Integrated HAM Modeling Integrated Heat Air & Moisture Modeling A.W.M. (Jos) van Schijndel...

download Integrated HAM Modeling Integrated Heat Air & Moisture Modeling A.W.M. (Jos) van Schijndel Technische Universiteit Eindhoven.

If you can't read please download the document

Transcript of Integrated HAM Modeling Integrated Heat Air & Moisture Modeling A.W.M. (Jos) van Schijndel...

  • Slide 1

Integrated HAM Modeling Integrated Heat Air & Moisture Modeling A.W.M. (Jos) van Schijndel Technische Universiteit Eindhoven Slide 2 Integrated HAM Modeling Background Building Physics and Systems Thermal Comfort Durability Energy Preservation Building Interior Economics Slide 3 Integrated HAM Modeling Example 1 : Thermal Comfort, convector PDE : Navier-Stokes + Buoyancy Slide 4 Integrated HAM Modeling Example 1 : Thermal Comfort, convector PDE : Navier-Stokes + Buoyancy Slide 5 Integrated HAM Modeling Durability of constructions Heat, Air & Moisture (HAM) transport Slide 6 Integrated HAM Modeling PROJECT Slide 7 Integrated HAM Modeling Example 2 Durability : 2D Moisture transport PDE : Coupled Heat & Moisture Slide 8 Integrated HAM Modeling Example 3 Durability : wind and rain around a building PDE : Navier-Stokes + k-eps + trajectories Slide 9 Integrated HAM Modeling Example 4 Durability: 3D Thermal construction PDE : Navier-Stokes + Buoyancy Slide 10 Integrated HAM Modeling Multi scale coupling Whole Building (scale 10 m) Global building model [Abocad] Detail (scale 0.01 m) Local model Coupling? Coupled [Abocad] Slide 11 Integrated HAM Modeling Problem Coupling External Multiple software programs BPS Research of Hensen et al. Internal Single software: MatLab BPS Research of Schijndel et al. Slide 12 Integrated HAM Modeling Slide 13 simulation environment: SimuLink Coupling of models Slide 14 Integrated HAM Modeling Slide 15 HAMLab, whole building (global) New Hybrid modeling approach Both discrete and continuous Discrete: climate related Continuous: indoor air related Accurate results for both time scales (hour & seconds) Efficient calculation time Slide 16 Integrated HAM Modeling HAMLab, whole building, example Annex 41 validation study Slide 17 Integrated HAM Modeling Slide 18 SimuLink using S-functions, Example (Heat Pump Model) 1/2 Slide 19 Integrated HAM Modeling function sys=mdlDerivatives( t, x, u) Tvm=(u(1)+x(1))/2; Tcm=(u(3)+x(2))/2; COP=u(6)*(273.15+Tcm)/(Tcm-Tvm);.. xdot(1)=(1/Cv)*(u(2)*cv*(u(1)-x(1))-(COP-1)*u(5)); xdot(2)=(1/Cc)*(u(4)*cc*(u(3)-x(2))+COP*u(5));.. %t = time %u(1)=Tvin %u(2)=Fvin %u(3)=Tcin %u(4)=Fcin %u(5)=Ehp %u(6)=k [-] % %x(1)=Tvout %x(2)=Tcout SimuLink using S-functions, Example (Heat Pump Model) 2/2 Slide 20 Integrated HAM Modeling Case study: energy roof system Introduction Slide 21 Integrated HAM Modeling Case study: energy roof system Validation Heat Pump Model Slide 22 Integrated HAM Modeling Case study: energy roof system Validation Energy Roof Model Slide 23 Integrated HAM Modeling Case study: energy roof system Validation TES Slide 24 Integrated HAM Modeling Case study: energy roof system Complete including Controllers 1/3 Slide 25 Integrated HAM Modeling Case study: energy roof system Complete including Controllers 2/3 Slide 26 Integrated HAM Modeling Case study: energy roof system Complete including Controllers 3/3 Slide 27 Integrated HAM Modeling Slide 28 HAMLab, HVAC & primary systems, example HVAC & Indoor air simulation of museum GOAL: preservation of the original paper fragments (Note: nearly 1 