resonnance) SPR detection formatLSPR detection format

Functionalized gold layerFunctionalized gold nanoparticles

λ=780 nm

Page 7: Integration of excimer laser micromachining in a ... 2016_CSL_pgailly_v2.pdfIntegration of excimer laser micromachining in a biomedical sensor microfabrication process P. Gailly, J.

7

0

0.2

0.4

0.6

0.8

1

1.33 1.335 1.34 1.345 1.35

Output signal

2. Biochip optical readout principle

λ, [nm]

λ, [nm]

Light source spectrum

SPR spectrum of the sample

Resulting spectrum, I(λ)

Refractive index of the sample

2

1

)(

dI

Water

Change of the refractive index of the liquid or analyte surface binding events shift the resonance dip in the reflectivity

spectrum

SPR = Surface Plasmon Resonnance

Page 8: Integration of excimer laser micromachining in a ... 2016_CSL_pgailly_v2.pdfIntegration of excimer laser micromachining in a biomedical sensor microfabrication process P. Gailly, J.

Capillary pump

Sensing areaSensor inlet

Input prism

Output prism

Biochip design 

8

µ-pillars structure machined by excimer laser

Page 9: Integration of excimer laser micromachining in a ... 2016_CSL_pgailly_v2.pdfIntegration of excimer laser micromachining in a biomedical sensor microfabrication process P. Gailly, J.

9

Microfluidic capillary structure

25 µm

50 µm

25 µm

Machined by excimer laser

Measured by interferometricprofilometry

Page 10: Integration of excimer laser micromachining in a ... 2016_CSL_pgailly_v2.pdfIntegration of excimer laser micromachining in a biomedical sensor microfabrication process P. Gailly, J.

10

Metal-on-quartz masks

Implementation of the microfluidic capillary structure.

1. Direct laser writing of the mask (DWL150 from Heildelberg)

2. Excimer laser micromachining systemMask projection technique

(Optec, B)

Page 11: Integration of excimer laser micromachining in a ... 2016_CSL_pgailly_v2.pdfIntegration of excimer laser micromachining in a biomedical sensor microfabrication process P. Gailly, J.

11

Implementation of the microfluidic capillary structure.

Excimer laser micromachining system used at CSL:mask projection technique

Mask Part

Demagnification : X10 or X16 (ratio between size on mask and on part)Wavelength : 193 nm (ArF), pulse duration : 5 nsLaser energy : 16 mJ/pulse, repetition rate: 1 ‐ 300 HzOptical resolution : 1.5 µmBeam size: 2.5x2.5 mm2 on maskMasks: structured metallic sheet or metal on quartzMaterials: polymer, ceramic, glass, … 

Page 12: Integration of excimer laser micromachining in a ... 2016_CSL_pgailly_v2.pdfIntegration of excimer laser micromachining in a biomedical sensor microfabrication process P. Gailly, J.

12

Implementation of the microfluidic capillary structure.

Excimer laser machining

STEP & REPEAT PROCESS FROM BASIC PATTERN ON MASK

(~ 0.25 s for 1 pattern with 25 µm depth)

ɸ pillars = 25 µm

Metal-on-quartz masks

Pillars machined in PMMA

200 µm

Page 13: Integration of excimer laser micromachining in a ... 2016_CSL_pgailly_v2.pdfIntegration of excimer laser micromachining in a biomedical sensor microfabrication process P. Gailly, J.

13

Implementation of the microfluidic capillary structure.

Excimer laser machining

STEP & REPEAT PROCESS FROM BASIC PATTERN ON MASK

ɸ pillars = 50 µm

10 µm square pillars

Page 14: Integration of excimer laser micromachining in a ... 2016_CSL_pgailly_v2.pdfIntegration of excimer laser micromachining in a biomedical sensor microfabrication process P. Gailly, J.

14

Metallic insert

PMMA embossed chip

Original chip in PMMA

Chrome-on-quartz masks

Implementation of the microfluidic capillary structure.

1. Direct laser writing of the mask for µ-pillars

2. Excimer laser machining

3. ReplicationMaster generation

4.Hot embossing

5. Metrology

Page 15: Integration of excimer laser micromachining in a ... 2016_CSL_pgailly_v2.pdfIntegration of excimer laser micromachining in a biomedical sensor microfabrication process P. Gailly, J.

Transfer of the commercial prisms into an imprint

Step1: Nickel‐mould template fabrication

15

Implementation of the biochip optical part

Nickel‐mould template

Output prism Input prism

Silicone elastomer

Metal layer vacuum deposition

Electroplating  of Nickel

NiNi

Page 16: Integration of excimer laser micromachining in a ... 2016_CSL_pgailly_v2.pdfIntegration of excimer laser micromachining in a biomedical sensor microfabrication process P. Gailly, J.

Step 2: Replication of the prism coupler  by hot embossing 

16

≈24mm

Step 3: Sensing area coating (Gold, 50nm) and functionalization

PMMA substrate

Nickel-template

Step 4: Association of the biochip with a 0.5‐mm thick PMMA cover slab

Page 17: Integration of excimer laser micromachining in a ... 2016_CSL_pgailly_v2.pdfIntegration of excimer laser micromachining in a biomedical sensor microfabrication process P. Gailly, J.

20 40 60 80 100 120 140

1

Time, [s]

Sign

al, [

RU

]

Experimental validation: SPR sensogram

17

Water, n=1.330

Sample injection

Water-glycol solution (WGS), n=1.340

Refractive index resolution, δn ≈ 1.0·10-4 [RIU]

Page 18: Integration of excimer laser micromachining in a ... 2016_CSL_pgailly_v2.pdfIntegration of excimer laser micromachining in a biomedical sensor microfabrication process P. Gailly, J.

18

Concept goals and key features 

Conclusions

Biochip concept  Integrated architecture

Low cost (fabrication by replication)

Easy use Optical coupling without matching liquidOptical coupling without matching liquid

Passive capillary pumping (without an external pump)Passive capillary pumping (without an external pump)

Laser micro‐machining  of capillary structures

Excimer mask projection technique is efficient for 10 – 50 µm pillars structures Flexible technique (different design can be quickly performed and tested) , but 

requires a dedicated mask

Outlook for CSL

Design and prototypage of microchip integrating optics, SPR and microfluidics 

Page 19: Integration of excimer laser micromachining in a ... 2016_CSL_pgailly_v2.pdfIntegration of excimer laser micromachining in a biomedical sensor microfabrication process P. Gailly, J.

2016/06/29 JNPLI 2016 19

Centre Spatial de LiègeSurface Micro & Nano Engineering

Liege Science Park,Avenue du Pré-Aily

B-4031 – ANGLEUR (Belgium)e-mail:

[email protected]@ulg.ac.be (head of lab) http://www.csl.ulg.ac.be/micro

http://www.microbiomed.ulg.ac.be

ACKNOWLEDGEMENTS

"MICROBIOMED" project from the INTERREG IV-A Euregio Meuse-Rhine program with the financial support of the European Union and the Walloon region

Page 20: Integration of excimer laser micromachining in a ... 2016_CSL_pgailly_v2.pdfIntegration of excimer laser micromachining in a biomedical sensor microfabrication process P. Gailly, J.

THANK YOU FOR YOUR ATTENTION