Integrated Community Feasibility Study · Integrated Community Energy Feasibility Study ‐ 215247...

56
Integrated Community Energy System Feasibility Study January 22, 2016 Submitted to: The Corporation of the City of Burlington 426 Brant Street, City Hall Burlington, ON, L7R 3Z6 Submitted by: Information contained herein is confidential and may not be released to any third party.

Transcript of Integrated Community Feasibility Study · Integrated Community Energy Feasibility Study ‐ 215247...

Page 1: Integrated Community Feasibility Study · Integrated Community Energy Feasibility Study ‐ 215247 In general, initial investments in DES are in the $15 to $20 million dollar range

 

 

Integrated Community Energy System 

Feasibility Study 

January 22, 2016 

Submitted to: 

 

The Corporation of the City of Burlington 

426 Brant Street, City Hall 

Burlington, ON, L7R 3Z6 

 

Submitted by: 

 

 

 

Information contained herein is confidential and may not be released to any third party. 

   

Page 2: Integrated Community Feasibility Study · Integrated Community Energy Feasibility Study ‐ 215247 In general, initial investments in DES are in the $15 to $20 million dollar range

 

 

 

 

Disclaimer 

This report has been prepared by FVB Energy Inc. The information and data contained herein represent FVB’s best professional 

judgment in light of the knowledge and information available at the time of preparation. FVB denies any liability whatsoever to 

other parties, who may obtain access to this report for any injury, loss or damage suffered by such parties arising from their use 

of, or reliance upon, this report or any of its contents without the express written consent of FVB Energy Inc. 

The cost estimates and any estimates of rates of productivity provided as part of the study are subject to change and are 

contingent upon factors over which FVB Energy Inc. have no control. FVB Energy Inc. does not guarantee the accuracy of such 

estimates and cannot be held liable for any differences between such estimate and ultimate results. 

 

©2016 The Corporation of the City of Burlington.  All Rights Reserved. 

The preparation of this feasibility study was carried out with assistance from the Green Municipal Fund, a Fund financed by the 

Government of Canada and administered by the Federation of Canadian Municipalities.  Notwithstanding this support, the 

views expressed are the personal views of the authors, and the Federation of Canadian Municipalities and the Government of 

Canada accept no responsibility for them. 

 

   

Page 3: Integrated Community Feasibility Study · Integrated Community Energy Feasibility Study ‐ 215247 In general, initial investments in DES are in the $15 to $20 million dollar range

 

Table of Contents 

 

Contents1.  Executive Summary ............................................................................................................................... 1 

2.  Report Glossary ..................................................................................................................................... 3 

3.  Introduction .......................................................................................................................................... 4 

3.1.  District Energy in Ontario .............................................................................................................. 4 

3.2.  Burlington DES Opportunity .......................................................................................................... 6 

3.3.  FVB Scope of Work ........................................................................................................................ 8 

3.4.  City of Burlington Documents ....................................................................................................... 9 

4.  Business As Usual Case ....................................................................................................................... 11 

4.1.  Description .................................................................................................................................. 11 

5.  District Energy Case ............................................................................................................................ 13 

5.1.  Description .................................................................................................................................. 13 

5.2.  Benefits of District Energy ........................................................................................................... 13 

5.3.  Main Components of a DES ........................................................................................................ 14 

5.3.1.  Energy Transfer Station ....................................................................................................... 14 

5.3.2.  Distribution Piping System .................................................................................................. 15 

5.3.3.  Energy Centre ...................................................................................................................... 15 

5.4.  Technology Enhancements of District Energy ............................................................................ 16 

5.4.1.  Combined Heat and Power (CHP) ....................................................................................... 17 

5.4.2.  Chilled Water Thermal Storage ........................................................................................... 18 

5.4.3.  Hot Water Thermal Storage ................................................................................................ 19 

5.4.4.  Renewable Energy Inputs ................................................................................................... 19 

5.4.5.  Geo‐exchange ..................................................................................................................... 20 

5.5.  Benchmarking Performance ....................................................................................................... 21 

5.5.1.  Markham District Energy .................................................................................................... 22 

5.5.2.  Hamilton Community Energy .............................................................................................. 24 

6.  Characteristics of a District Energy Node............................................................................................ 25 

6.1.  Screening Matrix Criteria ............................................................................................................ 25 

Page 4: Integrated Community Feasibility Study · Integrated Community Energy Feasibility Study ‐ 215247 In general, initial investments in DES are in the $15 to $20 million dollar range

 

6.1.1.  Sizing and Intensity of DES Node ........................................................................................ 25 

6.1.2.  Available Space for Central Energy Centre ......................................................................... 26 

6.1.3.  Presence of an Anchor Client .............................................................................................. 27 

6.1.4.  Forecast Greenfield Development ...................................................................................... 27 

6.1.5.  Redevelopment within Existing Nodes ............................................................................... 28 

6.1.6.  Presence of Barriers of Thermal Distribution ..................................................................... 28 

6.1.7.  Burlington Hydro Grid Interconnection Capacity ............................................................... 29 

6.1.8.  Timeframe to Implement .................................................................................................... 29 

6.1.9.  Ability of Burlington to Influence DES Development .......................................................... 29 

6.1.10.  Ability to Showcase for Burlington ..................................................................................... 30 

7.  Candidate Nodes in Burlington ........................................................................................................... 31 

7.1.  Downtown Growth Area ............................................................................................................. 31 

7.1.1.  Burlington City Hall ............................................................................................................. 32 

7.1.2.  Private Multi Residential Sites ............................................................................................ 33 

7.1.3.  Joseph Brant Hospital ......................................................................................................... 33 

7.1.4.  Skyway WWTP..................................................................................................................... 34 

7.1.5.  Canada Centre for Inland Water ......................................................................................... 34 

7.2.  Mobility Hubs .............................................................................................................................. 34 

7.2.1.  Appleby Mobility Hub ......................................................................................................... 35 

7.2.2.  Burlington Mobility Hub ...................................................................................................... 36 

7.2.3.  Aldershot Mobility Hub ....................................................................................................... 36 

7.3.  Economic Prosperity Corridor ..................................................................................................... 37 

7.3.1.  McMaster DeGroote School of Business ............................................................................ 37 

7.3.2.  City Owned Athletic and Recreation Centres ..................................................................... 38 

7.4.  Other Opportunities .................................................................................................................... 38 

7.4.1.  Uptown ............................................................................................................................... 38 

8.  Review of Planning Policies to Encourage District Energy .................................................................. 39 

8.1.  City of Toronto ............................................................................................................................ 39 

8.2.  City of Markham ......................................................................................................................... 39 

8.3.  Lonsdale Energy Corporation ...................................................................................................... 40 

8.4.  Regent Park Energy ..................................................................................................................... 40 

8.5.  South East False Creek ................................................................................................................ 40 

Page 5: Integrated Community Feasibility Study · Integrated Community Energy Feasibility Study ‐ 215247 In general, initial investments in DES are in the $15 to $20 million dollar range

 

8.6.  City of Victoria ............................................................................................................................. 40 

8.7.  Other Jurisdictions ...................................................................................................................... 40 

9.  Recommendations and Next Steps ..................................................................................................... 41 

9.1.  Recommended Nodes ................................................................................................................. 41 

9.2.  Next Steps ................................................................................................................................... 42 

9.2.1.  Appointment of DES Project Champion .............................................................................. 42 

9.2.2.  Public Information to Attract Potential Customers ............................................................ 42 

9.2.3.  Proceed to Business Case Studies ....................................................................................... 42 

9.3.  Review of Ownership Models ..................................................................................................... 44 

9.4.  Review Funding Sources ............................................................................................................. 44 

Appendix A.  Map of Downtown Burlington ............................................................................................ 46 

Appendix B.  Results of Screening Matrix ................................................................................................ 48 

 

   

Page 6: Integrated Community Feasibility Study · Integrated Community Energy Feasibility Study ‐ 215247 In general, initial investments in DES are in the $15 to $20 million dollar range

 

 

 

Page 7: Integrated Community Feasibility Study · Integrated Community Energy Feasibility Study ‐ 215247 In general, initial investments in DES are in the $15 to $20 million dollar range

P a g e  | 1 Integrated Community Energy Feasibility Study ‐ 215247 

 

1. Executive Summary District Energy Systems (DES) are a community based approach to interconnect multiple thermal energy 

users (buildings) through a piping distribution network to a centralized heating and cooling source.  The 

majority of city‐centres in Canada have examples of existing district energy systems ‐ with the 

overwhelming majority developed and owned by Municipalities who have the ability to support long 

term investments and ownership. 

DES are an integral foundation to establishing an Integrated Community Energy System (ICES) to “future 

proof” Burlington.  The aggregated thermal network achieves the necessary economy of scale for 

Burlington to implement CHP, thermal storage and renewable energy supply sources in order to achieve 

its Community Energy Plan (CEP).  DES enables implementation of more robust and efficient equipment 

with improved redundancy and maintainability. 

The City of Burlington is approaching a mature point in its development as it approaches build out to its 

urban boundary within the next 5 years.  The CEP is a 20 year plan which promotes and encourages 

lower community energy consumption.  The CEP identified District Energy and Combined Heat Power in 

the Energy Generation and Security section as key tools to enable Burlington to achieve its goals and 

targets. 

DES is slightly more expensive than conventional Business as Usual design (BAU) from a short term 

perspective ‐ but from a long term perspective, the lifecycle cost is greatly reduced.  This explains why 

developers tend to favour BAU and Municipalities (who own and operate the facilities) are more 

frequently implementing DES. 

Implementation of DES also enables future energy technology to be implemented at the Energy Centre 

(where the economy of scale would exist) rather than retrofitting at each individual facility (as in BAU).   

CHP utilizes a single source of fuel for electrical power generation and recovery of waste heat. This 

technology is based on embedded electrical generation at the point of concurrent consumption of 

electricity and thermal energy.  Hence, rather than a plant which is 35 to 40% efficient relative to its 

electrical efficiency potential, CHP can achieve combined efficiencies of greater than 80%.  While new 

electrical transmission and distribution is expensive to develop in urban centers, CHP enables an 

opportunity to leverage existing natural gas distribution infrastructure to mitigate electrical grid 

challenges.  It is well suited to the Ontario market with expensive electricity and cost effective natural 

gas pricing. 

By incorporating discrete CHP within the community, the resiliency is improved during weather related 

and other types of utility power interruptions.  Utilizing natural gas for the CHP also hedges the facility 

against electrical and natural gas (the recovered heat would have otherwise been produced in the 

facility natural gas boiler) price volatility.   

Page 8: Integrated Community Feasibility Study · Integrated Community Energy Feasibility Study ‐ 215247 In general, initial investments in DES are in the $15 to $20 million dollar range

P a g e  | 2 Integrated Community Energy Feasibility Study ‐ 215247 

 

In general, initial investments in DES are in the $15 to $20 million dollar range and are typically equity 

invested by the municipality or the local utility.  Subsequent expansions to the DES are then debt 

financed.  Two relevant examples for Burlington follow; 

Markham District Energy is an example of a DES which was established in a Greenfield fashion.  

This is of interest to Burlington for the development of the Mobility Hubs and efforts to include 

consideration of DES in the planning process.  Greenfield DES are often use heating and cooling 

distribution system and are well suited for Corporate Headquarter Buildings and Data Centres.   

