Integrated Thermoelectric Photovoltaic Renewable Energy System Luocheng Wang, Jonathan Weiss, Antony...

23
Integrated Thermoelectric Photovoltaic Renewable Energy System Luocheng Wang, Jonathan Weiss, Antony Xenophontos Advanced Power Electronics and Electric Drives Lab (APEDL) ECE Department and Center for Clean Energy Engineering Team 189 Adviser: Prof. Ali Bazzi Senior Design Proposal Presentation 10/16/2013

Transcript of Integrated Thermoelectric Photovoltaic Renewable Energy System Luocheng Wang, Jonathan Weiss, Antony...

Integrated Thermoelectric Photovoltaic Renewable Energy System

Luocheng Wang, Jonathan Weiss, Antony Xenophontos

Advanced Power Electronics and Electric Drives Lab (APEDL)

ECE Department and Center for Clean Energy Engineering

Team 189

Adviser: Prof. Ali Bazzi

Senior Design Proposal Presentation

10/16/2013

Outline

• Project Overview & Statement of Need• Applications & System Description• Overview of Photovoltaics & Thermoelectrics• Physical Configurations & Limitations• Execution Plan & Service Learning• Questions

Project Overview

Currently, a major concern with sustainable energy sources is their low efficiencies Photovoltaic Solar Panel n ~ 15-20% Thermoelectric Generator n ~ 5-10%

Solar and thermal energy sources are usually available simultaneously.

The goal is to develop a more efficient system by harvesting both of these energy sources.

Statement of Need

The main objective of our project is to analyze, model and evaluate a hybrid PV & TEG system.

We plan on doing this by: Testing and comparing TEGs and solar panels individually,

then as various configurations Series Parallel Individual

Develop mathematical models for each configuration Finally, determine and build the most efficient integrated

system

Outline

• Project Overview & Statement of Need• Applications & System Description• Overview of Photovoltaics & Thermoelectrics• Physical Configurations & Limitations• Execution Plan & Service Learning• Questions

Applications

Vehicles Solar cells on roof TEGs under the hood/near exhaust

House Solar Panels on roof Indoor/Outdoor temperature difference

Naval Vessels A lot of space for Photovoltaic arrays as auxiliary power supply TEGs on hull for exterior/interior temperature difference

System Description

Outline

• Project Overview & Statement of Need• Applications & System Description• Overview of Photovoltaics & Thermoelectric• Physical Configurations & Limitations• Execution Plan & Service Learning• Questions

Photovoltaics

Solar cells convert solar energy to electrical energy using the photoelectric effect.

Sh

SAKT

IRVq

OL R

IRVeIII

S

)1()(

UCONN APDL Lab

Photovoltaics – Cont.

IV curve (black) and Power Voltage curve (green) for photovoltaics

from Solartech Power Inc. SPM030P Specification.

The power curve from the solar cell has a maximum point at which the cell is most efficient.

Maximum Power Point Tracking (MPPT) is the method to detect this point.

Thermoelectrics

TEGs draw energy from the heat difference between the two plates, using the Seebeck effect.

TGV

IGrGVV

“Thermoelectric Develoments for Vehicular Applications” – John W. Fairbanks

xenophontos, antony

Thermoelectrics – Cont.

IV curve (black) and Power Voltage curve (blue) for TEG from Solidate Power Generator TEG1-12611-6.0 Specification.

Thermoelectric modelling also includes a maximum power point

MPPT is much easier for TEGs based on the shape of the power curve.

Outline

• Project Overview & Statement of Need• Applications & System Description• Overview of Photovoltaics & Thermoelectric• Physical Configurations & Limitations• Execution Plan & Service Learning• Question

System Configuration

• We will have to determine a way to mount the TEGs onto the Solar Panels to take advantage of the excess heat.

• Integrated configuration-• TEG on back of solar panel• TEG under partial shading• TEG under focused light

System ConfigurationTEGs on a Solar Panel

Due to solar panels low efficiency, a lot of energy is wasted as either reflected light or heat.

Placing TEGs on the back of the solar panel can take advantage of this waste heat, but the panel temperature rise is very limited (~3 oC)

Possible solutions: Use heat absorbent material between the solar cells to

increase power from the TEGs Set requirements for new TEG designs Have separate heat and light sources

System ConfigurationHot Spots

Solar Panels are solar cells in series, so they all share current under normal conditions.

An area of shading over a solar panel results in current dropping in the shading area.

This causes voltage to rise in the unshaded area.

Voltage rising leads to reverse bias in the same area, known as a ‘Hot Spot’.

System ConfigurationFocusing Sunlight

Focusing sunlight is a way to increase incoming solar energy.

This will increase the temperature difference on the TEG.

Thus, the total power will be increased under this configuration.

System Limitations

This system is entirely reliant on environmental factors. Night, Clouds, etc. Seasonal/Topographical temperatures

The system must remain affordable Extra power afforded by the system must outweigh extra cost of

construction.

Efficiency advantage of the integrated system The configuration must lead to a higher efficiency than either of

the individual components.

Outline

• Project Overview & Statement of Need• Applications & System Description• Overview of Photovoltaics & Thermoelectric• Physical Configurations & Limitations• Execution Plan & Service Learning• Questions

Timeline

09/30/13- 10/12/13

Literature Review

Modelling

10/13/13- 10/27/13

10/27/13- 11/10/13

11/11/13- 11/25/13

11/26/13- 12/09/13

12/10/13- 12/17/13

Individual Configuration Testing

Begin Physical Configuration Design

Component Selection

Service Learning

As part of our Senior Design Project we also plan to take part in Service Learning.

We will present our completed project and related energy efficiency concepts to one or more local high schools.

This will raise awareness on the subject of sustainable energy, as well as the value of this research.

Will add a new dimension of public outreach to our project.

Outline

• Project Overview & Statement of Need• Applications & System Description• Overview of Photovoltaics & Thermoelectric• Physical Configurations & Limitations• Execution Plan & Service Learning• Questions

Questions?