million visitors per year) Slide 29 Integrated HAM Modeling HAMLab, HVAC & primary systems, example HVAC & Indoor air simulation of museum 100% of time out of limits! Slide 30 Integrated HAM Modeling HAMLab, HVAC & primary systems, example HVAC & Indoor air simulation of museum Slide 31 Integrated HAM Modeling HAMLab, HVAC & primary systems, example HVAC & Indoor air simulation of museum Slide 32 Integrated HAM Modeling HAMLab, HVAC & primary systems, example HVAC & Indoor air simulation of museum OK ! Slide 33 Integrated HAM Modeling Slide 34 Airflow modeling, geometry and boundaries The boundary conditions are: At the left, right, top and bottom walls: u=0, v=0, T=0. At the inlet: u=1, v=0, T=1. At the outlet : Neuman conditions for u,v and T Slide 35 Integrated HAM Modeling PDEs and FemLab model Slide 36 Integrated HAM Modeling Air temperature with low inlet velocity Re =50, Gr =0 Slide 37 Integrated HAM Modeling Air temperature with high inlet velocity Re =1000, Gr =0 Slide 38 Integrated HAM Modeling Air temperature with high inlet velocity & buoyancy Re =1000, Gr =2.5e7 Slide 39 Integrated HAM Modeling Validated resultSimulation Slide 40 Integrated HAM Modeling Slide 41 Implementation in S-Function, target Slide 42 Integrated HAM Modeling Implementation in S-Function Slide 43 Integrated HAM Modeling Implementation in S-Function Slide 44 Integrated HAM Modeling Slide 45 Schade: sleeplade Slide 46 Integrated HAM Modeling Schade: inwendige constructie Slide 47 Integrated HAM Modeling Schade: scheuren pedaallade Slide 48 Integrated HAM Modeling Complete Simulink model Slide 49 Integrated HAM Modeling Indoor climate SimuLink model Slide 50 Integrated HAM Modeling Indoor climate model, validation Slide 51 Integrated HAM Modeling Moisture transport SimuLink model Slide 52 Integrated HAM Modeling Moisture transport model, specifications Slide 53 Integrated HAM Modeling NMR vochtgehalte metingen Slide 54 Integrated HAM Modeling Houtvochtgehalte m.b.v. NMR Slide 55 Integrated HAM Modeling Drogen van cilinder hout Slide 56 Integrated HAM Modeling Moisture transport model, validation Slide 57 Integrated HAM Modeling Controller SimuLink model Slide 58 Integrated HAM Modeling Temperature, RH, w at surface Slide 59 Integrated HAM Modeling Drying rate during 1 day Slide 60 Integrated HAM Modeling Peak drying rate during 1 day Slide 61 Integrated HAM Modeling Limitation of air changing rate, model Slide 62 Integrated HAM Modeling model specifications Slide 63 Integrated HAM Modeling Temperature, RH, w at surface Slide 64 Integrated HAM Modeling Peak drying rate during 1 day Slide 65 Integrated HAM Modeling Limitation of RH changing rate, model Slide 66 Integrated HAM Modeling model specifications Trate = computed temperature changing rate [ o C/sec], Tair = air temperature [ o C], tdew = dewpoint function [ o C], Rh = relative humidity [%], psat = saturation pressure function [Pa], dRh = maximum relative humidity changing rate [%/h]. Slide 67 Integrated HAM Modeling Temperature, RH, w at surface Slide 68 Integrated HAM Modeling Peak drying rate during 1 day Slide 69 Integrated HAM Modeling Comparing control strategies Slide 70 Integrated HAM Modeling Comparing control strategies Slide 71 Integrated HAM Modeling Avoiding high peak drying rates Best solution No heating Worst solution Maximum heating capacity Limiting T changing rate Preferred Limiting RH changing rate Time of heating not constant More complex controller Slide 72 Integrated HAM Modeling