Hamilton Community Energy is an example of a DES which was established in a retrofit fashion 

with existing buildings in the Downtown.  This is of interest to Burlington for the consideration 

of DES in nodes such as the Downtown Growth Area.  Retrofit DES typically only use heating 

distribution systems.   

Greenfield DES is dependent on establishing a client base for interconnection and some considerations 

are presented to help Burlington influence development. Retrofit DES have the advantage of a client 

base which is already in place. 

A diverse review of the City of Burlington was performed to establish integrated community energy 

resiliency and sustainability for key buildings, regions and neighborhoods.  At this point, we suggest that 

DES development may be further investigated in the following order. 

1. The Downtown Core ‐ the City Hall / Burlington Centre for the Performing Arts node features a 

high content of municipal assets, highest density, and no physical barriers to implementation.  

With the ability of the City to influence DES, a showcase installation in the core of the City will 

be well positioned to readily interconnect to existing facilities as well as forecast infill 

development. 

2. Existing electric heating multi residential buildings represents an opportunity to utilize existing 

electrically heated facilities to establish a CHP with thermal energy to be distributed to nearby 

multi residential facilities.  This offsets the high cost of electricity to heat and cool these 

buildings. 

3. It is strongly recommended that the development of the Mobility Hubs be DES ready with CHP 

in these medium density sites. 

4. The City owned Athletic and Recreation facilities also may be readily able to immediately 

establish smaller DES and enable them to be established as Emergency Centres during electrical 

outage events and enhance the resiliency of the Community. 

5. The McMaster DeGroote node in the Economic Prosperity Corridor may warrant consideration 

when the adjacent Greenfield is considering development. 

6. Identified sites which have high electrical loads to establish CHP and may be in proximity to one 

or more schools.  Schools offer an excellent opportunity to showcase the technology to the 

students so that the DES concept may be included in the curriculum and become the “default 

BAU” for the upcoming generation – and their parents. 

   

Page 9: Integrated Community Feasibility Study · Integrated Community Energy Feasibility Study ‐ 215247 In general, initial investments in DES are in the $15 to $20 million dollar range

P a g e  | 3 Integrated Community Energy Feasibility Study ‐ 215247 

 

2. Report Glossary  

Below are typical district energy acronyms which may be referenced throughout this report. 

BAU  Business as Usual 

CHP  Combined Heat & Power is the generation of both electricity and useful heat from a single source. CHP is also known as Cogeneration. 

COP  Coefficient of performance is the ratio of the rate of heat removal to the rate of energy input, in consistent units, for a complete refrigerating system or some specific portion of that system under designated operating conditions.  

DES  District Energy System 

DPS   Distribution Piping System  

EC  Energy Centre 

ETS   Energy Transfer Station  

FVB   FVB Energy Inc.  

GJ   Gigajoule, is an energy measurement unit. 

HEX  Heat Exchanger  

kWe   Kilowatt Electrical, a measure of instantaneous electrical demand. 

kWt  Kilowatt Thermal, a measure of instantaneous thermal demand. 

ICES  Integrated Community Energy System 

LDC   A Load Duration Curve (LDC) is a curve representing thermal load of a system over the number of hours per year. 

LHV   Lower Heating Value  

MWhe   Megawatt Hour Electrical, is an energy measurement unit. 

MWht   Megawatt Hour Thermal, is an energy measurement unit. 

MWt  Megawatt Thermal, a measure of instantaneous heating demand. 

O&M   Operation and Maintenance  

OAT  Outdoor Air Temperature 

TM   Trench meters; a measure of trench distance (as opposed to pipe distance). For distribution piping, pipe distance is double trench distance. 

TR  Tonnes of Refrigeration, a measure of instantaneous cooling demand. 

ΔT  Temperature Differential (delta T) 

VFD  Variable Frequency Drive 

 

Page 10: Integrated Community Feasibility Study · Integrated Community Energy Feasibility Study ‐ 215247 In general, initial investments in DES are in the $15 to $20 million dollar range

P a g e  | 4 Integrated Community Energy Feasibility Study ‐ 215247 

 

3. Introduction 

3.1. District Energy in Ontario The general concept behind district energy  is powerful yet simple. District Energy Systems (DES) are a community based approach to  interconnect multiple thermal energy users (buildings) through a piping distribution network to a centralized heating and cooling source. 

The concept of district energy is not new; history points to the Romans as the earliest users.  These piped heating systems were used to heat dwellings as well as baths.  

In Canada, the first district energy system was established  in 1880  in London, Ontario, and the second system in 1924 to serve a small section of the City of Winnipeg’s commercial core. Other Canadian cities served today by district heating systems include Toronto, Montreal, Ottawa, Markham and Vancouver to name a few. Currently, there are over 80 identified DES across Canada of various sizes, configurations and duration of service. 

In Canada, the most common application of district energy is in university, military, government and large industrial campuses. There are many  such  systems,  some of which are  larger  than most of  the utility owned systems. Therefore, the technology is mature and well developed.  

All of the recently developed district energy systems in Canada started as relatively small hot water based systems,  and have  grown  gradually over  the  years. Now  the majority of  city‐centres  in Canada have examples of existing district energy systems  ‐ with most being owned by Municipalities who have  the ability to support long term investments and ownership. 

District energy  systems are an  integral  foundation  to establishing an  Integrated Community Energy System (ICES).  They feature three main components which are described below: 

1. Energy Transfer Stations  (ETS)  ‐  include heat exchanger  interfaces between the district energy system  and  customer  building’s  heating  and  cooling  systems.  This  eliminates  the  need  for individual boilers and chiller equipment at each building. 

2. Distribution  Piping  System  (DPS)  ‐  is  the  insulated  piping network  that  transfers heating  and cooling medium from the energy source to the customers. 

3. Energy Centre(s) (EC) ‐ is the thermal energy source. They typically include: 

a. Baseload  capacity  (e.g.  cogeneration)  that  offer  key  advantages  and  utilize  a  secure, low(er) cost fuel source. 

b. Peaking boilers that typically utilize a more conventional fuel source. 

c. Standby boilers are typically identical to the peaking boilers, but are included to provide a level of redundancy and increased thermal energy reliability. 

The following figure depicts an ICES inclusive of combined heat and power, district energy, alternative renewable  fuel sources  (such as biomass) and  thermal storage  techniques.   The aggregated thermal network  achieves  the  necessary  economy  of  scale  to  “future  proof”  Burlington  to  implement technologies and renewable energy supply sources to achieve its Community Energy Plan. 

Page 11: Integrated Community Feasibility Study · Integrated Community Energy Feasibility Study ‐ 215247 In general, initial investments in DES are in the $15 to $20 million dollar range

P a g e  | 5 Integrated Community Energy Feasibility Study ‐ 215247 

 

District Energy is a mature worldwide technology which predated the current provincial “Business as 

Usual” approach which is based on;  

Utility electrical power distribution (with associated parasitic losses to cool the unused process 

heat from the remote setting of nuclear and thermal generation plants and losses through 

transmission and distribution), and 

Localized thermal equipment (heating and cooling) contained within each building. 

In Ontario, there is no policy which governs district energy ‐ unlike natural gas and electrical utilities 

which are regulated by the Ontario Energy Board.   

Relative to implementation, the following general points are noted relative to DES development in 

Ontario;  

Thermal energy may be distributed to various facilities provided that land ownership issues are 

properly addressed and existing buried utilities and services are avoided. 

Electrical energy may be displaced “behind the meter” from the provincial grid but may not be 

fed back on to the grid ‐ without a valid contract from the Independent Electricity System 

Operator (IESO). 

Recent local district energy developments generally evolved slowly in a planned manner with 

connection of thermal loads (usually as they are developed), and combined heat and power 

(cogeneration or CHP) when appropriate to the size of the development. 

Future stages of DES development may incorporate renewable energy. 

 

Figure 1 ‐ Example of an Integrated Community Energy System

Page 12: Integrated Community Feasibility Study · Integrated Community Energy Feasibility Study ‐ 215247 In general, initial investments in DES are in the $15 to $20 million dollar range

P a g e  | 6 Integrated Community Energy Feasibility Study ‐ 215247 

 

The City of Burlington faces ICES challenges which may be addressed by the implementation of DES and 

CHP; 

Recognition of increasing extreme weather events in the Province of Ontario which are being 

linked to increased fossil fuel pollutants. 

Maintaining continuity of electrical power during climatic and grid reliability events such as the 

blackout of 2003, rain storm of July 2013 and ice storm of December 2013. 

Ontario’s existing fleet of nuclear power plants is approaching 40 years of age.  Some will be 

undergoing sequential refurbishments over the next decade while others are decommissioned. 

Ontario’s fleet of coal fired power plants have been phased out and the commitment to Green 

Energy has resulted in numerous solar and wind power installations.  However the contribution 

of these developments is variable throughout the year and are dependent on siting and specific 

weather criteria. 

Increasing electrical costs are hedged by the implementation of CHP. 

3.2. Burlington DES Opportunity  The City of Burlington is approaching a mature point in its development as it approaches build out to its 

urban boundary within the next 5 years.  Its urban / rural boundary is being maintained to protect the 

rural area, including the Niagara Escarpment, a UNESCO World Heritage site, and the Greenbelt in 

accordance to the Ontario’s Places to Grow and Greenbelt Legislation.   

The City of Burlington Community Energy Plan (CEP, dated January, 2014) is a 20 year plan which 

promotes and encourages lower community energy consumption.  It takes an integrated energy system 

approach to address opportunities for innovation in how energy is sourced, generated, consumed, 

recaptured, conserved, stored and delivered.  

Burlington’s population is expected to increase from 175,000 (2011) to approximately 185,000 (2031).  

This growth is at a slower rate than in the past (from 85,000 (1971) to 175,000 (2011)1).  On this basis, 

Burlington will commence a long term process of urban intensification and infill densification which 

enables an opportunity for Burlington to implement ICES. 

Burlington’s buildings are aging – approximately 50% are 30 years of age or greater2.  This is important 

as reinvestments in facility heating and cooling infrastructure will be warranted.  Accordingly, 

Burlington is experiencing increased development in high density housing – particularly since 19903.  

These are triggers for consideration of District Energy to support ICES. 

The City of Burlington Community Energy Plan identified District Energy and Combined Heat Power in 

the Energy Generation and Security section as key tools to enable Burlington to achieve its goals and 

targets as follows; 

                                                            1 City of Burlington Community Energy Plan page 18 2City of Burlington Community Energy Plan page 21 3 City of Burlington Community Energy Plan page 21 

Page 13: Integrated Community Feasibility Study · Integrated Community Energy Feasibility Study ‐ 215247 In general, initial investments in DES are in the $15 to $20 million dollar range

P a g e  | 7 Integrated Community Energy Feasibility Study ‐ 215247 

 

Goal ‐ Increase sustainable local energy generation in Burlington and enhance supply security, in 

ways that support Burlington’s competitiveness4.  

Target ‐ Sustainable local generation (including both renewables and district energy): 12.5 MW 

by 2031, approximately 3.5% of Burlington’s peak electrical demand5.  

Objective A: Increase capacity for integrated community energy utility infrastructure. 

o Action 1‐ Improve the reliability of the electrical distribution grid through smart grid 

technologies to support community energy projects, allow greater green power 

generation interconnections and enhance economic growth through highly reliable 

power. 

o Action 2 ‐Complete a feasibility study for district energy in the downtown core. 

o Action 3 ‐ Complete a long term plan for district energy in other locations, such as the 

Aldershot Mobility Hub and the QEW Employment Corridor.  

o Action 4 – Consider feasibility of alternative technologies to support integrated 

community energy systems such as storage. 

Within the Community Energy Plan, the implications of District Energy / CHP were described as;   

Energy generation and security avoidances are based on the impact of one 5 MWe plant in the 

downtown district (coming online in 2017) and two 2.5 MWe plants located in other locations 

(potentially including a Mobility Hub and/ or the QEW Employment Corridor)6. 

Currently Burlington Hydro has implemented a smaller micro turbine CHP at its Brant Street office. 

http://www.burlingtonhydro.com/your‐bhi/news‐announcements/425‐burlington‐electricity‐services‐

launches‐micro‐turbine‐cogen‐project.html 

The balance of this report will focus on ICES using hot water distribution for the following reasons; 

With most of the development in place in Burlington, the business case should take advantage 

of an in place customer base which already features aging heating infrastructure within 

existing facilities which will require replacement or DES connection. 

Very few (<10%) District Energy Plants feature district cooling – generally unless the DES 

opportunity is a Greenfield development and/ or has very high density (such as Downtown 

Toronto) with multiple large facilities to interconnect. 

District cooling is difficult to retrofit in an existing development owing to higher cost (larger 

piping owing to smaller temperature supply / return differential) and lower performance 

benefits relative to BAU. 

While heating is used year round by buildings for space heating and domestic hot water, 

cooling is utilized for a much shorter period of approximately 4 months. 

                                                            4 City of Burlington Community Energy Plan page 65 5 City of Burlington Community Energy Plan page 65 6 City of Burlington Community Energy Plan page 11 

Page 14: Integrated Community Feasibility Study · Integrated Community Energy Feasibility Study ‐ 215247 In general, initial investments in DES are in the $15 to $20 million dollar range

P a g e  | 8 Integrated Community Energy Feasibility Study ‐ 215247 

 

District cooling will require a larger energy centre (to house the chillers and pumping 

equipment) and corresponding greater difficulties to establish a suitable site owing to limited 

remaining infill space for consideration. 

In a Canadian setting, cooling is more of a comfort than a necessity (versus heating which is 

life and facility critical to the community in winter). 

3.3. FVB Scope of Work Task 1 ‐ ICES Feasibility Study 

1. Review reports completed for the City of Burlington which relate to developing a community 

DES and are available at the time of the study. 

2. Select district energy nodes where there appears to be the best chance of developing viable DES 

according to “The Three Pillars” – business sense, energy security and environmental benefit. 

3. Conduct research and obtain data on studied and implemented integrated community energy 

systems (ICES) for up to two (2) municipalities.   

4. Work with the project team and key stakeholders to fully understand planning policies relating 

to ICES in Burlington.  

5. Determine the potential sites for an Energy Centre in the catchment areas identified.  Outline 

barriers and constraints to any technologies.  Choose potential site(s).  Through appropriate 

contact with the City, research study to understand plans for brown‐field development sites, 

applicable zoning, forecasted development density, forecasted upgrades to municipal 

infrastructure such as roadways, water, sanitary, sewer upgrades, wastewater treatment, 

waste/recycling facilities, existing electrical and natural gas supply/constraints, and City 

programs and initiatives with respect to energy efficiency.  The City may be able to give useful 

input on expected energy intensity of new buildings in brown‐field and in‐fill projects and 

planning or economic development staff may be able to provide useful input on development 

scenarios in terms of timing, mix of residential, commercial and institutional, Floor Space Index 

(FSI), expected coverage ratios and population growth.  

6. The following general information will be compiled, to the extent that it is reasonably available, 

on the selected potential nodes to develop a screening criteria/decision matrix to aid in the 

identification of suitability.  The nodes will be reviewed under the following characteristics (in 

no particular order): 

a. Greenfield versus existing development 

b. Age of development – review of existing infrastructure and assessment of remaining 

reliable service of life 

c. Population and employment projections for node 

Page 15: Integrated Community Feasibility Study · Integrated Community Energy Feasibility Study ‐ 215247 In general, initial investments in DES are in the $15 to $20 million dollar range

P a g e  | 9 Integrated Community Energy Feasibility Study ‐ 215247 

 

d. Reliability of electrical feeder from utility and security of supply assessment relative to 

users (e.g. Hospital, Community Crisis Centre, Important Municipal Buildings etc.) 

e. Number of buildings proposed for connection, approximate m² (ft²) of building 

development area studied and connected diversity of building; commercial, residential, 

institutional, industrial, hospital etc. 

f. Presence of municipal/public buildings 

7. Garner information on the existing building statistics.  Vital data will include the proximity of 

high energy users, i.e. hospitals, breweries, industry, etc., as well as density, and the location of 

public buildings and/or new development areas where connection to the DE can be mandated 

by the City.  The work will identify areas that would or may present obvious challenges to a new 

district energy development, i.e. areas divided by major highways and/or physical constraints 

(parkland, water, etc.). 

8. Investigate the applicable benefits of an ICES for the community; in terms of energy 

consumption, energy efficiency, energy stability/reliability, employment and fuel flexibility  

9. Outline next steps to implementation of DES such as funding, DES project champion, connecting 

new and existing buildings to DES and DES infrastructure development.   

10. Propose a strategy to attract existing and new buildings to connect to the proposed district 

energy system(s), through various measures which will depend on: 

a. Building owner 

b. Building type/size/age/usage 

c. Proximity to proposed energy centre(s) location 

d. Type/location of heating/cooling system installed in building 

11. Outline the process involved to develop a more detailed business case to implement an ICES 

option for Burlington based on the findings of the feasibility study.   

3.4. City of Burlington Documents The following City of Burlington documents are identified as support documents to the assessment of 

Integrated Community Energy Systems. 

Community Energy Plan: 

http://www.burlington.ca/en/live‐and‐play/community‐energy‐plan.asp 

Official Plan Studies: https://www.burlington.ca/en/services‐for‐you/Studies.asp 

Mobility Hubs: 

Page 16: Integrated Community Feasibility Study · Integrated Community Energy Feasibility Study ‐ 215247 In general, initial investments in DES are in the $15 to $20 million dollar range

P a g e  | 10 Integrated Community Energy Feasibility Study ‐ 215247 

 

Final staff report and consultant report:  

http://burlington.siretechnologies.com/sirepub/agdocs.aspx?doctype=agenda&itemid=7393&utm_sour

ce=EliteEmail&utm_campaign=May%2023%20Update%20Reminder&utm_medium=email 

https://www.burlington.ca/en/services‐for‐

you/resources/Initiative%20Projects/Official_Plan_Review/Studies/Mobility_Hubs_Opportunities_and_

Constraints_/Official_Plan_Review_‐_Mobility_Hubs_‐_Hub_Area_Slides.pdf 

Opportunity & Constraints: 

http://cms.burlington.ca/AssetFactory.aspx?did=28431 

Council Briefing Note: 

https://www.burlington.ca/en/services‐for‐

you/resources/Initiative%20Projects/Official_Plan_Review/Mobility_Hubs_Briefing.pdf 

Commercial Strategy Study: 

Briefing note: 

https://www.burlington.ca/en/services‐for‐

you/resources/Initiative%20Projects/Official_Plan_Review/Studies/Commercial_Study/Briefing_Note_o

n_Commercial_Strategy_Study_Final_July_7‐revised.pdf 

Transportation Master Plan: 

https://www.burlington.ca/en/services‐for‐you/transportation‐master‐plan.asp?_mid_=606 

Downtown Core Commitment: 

http://www.burlington.ca/en/live‐and‐

play/resources/Waterfront_and_Downtown/Core_Commitment/2013_Core_Commitment.pdf 

Burlington Innovation District: 

http://www.bedc.ca/node/1117 

   

Page 17: Integrated Community Feasibility Study · Integrated Community Energy Feasibility Study ‐ 215247 In general, initial investments in DES are in the $15 to $20 million dollar range

P a g e  | 11 Integrated Community Energy Feasibility Study ‐ 215247 

 

4. Business As Usual Case 

4.1. Description From the Business As Usual (BAU) perspective, commercial, institutional or residential buildings are 

designed to be stand‐alone with conventional building services as follows; 

Natural gas boilers for space and domestic hot water heating, and 

Electricity drawn from the Provincial Distribution Grid for; 

o lighting,  

o cooling,  

o ventilation,  

o computer, and  

o consumer appliance loads. 

There are also older facilities which continue to utilize electric heating. 

Conventional infrastructure represents the lowest installed cost for the building owner but it does not 

represent the lowest lifetime operating cost.  While each type of building has different electrical and 

thermal load profiles, the heating and chilling equipment is generally sized to the ASHRAE 99% weather 

data (which is only needed for 1% of the year). For the balance of the year, the oversized equipment 

operates at a less efficient part load.  Hence, for example, boilers with performance datasheets quoting 

80+% efficiency (at peak load) are frequently only achieving 60 to 65% seasonal efficiency over the year.  

This is termed seasonal efficiency and is reflective of significant diversity of loading through the day and 

the seasons. 

Continued BAU development will not achieve the goals of the City of Burlington Community Energy 

Plan. 

 

Source Community Energy: Planning, Development & Delivery – Strategies for Thermal Networks (International District Energy Association, 2013) 

 Figure 2: Simplified Sankey Diagram of Business as Usual Case

Page 18: Integrated Community Feasibility Study · Integrated Community Energy Feasibility Study ‐ 215247 In general, initial investments in DES are in the $15 to $20 million dollar range

P a g e  | 12 Integrated Community Energy Feasibility Study ‐ 215247 

 

With BAU designs, it is clear that environmental and continuity of energy supply concerns will not be 

solved with ever increasing population and electrical loads which will continue to strain the incoming 

electrical infrastructure within the City of Burlington.  Each building in isolation with BAU technology will 

not realize the necessary economy of scale to introduce future sustainable technology for smart thermal 

and electrical grids.   

Maintaining BAU is the natural inclination of most designers and planners – it is safe to continue along 

the developed path.  However the developed path can create a rut in the process of new thinking.  A 

holistic, sustainable view is encouraged to be added to the process where the design of the facility and 

of the community are developed in tandem.  This vision works well with district energy and combined 

heat and power which will be introduced in the following section.   

   

Page 19: Integrated Community Feasibility Study · Integrated Community Energy Feasibility Study ‐ 215247 In general, initial investments in DES are in the $15 to $20 million dollar range

P a g e  | 13 Integrated Community Energy Feasibility Study ‐ 215247 

 

5. District Energy Case 

5.1. Description Relative to BAU, the aggregated thermal grid of a DES enables economies of scale for implementation of 

more robust and efficient equipment with improved redundancy and maintainability.  It also “future 

proofs” communities by enabling CHP, thermal storage and alternative fuel source techniques. 

 

Source Community Energy: Planning, Development & Delivery – Strategies for Thermal Networks (International District Energy Association, 2013) 

 

5.2. Benefits of District Energy DES is a very mature ICES concept and is more prevalent in Europe where fossil fuel is scarce and 

resultant energy pricing has been significantly higher than North America for a very long time.   

DES is slightly more expensive than BAU from a short term perspective ‐ but from a long term 

perspective, the lifecycle cost is greatly reduced.  This explains why developers tend to favour BAU and 

Municipalities (who own and operate the facilities) are more frequently implementing DES. 

A DES offers the following benefits; 

A suitable thermal load to enable implementation of CHP within the Community. 

CHP initiatives for continuity of community energy supply in the event of a blackout.  CHP, if 

equipped with black start islanding controls, enables the facility to isolate itself from the grid 

and restart to gradually power up key electrical loads and provide heat for an extended 

duration.  Generally this is not sized for full facility operation, but enables the community to 

have a designated emergency reception centre.  Standby diesel equipment, by comparison, is 

only operated during the grid outage, lasts for the duration of the fuel storage and does not 

recover heat. 

Figure 3: Simplified Sankey Diagram of District Energy Case

Page 20: Integrated Community Feasibility Study · Integrated Community Energy Feasibility Study ‐ 215247 In general, initial investments in DES are in the $15 to $20 million dollar range

P a g e  | 14 Integrated Community Energy Feasibility Study ‐ 215247 

 

Enhanced operation and maintenance programs by more qualified staff and the ability to 

perform energy benchmarking and monitoring and targeting. 

The ability to locate in a remote setting from its customers for greater consideration of biomass, 

energy from waste or municipal digester gas renewable energy sources. 

Larger and more efficient equipment for enhanced combustion technology and reduced 

greenhouse gas emissions. 

Consideration of thermal storage. 

A higher degree of redundancy for equipment back up.  

Greater utilization of property development as occupied space rather than mechanical and 

electrical rooms in each building; 

The central energy centre can be more robust construction for superior noise reduction and 

security. 

Implementation of DES also enables future energy technology to be implemented at the Energy 

Centre (where the economy of scale would exist ‐ as shown in Figure 1) rather than retrofitting at each 

individual facility (as in BAU).  This includes staged utilization of technology enhancements as 

discussed in the following sections. 

5.3. Main Components of a DES A District Energy System consists of 3 main sub‐systems. 

5.3.1. Energy Transfer Station 

The Energy Transfer Station is the customer interconnection point where the heating is metered and its 

energy is exchanged to the isolated building heating loops.  The metering and central monitoring 

enables benchmarking of each buildings performance upon the network.  

Each building would contain at least one ETS and it is 

generally located in the mechanical room of each 

facility and is substantially smaller than the 

conventional boilers which it would offset.  Each ETS 

would be comprised of two isolating heat exchangers 

(one for space heating and one for domestic hot 

water), CSA C900 grade energy metering, and 

controls.  The space heating heat exchangers would 

be a brazed plate type unit, while the domestic hot 

water heat exchangers would be a double walled 

gasketed plate & frame unit.  The energy meter 

would consist of a magnetic or ultrasonic flowmeter, 

energy integrator and temperature sensors.  A 

modulating control valve would manage the amount 

of heat delivered to the building based on the 

buildings demand for space heating.  Similarly another control valve is used to provide heating for 

Figure 4: Typical ETS Installation 

Page 21: Integrated Community Feasibility Study · Integrated Community Energy Feasibility Study ‐ 215247 In general, initial investments in DES are in the $15 to $20 million dollar range

P a g e  | 15 Integrated Community Energy Feasibility Study ‐ 215247 

 

domestic hot water.  It is currently assumed that the district side hot water supplied to each building 

would be 95°C maximum in the winter, with an associated district return temperature of 65°C.  The 

design of each buildings internal heating system will need to be coordinated in order to achieve the 

district side return temperatures envisioned.  A district supply temperature reset schedule would also be 

employed. 

5.3.2. Distribution Piping System 

The buried distribution piping system would consist of 

factory pre‐insulated all welded steel piping 

components manufactured to the European standard 

EN‐253 for district heating service.  The distribution 

system consists of a supply side that delivers the hot 

water to each building and a return side that returns the 

cooled water from the building to the production plant.  

The pre‐insulated buried piping system would also 

include a leak detection system.  The design pressure of 

the piping system is typically 1600 kPag at 100°C. 

 

 

5.3.3. Energy Centre 

The energy centre would consist of natural gas fired hot water boilers and combined heat and power 

(CHP) units.  The boilers and CHP units would be installed in a phased manner as well, to reflect the 

increasing thermal load as the development is built out.  The production facility is configured such that 

the CHP units provide the pre‐heat of the circulating district water and the boilers provide final 

temperature trimming.  Distribution pumps deliver the hot water on a variable flow basis from the 

production facility to the customer buildings.  The CHP units themselves are natural gas fired 

reciprocating engine generator sets.  In addition to the electric power generated, heat is recovered from 

the engine auxiliary systems and exhaust in the form of hot water.  Electricity produced by the CHP units 

is either displaced (behind the meter) or may exported to the electrical distribution network (if a 

contract to export is secured).  

Figure 5: Typical Distribution Piping Installation 

Page 22: Integrated Community Feasibility Study · Integrated Community Energy Feasibility Study ‐ 215247 In general, initial investments in DES are in the $15 to $20 million dollar range

P a g e  | 16 Integrated Community Energy Feasibility Study ‐ 215247 

 

 

 Figure 6: District Energy Centre Examples 

5.4. Technology Enhancements of District Energy A basic DES will typically utilize conventional infrastructure – high efficiency boilers delivering hot water 

through its distribution system.  A basic DES does not address energy security concerns (brownouts) into 

the City unless it is equipped with standby diesel and / or CHP equipment.   

   

Page 23: Integrated Community Feasibility Study · Integrated Community Energy Feasibility Study ‐ 215247 In general, initial investments in DES are in the $15 to $20 million dollar range

P a g e  | 17 Integrated Community Energy Feasibility Study ‐ 215247 

 

5.4.1. Combined Heat and Power (CHP) 

A feature of DES which supports consideration of CHP is the thermal distribution system to utilize the 

recovered heat for space heating, domestic hot water or process uses.  CHP utilizes a single source of 

fuel for electrical power generation (from coupling the engine to an electric generator), and recovery of 

waste heat (captured in a waste heat boiler to recover steam or hot water). This technology is based on 

embedded electrical generation at the point of concurrent consumption of electricity and thermal 

energy.  Hence, rather than a plant which is 35 to 40% efficient relative to its electrical efficiency 

potential, CHP can achieve combined efficiencies of greater than 80%.  While new electrical transmission 

and distribution is expensive to develop in urban centers, CHP enables an opportunity to leverage 

existing natural gas distribution infrastructure to mitigate electrical grid challenges.   

By incorporating discrete CHP within the community, the resiliency is improved during weather related 

and other types of utility power interruptions.  Utilizing natural gas for the CHP also hedges the facility 

against electrical and natural gas (the recovered heat would have otherwise been produced in the 

facility natural gas boiler) price volatility.  It is also a dispatchable technology which is supportive of 

Smart Grid development. 

The Ontario Provincial Government has included behind the meter CHP as an eligible conservation 

measure within their 2015‐2020 Conservation First Framework target of 7 TWh through the LDCs with 

financial incentives. 

From an electrical perspective, to reduce Provincial transmission losses, current accepted estimates 

state that 5 to 7 % of energy generated is lost through transmission.  For a 26,000 MWe Ontario 

provincial peak load, this would represent 1300 to 1950 MWe of line losses.  For context, this is the 

equivalent to the installed capacity of 2 to 3 nuclear reactors at Pickering.  These line losses may be 

cumulatively offset with several smaller CHP embedded generation at the point of consumption.   

In Ontario, there are numerous examples of CHP. 

Smaller plants – in the 250 kWe to 10 MWe range tend to be embedded in industrial plant or 

DES – where the electricity generated is used to reduce (displace) electrical purchase from the 

utility and the waste heat is recovered to displace boiler thermal loads in heating processes. 

Larger plants are often configured as combined cycle (100 to 500 MWe) where gas turbine 

exhaust waste heat is recovered as steam for admission to a steam turbine generator and within 

a thermal distribution system (e.g. Greater Toronto Airport Authority (Lester B. Pearson 

Airport)). 

Generally for DES CHP, 600 to 800 kWe is the minimum threshold size for consideration; 

To achieve economies of scale in capital cost 

To utilize equipment of higher efficiency and reliability 

Complies with public acceptance and recognizes resistance to citing larger plants within the city 

in terms of potential resistance from residents (i.e. 2013 Provincial Gas Plant Issue), 

Page 24: Integrated Community Feasibility Study · Integrated Community Energy Feasibility Study ‐ 215247 In general, initial investments in DES are in the $15 to $20 million dollar range

P a g e  | 18 Integrated Community Energy Feasibility Study ‐ 215247 

 

Has historically been a sizing threshold upon which the Ontario Power Authority / Independent 

Electricity System Operator programs have focussed (CESOP, CHPSOP). 

Prime movers for CHP are summarized as follows; 

Gas Engine 

Mature technology ‐ up to about 5 MWe, with 

many benefits compared to gas turbines – higher 

efficiencies, better part load efficiency, and ability 

to utilize low pressure natural gas (without 

parasitic requirement and noise of a dedicated 

natural gas compressor); 

Manufacturers offer complete skid mounted 

cogeneration packages with engine, generator, 

controls, heat recovery equipment, acoustic 

enclosures, and silencers; 

Robust, slow speed design (900 to 1800 rpm) 

enables long expected life cycles up to 20 to 25 

years with appropriate maintenance. 

Guaranteed maintenance contracts are available by 

manufacturers or third parties;  

Units may be rapidly brought into operation from being offline. 

Gas Turbine 

Mature technology and generally more compact in sizes above 7 MWe; 

Poor part load efficiency if the DES thermal load requires the prime mover to operate at part 

load; 

Not as flexible as gas engines for frequent start up and shut downs. Start‐up times are much 

longer and frequent shut downs are problematic for long service duty. 

Owing to their sensitive sizing criteria for optimized payback, CHP may be implemented at a time when 

thermal loads are established.  Hence the conventional high efficiency boilers are then available as extra 

redundancy and back up/ peaking service. 

As noted in the previous section, it is imperative that CHP operate in harmony with concurrent, base 

electrical and thermal loads.  Attempts to oversize CHP equipment results in reduced operation of the 

CHP which stretches out the payback period of CHP. 

5.4.2. Chilled Water Thermal Storage 

Chilled water storage systems are utilized to reduce chiller equipment sizing and to shift electrical load 

from peak to off peak intervals. This has the effect of reducing the strain on the incoming lines to the 

City during peak loading and purchasing electricity at lower prices. 

Figure 7: CHP Engine 

Page 25: Integrated Community Feasibility Study · Integrated Community Energy Feasibility Study ‐ 215247 In general, initial investments in DES are in the $15 to $20 million dollar range

P a g e  | 19 Integrated Community Energy Feasibility Study ‐ 215247 

 

Massive tanks of ice or brine serve to store chilled water produced during the evening or weekends 

when electrical cost is reduced and pump it during peak hours. Modest amounts of supplemental 

cooling may be required as needed. 

There are a few examples of this technology installed, but it is recognized that the initiative uses 

approximately 15% more energy to compensate for the additional pumping and heat gain in storage. 

Chilled Water Storage is recommended for further consideration on a site specific basis – particularly 

where physical space exists for storage. 

5.4.3. Hot Water Thermal Storage 

Hot water storage systems are utilized to offer an opportunity for CHP plants to maximize their thermal 

load following operation into the summer peak load and store thermal load for utilization during non‐

peak hours when residential customers draw hot water for dishwashing, clothes washers, bathing and 

showers, swimming pool warming, etc. 

Hot Water Storage is recommended for further consideration on a site specific basis – particularly where 

physical space exists for storage. 

5.4.4. Renewable Energy Inputs 

DES mitigates risk in markets with high or increasing electrical costs by leveraging natural gas pricing.  

With their associated economies of scale and remote energy centre location, there are further 

opportunities to introduce alternative renewable fuels (in addition to natural gas) for community 

resiliency. 

Biomass 

Biomass may be implemented in a DES either as a feedstock for power generation or thermal 

generation.  Generally owing to the unique technology, feedstock sourcing/ storage / transportation 

logistics, permitting and material handling considerations, the economics of biomass power plants 

requires careful consideration.  This technology is also sensitive to biomass supply and price fluctuation.  

At this point, biomass utilization in a DES may be deferred to a future consideration as a renewable 

input at a time when the biomass industry is matured. 

Digester Gas 

Digester Gas from municipal water treatment is a proven source of renewable energy and currently 

there are utilization initiatives at City of Toronto’s Humber and Ashbridges Bay Water Treatment Plants. 

During discussions with Burlington Hydro, we have been advised that Skyway Wastewater Treatment 

Plant (just beyond the south west portion of Downtown Growth Area Node) is no longer pursuing 

cogeneration owing to gas quality and quantity variations and is currently utilizing this gas in its boilers 

to displace natural gas. 

Page 26: Integrated Community Feasibility Study · Integrated Community Energy Feasibility Study ‐ 215247 In general, initial investments in DES are in the $15 to $20 million dollar range

P a g e  | 20 Integrated Community Energy Feasibility Study ‐ 215247 

 

5.4.5. Geo‐exchange 

This technology may be implemented into the DES but it is not a renewable energy technology.  Geo‐

exchange uses electrical energy to yield thermal energy by incorporating Ground Source Heat Pump 

technology (reverse vapor compression refrigeration). 

This is prevalent in markets with lower cost electricity and higher cost natural gas but this is not 

representative of the short or long term forecast for Ontario. 

For the screening objectives of this report, geo‐exchange technology is generally not unique to any 

contemplated DES and hence it will not influence the screening. 

   

Page 27: Integrated Community Feasibility Study · Integrated Community Energy Feasibility Study ‐ 215247 In general, initial investments in DES are in the $15 to $20 million dollar range

P a g e  | 21 Integrated Community Energy Feasibility Study ‐ 215247 

 

5.5. Benchmarking Performance Almost all recent DES in Ontario are hot water thermal systems which ultimately seek to interconnect 

enough thermal load to establish appropriate behind the meter CHP.  In general, initial investments in 

DES are in the $15 to $20 million dollar range and are typically equity invested by the municipality or the 

local utility.  Subsequent expansions to the DES are then debt financed.   

There are many additional sources of financial support for DES including Federation of Canadian 

Municipalities, Infrastructure Canada Gas Tax Fund and others (see Section 8.4). 

Two relevant examples for Burlington follow; 

Markham District Energy is an example of a DES which was established in a Greenfield fashion.  

Markham was proactive in ensuring that DES was a key feature of Markham Centre’s 

development and achieved a significant interconnection to their developed systems.  This is of 

interest to Burlington for the development of the Mobility Hubs and efforts to include 

consideration of DES in the planning process.  Greenfield DES are often use heating and cooling 

distribution systems.  These also are well suited for Corporate Headquarter Buildings and Data 

Centres. 

Hamilton Community Energy is an example of a DES which was established in a retrofit fashion 

with existing buildings in the Downtown.  Hamilton was proactive to establishing a DES system 

to address environmental and energy security concerns of their Downtown.  This is of interest to 

Burlington for the consideration of DES in nodes such as the Downtown Growth Area.  Retrofit 

DES typically only use heating distribution systems. 

   

Page 28: Integrated Community Feasibility Study · Integrated Community Energy Feasibility Study ‐ 215247 In general, initial investments in DES are in the $15 to $20 million dollar range

P a g e  | 22 Integrated Community Energy Feasibility Study ‐ 215247 

 

5.5.1. Markham District Energy 

In 1999, FVB drafted a development plan for Markham Hydro for a DES in the vicinity of Markham Civic 

Centre.  One of the initial objectives was to assemble heat load, thereby enabling efficient distributed 

generation in the form of CHP, which was desired because of experience encountered during the ice 

storm that had wreaked havoc in Eastern Ontario and Quebec.  The plan was subsequently expanded to 

include new buildings planned for a nearby green‐field development known as Markham Centre.  FVB 

provided marketing, design and construction support to bring the DES in service by December 2000 in 

time to meet the in service date of a major employment facility built by IBM that served as the anchor 

customer.  The initial investment was $10 million by Markham. 

 

In 2001, FVB drafted a business strategy for district energy, including ownership options and presented 

it to the Markham Town Council.  This led to the current structure of Markham District Energy (MDE), a 

subsidiary of Markham Enterprises Corporation, which is wholly owned by the City of Markham. 

FVB has acted as prime district energy consultant for feasibility studies and design for most of the 

continuous expansion of MDE up to the present day. FVB is currently the Owner’s Engineer for MDE. 

Figure 8: Markham District Energy

Page 29: Integrated Community Feasibility Study · Integrated Community Energy Feasibility Study ‐ 215247 In general, initial investments in DES are in the $15 to $20 million dollar range

P a g e  | 23 Integrated Community Energy Feasibility Study ‐ 215247 

 

FVB continuously works with MDE, the City of Markham planners, building developers and municipal 

consultants to ensure district energy is used on all future projects in the Markham Town Centre area. 

In 2005, MDE was awarded a 20 year contract for an additional 5 MWe of CHP by the Ontario Power 

Authority.  The first plant has been expanded several times to meet growing demand and has currently 

15 MWt of heating, 4,600 tons of cooling, 8.5 MWe of CHP and 35 MWht of Thermal Energy Storage 

(TES). 

In 2008, a second plant began operation with 20 MWt of heating and 6,650 tons of cooling.  The third 

plant features 20 MWt of heating and 7,000 tons of cooling.  In 2009, MDE engaged FVB to design the 

thermal energy storage, which was successfully brought into service and has performed effectively, 

resulting in complete elimination of boiler operation for approximately 5 months in the summer and fall.  

The DES currently serves 27 buildings, representing over 10 million square feet of mixed commercial, 

institutional and residential space, connected to the heating and cooling systems through 44 kilometers 

of heating and cooling district piping system (DPS) with energy transfer stations (ETS) in each building.  

When fully developed, Markham Centre will feature 30 million square feet of development, and be 

home for 39,000 employees and 41,000 residents.  Markham District Energy is generally regarded as 

the most successful District Energy System in Canada. 

In 2007, Markham Stouffville Hospital received approval to expand its facility and identified its original 

heating, cooling and emergency power assets were near the end of its reliable life.  In 2012, Markham 

District Energy completed construction of its Bur Oak Energy Centre (featuring 4 MWe of CHP) and 

commenced operations to over 1 million square feet of customers with the Markham Stouffville 

Hospital (704,000 square feet) as the anchor client.  This was recently recognized as the International 

District Energy Association System of the Year in 2013. 

Current total investment in Markham District Energy (inclusive of piping and plant assets) is greater than 

$100 million. 

http://www.markhamdistrictenergy.com/ 

   

Page 30: Integrated Community Feasibility Study · Integrated Community Energy Feasibility Study ‐ 215247 In general, initial investments in DES are in the $15 to $20 million dollar range

P a g e  | 24 Integrated Community Energy Feasibility Study ‐ 215247 

 

5.5.2. Hamilton Community Energy 

The Hamilton Community Energy System (HCES) serves 2.5 million square feet of commercial, 

institutional and residential multi‐family properties in downtown Hamilton.  This amounts to 12 

buildings including a major sports arena and City Hall.  The District Energy Plant is located adjacent to 

the Sir John A. MacDonald High School at the northwest corner of Bay Street and York Boulevard.  This 

unique location at “the entrance to Hamilton” required an attractive plant structure. 

The motivation for Hamilton Community Energy pursuing a District Energy System was to launch a 

whole new infrastructure in the 

downtown core to provide highly 

competitive, efficiency and 

environmentally responsible 

thermal energy to provide a 

competitive edge in attracting new 

development.  At the time, 

Hamilton featured many industrial 

facilities which resulted in air quality 

being an issue for its residents.   

With the CHP, HCES was able to 

achieve an overall combined 

efficiency of greater than 80%.  For the 

interconnected buildings of HCES, over 

28 lower efficiency boilers were removed from service resulting in significant greenhouse gas emission 

reductions in the downtown core. 

Since 2003, the system has been providing thermal heat, hot water and back up electricity using 10 MWt 

hot water boilers and a 3.5 MWe CHP unit.  Waste heat from the CHP serves the base heat load of the 

district heating system, which can amount to approximately 85% of the total heat energy consumed.  

The CHP unit can island itself during any grid interruption and provide electricity to critical buildings in 

the downtown core.  When not required by its customers the CHP is able to sell power back to the city’s 

electrical grid. 

The CES was built, financed and currently owned and operated by Hamilton Community Energy (HCE).  

HCE is a for‐profit affiliate of Hamilton Utilities Corporation, wholly owned by the City of Hamilton.  FVB 

was the business advisor and design engineer for HCE.  FVB was involved from the initial feasibility 

study, through the detail design, construction and commissioning.  FVB was responsible for the concept 

development, design development and construction management and continues to provide support for 

system improvements, expansions and new customer hook ups.  

http://www.hamiltonce.com/index.html 

   

Figure 9: Hamilton Community Energy

Page 31: Integrated Community Feasibility Study · Integrated Community Energy Feasibility Study ‐ 215247 In general, initial investments in DES are in the $15 to $20 million dollar range

P a g e  | 25 Integrated Community Energy Feasibility Study ‐ 215247 

 

6. Characteristics of a District Energy Node As mentioned, the City of Burlington is anticipating modest population growth forecast over the next 15 

to 20 years and has nearly built out to its boundaries.  In this section, we will offer comments of the 

desirable criteria to establish a District Energy Node within the City of Burlington in accordance with 

their success criteria and goals of the Community Energy Plan. 

6.1. Screening Matrix Criteria A screening process was developed with the City of Burlington to establish the suitability of the 

identified DES nodes in accordance with the following main criteria; 

Sizing and intensity of DES Node 

Availability of space for an energy centre 

Presence of an anchor client 

Forecast greenfield development 

Redevelopment with existing nodes 

Presence of barriers of thermal distribution 

Burlington Hydro Grid Interconnection Capacity 

Timeframe to implement 

Ability of Burlington to influence development 

Ability to showcase for Burlington 

These criteria are discussed in the following sections. 

6.1.1. Sizing and Intensity of DES Node 

DES is best suited for nodes in the City of Burlington with the highest density of development to 

achieve economies of scale by; 

Minimizing the length of distribution piping to interconnect the facilities.  The following district 

energy density will help to benchmark the opportunity; 

o Low Density (usually not connected) such as a Townhouse development in Markham 

may have a Floor / Area Ratio (FAR) approximately 1, 

o Medium Density such as Downtown Burlington may have an FAR of approximately 4 

o High Density such as Downtown Toronto may have an FAR of greater than 10. 

Reducing the quantity of energy transfer stations (i.e. fewer and larger facilities). 

Aggregating load profiles of various facilities for improved steady state operation. 

Optimizing aggregate redundancy and operations and maintenance staffing. 

Institutional, commercial and multi residential developments have similar thermal loads profiles 

with slight variations when the domestic hot water is utilized;  

o Significant thermal peaks in the winter months relative to the space heating 

requirements; 

o Shoulder seasons in the spring and fall when heating requirements fluctuate 

significantly on a daily and weekly basis; 

Page 32: Integrated Community Feasibility Study · Integrated Community Energy Feasibility Study ‐ 215247 In general, initial investments in DES are in the $15 to $20 million dollar range

P a g e  | 26 Integrated Community Energy Feasibility Study ‐ 215247 

 

o Significant low points in summer when space heating loads are removed and only 

domestic hot water loads remain. 

Process loads tend to be more stable for 16 to 24 hours per day and 5 to 7 days per week.  

The following represents some criteria to consider embedded generation to enable energy resiliency 

and environmental performance in accordance with the Community Energy Plan. 

The CHP in a behind the meter setting is sized to not export electrical power to the grid.  

Further, it is sized to be closer to the base thermal load to avoid part load operation or dumping 

recovered heat. 

While many conditions are variable (insulation, infiltration, internal heat gains, etc.) an average 

facility has a peak thermal load of 60 watts / m2 at a design minimum temperature of ‐22C for 

Burlington. 

Peak space heating thermal loads of a facility are often 3‐4 times greater than the base loads 

(generally domestic hot water and any process load). 

FVB suggests that the smallest CHP for consideration may be as low as 600 to 800 kWe.  In 

certain instances, sizes as low as 200 kWe may warrant consideration.  We agree with the 

recommendations of the Community Energy Plan that 2.5 MWe (approximately 2.5 MWth) to 5 

MWe (approximately 5 MWth) would represent optimum sizes. 

o For a 5 MWe CHP, a DES should have between 200,000 to 240,000 m2 of connected 

facilities for recovered heat utilization. 

o This may be pro‐rated for smaller CHP opportunities. 

6.1.2. Available Space for Central Energy Centre 

Ideally, the energy centre may be contained within an anchor client and use the CHP power behind the 

meter.  As their thermal and electrical loads are often the dominant load, then the additional thermal 

capacity for the balance of the node is often able to be integrated with a nominal increase in space 

requirements.   

If the anchor tenant is unable to accommodate the DES plant, an appropriate site must be established.  

Certain criteria exist for the selection of sites; 

An appropriate Greenfield or brownfield site must be available – preferably near the center of 

the node to optimize the piping and proximity for future interconnections.  The central plant 

building may be approximately 50m x 20m to accommodate CHP equipment, back‐up / peaking 

boilers, pumping, electrical room, and worker amenities.   

The site and its surroundings will need to be appropriate for environmental compliance for air 

and noise of the DES equipment. 

If a site is not available for a central energy centre, an alternative approach would be to 

establish a network of satellite CHP plants within appropriate electrical load host buildings and 

aggregate them thermally. 

Page 33: Integrated Community Feasibility Study · Integrated Community Energy Feasibility Study ‐ 215247 In general, initial investments in DES are in the $15 to $20 million dollar range

P a g e  | 27 Integrated Community Energy Feasibility Study ‐ 215247 

 

6.1.3. Presence of an Anchor Client 

Of primary importance to a successful DES is the inclusion of thermal loads from anchor tenant(s).  This 

would establish a reliable and stable base load for the operation of the DES equipment. 

Examples of appropriate Anchor Clients include; 

Hospitals, 

Colleges and Universities, 

Large Hotels or zones of hotels, 

Large multi‐residential housing developments or retirement facilities, 

Large Convention Centers 

Recreation and Community Centers – with indoor swimming facilities. 

These facilities are stable in the community and are generally not be subject to economic volatility 

resulting in a relocation or closure – they will remain connected to the DES.  They typically have 

extended operations schedules and high thermal loads.  Often they have particular interest in security of 

thermal and electrical energy supply.  Most importantly, they have higher and more sustained electrical 

loads which are desirable to site CHP equipment within in a “behind the meter” configuration.   

Certain sites (such as Community Centers) may have emergency crisis center designations which also 

favor CHP implementation for electrical and thermal loads which are necessary during blackouts / 

brownout events in Burlington. 

6.1.4. Forecast Greenfield Development 

Identification of Greenfield development is preferred to enable a Master Plan development with DES to 

be established with new interconnections over the development of the Node.  Greenfield DES sites are 

preferred as they enable; 

Appropriate siting for a central energy plant. 

Sequencing and coordination to simplify the installation of the distribution piping within the 

existing site servicing and road development process. 

An opportunity for the City to have an influence on site developments to be district energy 

friendly in their building services design and interconnect.  This helps the sizing of the central 

plant to be better defined for future loads to be added. 

Significant reduced capital costs for the developer by avoiding the costs of boiler and chiller 

equipment from their budget.  This minimizes the size requirement of the mechanical room (to 

suit the energy transfer station) and enables the developer to maximize the usable space.  It also 

results in reduced mechanical noise and emissions of combustion. 

Enables the developer to promote the site with District Energy and to potentially gain points 

within a sustainable building certification program, like LEED ™. 

Greenfield has the risk of being dependent upon the DES concept being endorsed during its 

development to achieve maximum client interconnection and resultant energy density. 

Page 34: Integrated Community Feasibility Study · Integrated Community Energy Feasibility Study ‐ 215247 In general, initial investments in DES are in the $15 to $20 million dollar range

P a g e  | 28 Integrated Community Energy Feasibility Study ‐ 215247 

 

We understand that Burlington has reached its build out and has limited remaining Greenfield 

Development with only smaller parcels remaining in a few nodes.  For others, such as Mobility Hubs, 

future redevelopment may warrant further DES consideration. 

6.1.5. Redevelopment within Existing Nodes 

For an existing developed node which is lacking significant Greenfield development or anchor clients, 

DES is reliant on redevelopment of existing brownfield sites, limited infill regions and/or retrofit 

interconnection of existing facilities.  Existing parking lots in suitable locations may warrant 

consideration to establish sites for Energy Centres and enable thermal interconnection. 

For brownfield redevelopment or limited infill, some of the Greenfield advantages may be realized but 

usually in a smaller scale.  However from an Integrated Community Energy perspective, older facilities 

have lower efficiency heating systems (highest energy intensity) which offer greater merit for DES 

measures.  With retrofit DES, the client base is already existing and full measure revenues may be 

achieved immediately after the system is operational.  Where existing facilities are candidates for 

conversion to district energy, particular attention must address the following considerations; 

Confirmation of an existing hydronic heating system.  Facilities which utilize electric heating 

(prevalent in 1970’s vintage designs) or direct gas fired heating equipment such as rooftop air 

handling units are not configured for DES interconnection.  Rooftop air handling units are 

common in light industrial, warehouses, shopping malls, box stores and automobile dealerships. 

Facilities which are facing reinvestment of existing boiler and chiller equipment. 

Location of the mechanical rooms (grade level vs. roof) and available space to stage the 

conversion.  In particular for roof level mechanical rooms, assessment of the sizing of riser pipes 

which may have reduced sizes near grade level. 

Thermal load profile of the facility and any existing thermal storage equipment.  Facilities with a 

desirable baseload may include swimming pools, processes, etc. 

6.1.6. Presence of Barriers of Thermal Distribution 

Certain nodes may contain barriers which may either restrict or complicate node development ‐mostly 

in terms of buried thermal piping.  Examples of barriers include; 

Major roads or highways – this is particularly noted within the Economic Prosperity Corridor 

where the QEW bisects the node. 

Railroads – this is of significance to the Mobility Hubs which will incorporate the GO stations 

centrally in their development. 

Privately held properties who may resist easements. 

Intense utility corridors. 

Parks and protected greenspace – generally, the contemplated nodes do not have significant 

issues with these barriers, but as mentioned, the City of Burlington is “built out” to its UNESCO 

World Heritage and Ontario’s Places to Grow and Greenbelt Acts. 

Water bodies and streams. 

Page 35: Integrated Community Feasibility Study · Integrated Community Energy Feasibility Study ‐ 215247 In general, initial investments in DES are in the $15 to $20 million dollar range

P a g e  | 29 Integrated Community Energy Feasibility Study ‐ 215247 

 

6.1.7. Burlington Hydro Grid Interconnection Capacity 

Certain regions in Burlington have limited electrical grid interconnection capacity as per Map 2.3 of the 

Burlington Community Energy Plan, January 2014).  These regions would be difficult to establish CHP 

within.  Burlington Hydro Inc. is collaborating with Hydro One to install the required technology which 

may increase the interconnection capacity in the currently constrained areas. 

6.1.8. Timeframe to Implement 

Certain DES nodes within Burlington are substantially developed (i.e. Downtown Growth Area and 

Economic Prosperity Corridor) are dependent on specific opportunities whereas the Mobility Hubs 

development is anticipated to be in a longer term at the latter portion of the CEP.  Near term 

developments will demonstrate an immediate commitment to the Community Energy Plan and long 

term developments will demonstrate a continued commitment. 

6.1.9. Ability of Burlington to Influence DES Development 

Municipal facilities may be directly influenced by the City of Burlington.  Existing third party facilities 

may require a prolonged effort.   

The following are considerations which have been utilized by other Municipalities in Canada; 

Offer accelerated building permit or site plan approval processes for facilities which are DES 

ready (Markham). 

Consider using Section 37 benefits under the Planning Act to encourage measures that would 

ensure buildings are connection ready for DES.  For example, if a developer includes constant 

riser piping in a high rise building so it can more readily connect to a DES in the future, Section 

37 benefits could apply. 

Offer development fees reductions for DES ready facilities.  This requires a long term vision of 

the City with a “no pain – no gain” perspective.  It is clear that DES is a valuable tool for the City 

to attract premium developers and employers to the City which will enhance its community 

sustainability and resiliency (Toronto, Calgary). 

Encourage higher performance than the current criteria within National and Provincial Building 

Codes.  Particularly on City owned properties, the performance targets may be set to suit the 

interests of the City. 

Ensure hydronic heating systems are utilized with central domestic hot water heating and 

storage (vs. point of use systems).  This should be a logical choice for a sustainable building 

project, particularly if obtaining points under a green building certification program.  (Lonsdale 

Energy Corporation in North Vancouver). 

For developments of a minimum size, perhaps more than 1000 m2, (Vancouver, bylaw 8086) 

and within the target DES implementation node(s), establish a requirement in the Site Plan 

Approval process for the developer to undertake a district energy interconnection feasibility 

study or consultation with the City.  Offer meetings for developers to discuss DES with City of 

Burlington Community Energy Stakeholders. 

Page 36: Integrated Community Feasibility Study · Integrated Community Energy Feasibility Study ‐ 215247 In general, initial investments in DES are in the $15 to $20 million dollar range

P a g e  | 30 Integrated Community Energy Feasibility Study ‐ 215247 

 

For facilities which are owned by the municipality, investigate Federation of Canadian 

Municipalities (FCM) financial contributions and incentives.  (See Section 9.4 for further details). 

Promote that behind the meter CHP enables significant financial contributions for the DES study 

(vs. BAU) and contributions for the implementation of this equipment (See Section 9.4 of 

Report for further details).  This program is part of the Ontario Government’s Plan to achieve 

energy savings. 

CHP enables resilient operation during Grid Outages for supported facilities (Toronto – 

Agincourt Recreation Centre and Etobicoke Olympium). 

6.1.10. Ability to Showcase for Burlington The implementation of a DES within the City of Burlington would be most easily communicated to 

residents in a municipally owned facility which could showcase the measure and its performance versus 

BAU.  It would also be visible to the facility users to enable its performance and its installation impact to 

be verified. 

   

Page 37: Integrated Community Feasibility Study · Integrated Community Energy Feasibility Study ‐ 215247 In general, initial investments in DES are in the $15 to $20 million dollar range

P a g e  | 31 Integrated Community Energy Feasibility Study ‐ 215247 

 

7. Candidate Nodes in Burlington  

Refer to Appendix A for a map of the Downtown Burlington node and Appendix B for a summary of the 

screening matrix considerations. 

The following regions represent a high level, review of the City of Burlington to establish integrated 

community energy resiliency and sustainability for key buildings, regions and neighborhoods.  This 

would be re‐evaluated at the next stage of the analysis ‐ when a Business Case Study would be 

performed for the short listed candidates. 

Where available, electrical consumption of identified facilities is included to identify appropriate DES to 

be assessed with CHP technology for integrated community resiliency during electrical power events.  In 

general, at the screening stage, the associated thermal load may be generally estimated using a 60 w/m2 

peak thermal load (at ‐22C, representative of minimum design temperature for Burlington).   

7.1. Downtown Growth Area The Downtown Growth Area is currently mature in its development.  By review of the “Places to Grow” 

document, it is also a designated growth area and contains a mobility hub.  Based on City of Burlington 

data, it currently features about 1.1 million m2 of development with a potential to increase to 1.36 

million m2 by infill development (mostly related to high density residential) based on current Policy FAR. 

Boiler infrastructure replacement costs associated with older buildings are particularly well suited for 

DES interconnections.  Older facilities also tend to have higher energy consumption and therefore offer 

higher environmental benefits to the Community with this initiative. 

Some existing City owned surface lots remain which may be candidate locations for establishing an 

energy centre. 

At this stage, lacking a significant region for concentrated development, the Downtown Growth Area 

should commence DES development with multiple, smaller behind the meter CHP retrofits within 

appropriate existing facilities with thermal interconnection to 2 to 3 buildings.  Over time, this approach 

will enable interconnection of these smaller thermal networks to enhance redundancy and increase 

aggregate loads.  While this approach may take longer to develop, and may require periodic Master Plan 

updates, it will enable a resilient DES to be established in Downtown Burlington.  This is how the 

Lonsdale Energy System started. 

In this manner, Burlington may consider the following candidate DES developments. 

Page 38: Integrated Community Feasibility Study · Integrated Community Energy Feasibility Study ‐ 215247 In general, initial investments in DES are in the $15 to $20 million dollar range

P a g e  | 32 Integrated Community Energy Feasibility Study ‐ 215247 

 

7.1.1. Burlington City Hall 

In the south, the Burlington City Hall (92,000 sf) has an annual electrical consumption of 1.31 million 

kWhr/year and natural gas consumption of 

95,500 m3/year.  The City Hall may be 

suitable for a behind the meter CHP (if space 

permits) to augment its aging boilers.  This 

would enable Burlington to lead by example 

with a CHP installation to enable local 

developers to have a point of reference to 

visit.  If adequate space does not exist at the 

City Hall, perhaps the City owned Brant 

Street Lot or the Elizabeth Street Lot may be 

appropriate to establish an Energy Centre. 

The City Hall is in close proximity to the 

Burlington Performing Arts Centre (a LEEDs 

building with an annual electrical 

consumption of 870,000 kWhr/year and 

natural gas consumption of 49,000 m3/year).  

The Performing Arts Centre could thermally 

interconnect to the DES ‐ and during its 

limited usage may also warrant consideration of establishing a behind the meter CHP. 

Near these 2 City Owned facilities, are several existing mid height buildings, and the Joseph Brant 

Hospital which could also benefit by interconnection to this DES. 

In the Downtown Core near this location, there has been discussion of; 

Redevelopment potential on John Street from Caroline to Lakeshore, 

Hotel development at Brant and Lakeshore – this would be a key connection particularly if it 

were to include a swimming pool or athletic facility,  

John Street reconstruction in the near future ‐ this would enable DES piping to placed at this 

time. 

This node would benefit existing larger buildings and future infill commercial or multi residential 

developments in the central core and to the East of City Hall.  About 1.3 km away from City Hall via 

James Street (which is understood to be undergoing near term road development – potential for 

concurrent buried piping placement) and New Street is the Central Park Complex.  Owing to the 

separation distance and the significant amount of low density residential between, the thermal 

interconnection of this complex to Downtown must be carefully assessed for interconnection ‐ versus 

establishment of an independent Node; 

Burlington Central Library, 

Page 39: Integrated Community Feasibility Study · Integrated Community Energy Feasibility Study ‐ 215247 In general, initial investments in DES are in the $15 to $20 million dollar range

P a g e  | 33 Integrated Community Energy Feasibility Study ‐ 215247 

 

Burlington Senior Citizens Centre, 

Ron Edwards Family YMCA, 

Central Arena (559,000 kWh/year of electricity and 120,048 m3/year of natural gas), 

Theatre Burlington , and 

Burlington Curling Club. 

7.1.2. Private Multi Residential Sites 

There are one or two large residential sites close to the downtown core which could be investigated for 

separate CHP installations.  For instance, behind the meter CHP with recovered heat could be utilized in 

the building’s heating and domestic hot water loads.  If the building has electric heating, a behind the 

meter CHP could displace a considerable portion of the electrical load, which could generate revenue to 

hedge against the soaring price of electricity.  There could be potential to recover the thermal energy for 

domestic hot water by retrofitting the system.  Thermal energy connections could be made to other 

buildings in the near vicinity. 

7.1.3. Joseph Brant Hospital 

In the south west region of the downtown growth area, is the Joseph Brant Hospital with a peak load of 

2200 kWe.  This is a key anchor load to support a DES and could benefit Burlington in a manner similar 

to the Markham District Energy 2013 IDEA 

System of the Year (previously described in 

Section 5.5.1 of this report).   

We understand the hospital expansion has 

already been tendered and is already under 

construction with a private public partnership 

(PPP), using BAU infrastructure. 

FVB has previously studied CHP at this facility and 

maintain it is a significant opportunity to embed 

2‐3 MWe of generation in the downtown core.  

With current IESO funding support, the savings 

could support additional medical equipment to 

be incorporated into the hospital.  The recovered 

heat would be fully utilized within a thermal network which could include the hospital, the long term 

care facility and the nearby Art Gallery of Burlington (608,000 kWh/year and 68,000m3/year). 

We understand that it is not possible to modify the design at this time, but FVB strongly suggest that 

CHP be revisited with the Joseph Brant Hospital to provide a dominant anchor to a DES development 

for the City Of Burlington and increase the City’s resiliency, and improve the Hospital’s energy and 

environmental performance.  This is a major focus in Greening Healthcare program (founded in 2003) 

and its efforts to promote energy efficiency / sustainability and benchmark healthcare facilities. 

www.greeninghc.com 

Page 40: Integrated Community Feasibility Study · Integrated Community Energy Feasibility Study ‐ 215247 In general, initial investments in DES are in the $15 to $20 million dollar range

P a g e  | 34 Integrated Community Energy Feasibility Study ‐ 215247 

 

7.1.4. Skyway WWTP 

The Skyway Waste Water Treatment Plant is owned and operated by Halton Region. 

FVB suggest that this site may be of interest for 

behind the meter CHP (with digester gas and 

natural gas augmentation) owing to current 

financial PSUI incentives, its proximity to the 

Hospital and be of consideration to further 

anchor DES in Burlington. 

 

 

 

 

 

 

 

7.1.5. Canada Centre for Inland Water 

By review of the Burlington Community Energy Plan (Appendix B), we understand that the Canada 

Centre for Inland Waters features an 800 kWe CHP installation which has not been operated in several 

years.  This Federal Government facility is in the extreme south of Burlington (under the Skyway Bridge) 

and far removed from consideration of thermal utilization within the Downtown Growth Area.   

Several similar CHP facilities exist within the province and were abandoned years back when the natural 

gas prices had peaked.  It is possible the champions of this project may have retired.   

FVB Energy recommend further evaluation of the future of this facility, why the CHP was abandoned and 

to reconsider if this asset is in appropriate condition and feasible to reinstate.  While this is on Federal 

Land and is beyond the influence of the City of Burlington, this CHP opportunity would support resiliency 

and relieve electrical loading on the grid. 

7.2. Mobility Hubs The redevelopment of the Mobility Hub areas should benefit from CHP and DES systems in the future.  

Timing of the redevelopment of these areas is unknown, but some developers are already taking 

advantage of opportunities.  Some of the ‘descriptive’ information regarding the Mobility Hubs is 

sourced from the ‘Mobility Hubs Opportunities and Constraints’ study completed for the City by 

Brook/McIlroy and ARUP in 2014.  The city considers these areas to be significant opportunities for 

Page 41: Integrated Community Feasibility Study · Integrated Community Energy Feasibility Study ‐ 215247 In general, initial investments in DES are in the $15 to $20 million dollar range

P a g e  | 35 Integrated Community Energy Feasibility Study ‐ 215247 

 

redevelopment and is intending to prioritize the Mobility Hubs to create master plans starting this year 

(2016), with policies to be developed through the Official Plan review. 

When these Mobility Hubs are developed, they will support walkable communities with high density 

development and associated electrical and thermal loads.  In this manner, these will be sites featuring 

multi residential, commercial and employment facilities. 

It is recommended that this development be influenced to feature DES with CHP and also pursue 

significant developments, such as future College or University Campuses (as with the future York 

University – Markham Centre Campus near Markham District Energy) or other anchor clients.  See 

Section 4.1.9 for other suggestions for City of Burlington to support DES. 

Importantly, these Mobility Hubs (with inclusion of DES CHP) would also partially address the 

Transportation component of Burlington’s Community Energy Plan.  Efforts to secure a dominant anchor 

load, such as a University Campus to site a larger CHP would be beneficial.  Currently, three Mobility 

Hubs are under consideration and are based on the existing GO Stations as follows; 

7.2.1. Appleby Mobility Hub 

The Appleby Mobility Hub is considered to be the eastern gateway to the City of Burlington and a major 

transit station area.  The area currently contains a mix of land use designations including General 

Employment north of the rail corridor, Mixed‐Use Corridor (Employment and General) along Fairview 

Street, and Business Corridor adjacent to the QEW highway.  There is significant underutilized land 

through this area, with a growing market for mixed use development.  It is expected buildings will be 

mid‐rise in character (6 to 10 storeys) at 986,000 m2. 

Although a little outside the mobility hub, there could be potential to investigate opportunities with 

three schools in close proximity between New Street and Pinedale, along with a seniors residence. 

7.2.1.1. Appleby GO Station 

Currently, the GO Station has an electrical load which ranges from 125 to 225 kWe.  This size is generally 

below recommended CHP implementation, though it may be of interest as a containerized reciprocating 

engine CHP project. 

The nearby region is includes industrial hosts which may be candidates for behind the meter CHP 

initiatives and able to utilize a significant amount of recovered heat in the manufacturing and cleaning 

processes.  At this time, the economy is challenging to significant energy investments from industrial 

clients. 

Page 42: Integrated Community Feasibility Study · Integrated Community Energy Feasibility Study ‐ 215247 In general, initial investments in DES are in the $15 to $20 million dollar range

P a g e  | 36 Integrated Community Energy Feasibility Study ‐ 215247 

 

 

 

 

 

 

 

 

 

 

 

 

 

7.2.2. Burlington Mobility Hub 

This is a Gateway Mobility Hub for Burlington and will link with Downtown Burlington.  The area is 

currently designated a Mixed‐Use Corridor along Brant Street, Mixed Use Corridor (Commercial) south 

of the rail corridor, and General Employment north of the rail corridor and along Plains Road.  There is 

significant underutilized land throughout the study area and residential neighbourhoods to the south 

and northeast.  There is opportunity for new, higher density mixed‐use development along Fairview 

Street with at‐grade retail and prestige employment on the north side of the rail corridor. 

7.2.2.1. Burlington GO Station 

Currently, the GO Station has an electrical load which ranges from 60 to 90 kWe.  This size is generally 

below recommended CHP implementation, though it may be of interest as a smaller CHP.  It is 

surrounded by detached residential, box stores and automobile dealerships which are modest heat 

loads.  Development of a thermal network is somewhat challenged by the 403 and the rail.  

7.2.3. Aldershot Mobility Hub 

The Aldershot Mobility Hub is the western gateway to the City and is considered a major transit station 

in the Province’s Growth Plan.  It currently includes a mix of land use designations including Mixed Use 

Corridor along Plains and Waterdown Roads, General Employment west of Waterdown Road and South 

of the rail corridor, and predominantly Business Corridor north of the rail corridor.  This mobility hub 

area is also adjacent to the Plains Road Mixed Use Corridor.  There are a number of large opportunity 

sites that could be redeveloped, including a large vacant area on the south side of the rail corridor, large 

surface parking lots for GO parking, the King Paving site, etc.  Industrial and commercial sites could be 

Page 43: Integrated Community Feasibility Study · Integrated Community Energy Feasibility Study ‐ 215247 In general, initial investments in DES are in the $15 to $20 million dollar range

P a g e  | 37 Integrated Community Energy Feasibility Study ‐ 215247 

 

investigated, including a greenhouse and a cement manufacturing plant.  There is a growing market for 

mixed use development and the area is expected to include a range of mid to tall mixed use buildings 

on, or adjacent to, Waterdown Road.   

7.2.3.1. Aldershot GO Station 

Currently, the GO Station has an electrical load which ranges from 60 to 100 kWe.  This size is generally 

below recommended CHP implementation, though it may be of interest as a smaller CHP project. 

7.3. Economic Prosperity Corridor The economic prosperity corridor is a substantial region of the City of Burlington running east to west 

with the QEW running down the middle.  Similar to the Downtown Growth Area, this node is substantial 

in size and mature in its development.  Many of the buildings are aging, but there are no significant 

demolition and redevelopment regions which are identified.  Remaining vacant Greenfield lots are 

generally smaller and somewhat isolated from each other as well as from existing significant facilities.   

This Corridor should implement energy measures similar to the strategy proposed for the Downtown 

Growth Area – deployment of behind the meter CHP for key existing sites and future developments with 

an intention to interconnect thermal loads. 

This corridor contains the Appleby GO Station and the McMaster DeGroote Nodes.   

The following regions of the Economic Prosperity Corridor are of consideration. 

7.3.1. McMaster DeGroote School of Business 

The McMaster DeGroote School of Business currently has an electrical load of 190 to 280 kWe.  It is in 

the south central region of the Economic Prosperity Corridor and is diagonal to the Appleby GO Station 

(and its aforementioned food 

manufacturing industrial hosts).  

These sites could each mutually 

benefit from modest initial 

deployment of CHP with subsequent 

interconnection of their thermal 

distribution systems. 

Currently, approximately 11 acres of 

Greenfield exists to the west and 

the south west of the McMaster 

DeGroote School of Business.  A 

report by Energy Plus (March 2015) 

identified that this site could suit a 

possible development of 475,000 sf 

but did not identify if this is based on any actual development plan or when it may be anticipated.  If 

such a development were to materialize, it would be an appropriate trigger for DES consideration.   

Page 44: Integrated Community Feasibility Study · Integrated Community Energy Feasibility Study ‐ 215247 In general, initial investments in DES are in the $15 to $20 million dollar range

P a g e  | 38 Integrated Community Energy Feasibility Study ‐ 215247 

 

For this employment zone, residential development is not permitted.  Furthermore, the proximity of the 

highway to the north poses a major barrier, however there is merit for further assessment of this site. 

7.3.2. City Owned Athletic and Recreation Centres 

City owned athletic and recreation centres are public facilities which are accessible to, and utilized by, all 

of the residents of Burlington.  The City owns these facilities and is therefore directly able to implement 

CHP and DES initiatives within them.  Often these facilities have features such as swimming pools, 

skating rinks, change rooms / showers, community meeting rooms, and daycares. 

Based on this features, establishing CHP measures at these facilities will showcase the City being 

proactive to the Community Energy Plan to its residents.  While these may result in smaller CHP 

installations, they may be configured to operate as Emergency Reception Centres (see Section 5.2 of this 

report) for the public during events when the remainder of the City may be without power or heat.  This 

also enables the City to utilize these facilities for the community and enables its residents to hosted and 

informed during these prolonged events. 

Tansley Woods Recreation Centre (71,000 sf, 1,915,000 kWh/year, peak load of 869 kWe, 

246,000 m3/year of natural gas). 

Appleby Arena (131,000 sf, 2,898,000 kWh/year, 446,000 m3/year of natural gas). 

Mainway Recreation Centre (80,000 sf, peak load of 307 kWe, 117,000 m3/year of natural gas).  

There may be potential to investigate opportunities to connect a system with nearby industrial 

facilities. 

Haber Community Centre (90,000 sf).  This is slightly outside of the identified boundary but 

worth consideration as it is a brand new facility. 

Central Park Complex – see discussion in Section 5.1.2. 

7.4. Other Opportunities The following represent the balance of identified DES opportunities at this time. 

7.4.1. Uptown 

This node is slightly outside of the boundary definition for the Economic Prosperity Corridor (Appleby 

and Upper Middle) but is anticipated to future 6.8 Ha development based on a prediction of 315 people 

(and jobs)/ Ha. 

   

Page 45: Integrated Community Feasibility Study · Integrated Community Energy Feasibility Study ‐ 215247 In general, initial investments in DES are in the $15 to $20 million dollar range

P a g e  | 39 Integrated Community Energy Feasibility Study ‐ 215247 

 

8. Review of Planning Policies to Encourage District Energy The following are examples that FVB is aware of where municipal government or their wholly or partly 

owned corporations have adopted policies to encourage connection to DES, in addition to connection of 

City owned buildings, which is almost universal in the case where the City has an ownership stake in the 

DE system.  See Section 6.1.9 of this report for recommended policies to encourage DES. 

8.1. City of Toronto The City of Toronto has a By Law that states developers must consider connection if it is available and 

connect if it is competitive.  The effect is to give DES at least “a foot in the door” to present proposals to 

developers.  As such it probably has had some positive influence on the continued expansion of the local 

DE Company, Enwave Energy Corporation, which is partly owned by the City.  However, the qualifier “at 

a competitive price” is a significant loop‐hole, since, ultimately, that is left to the judgment of the 

developers who naturally emphasize first‐cost over long‐term costs; long‐term costs are often not their 

concern, e.g. in the case of condominiums.  

An example of where this approach in Toronto failed is in the re‐development of the railway lands.  A 

proposal for district energy (DE) service was made to the developer, but was rejected as “non‐

competitive” because it required an up‐front capital contribution from the developer that was necessary 

because TDHC had no alternative source of financing to extend its infrastructure.  It is likely that a major 

extension of the DES into the railway lands could have occurred if this By Law had been backed by some 

form of funding support for infrastructure or development charges that could have been imposed on the 

developer and used for DE infrastructure. 

8.2. City of Markham In Markham, development of the DE system, Markham District Energy (MDE), which is wholly owned by 

the City, has been actively supported by the City.  For example, the Mayor at the time MDE was formed 

in 2001, was Don Cousens who (with the help of the President of Markham Hydro – Peter Faye) pitched 

the concept of DE to the anchor customer, IBM, and was influential in supporting the marketing of the 

system to the original developers who agreed to connect their buildings.   

The current Mayor (Frank Scarpitti) is also involved in promotion of DE to developers and will have the 

occasional lunch with developers who plan to build in Markham Town Centre and encourage them to 

connect to DE.  This commitment to DE runs through the entire Town of Markham right down to the 

most junior staff member. 

Development approval is subject to a number of requirements, one of which is sustainability, and the 

sustainability requirement is automatically deemed to be satisfied by connection to DE.  The results 

have been that although there is no mandatory connection in Markham Centre, the connection rate of 

new development has been 100% and currently 27 buildings are connected. 

The development process is summarized below – see checklists and report cards; 

Page 46: Integrated Community Feasibility Study · Integrated Community Energy Feasibility Study ‐ 215247 In general, initial investments in DES are in the $15 to $20 million dollar range

P a g e  | 40 Integrated Community Energy Feasibility Study ‐ 215247 

 

http://www.markham.ca/wps/portal/Markham/BusinessDevelopment/MarkhamCentre/TheMarkhamC

entreStory/PerformanceMeasures 

8.3. Lonsdale Energy Corporation Lonsdale Energy Corporation (LEC) is a district energy utility wholly owned by the City of North 

Vancouver.  Initially, as part of its overall plan for DE, the City of North Vancouver established a Hydronic 

Heat Energy Service By Law that applied to the planned service area, known as Lower Lonsdale.  It 

required new or retrofitted buildings to install hydronic systems, a pre‐requisite for district heating.  This 

By Law has been challenged in court under the Canadian Charter of Rights but the court has upheld the 

right of the municipality to enforce this By Law. 

In 2010, the City passed a new By Law (8086) that requires any new building in the entire City of more 

than 1,000 square meters gross floor area to connect to the district heating system unless it is 

determined by the City's Director of Finance that the cost to the City would be excessive.  By Law 8086 

also allows LEC to provide cooling services, but connection of properties to a district cooling system 

(should LEC develop one) is optional. 

8.4. Regent Park Energy Regent Park Energy Inc. has a customer base created by development of a mixture of approximately 1/3 

public and 2/3 private multi‐unit residential building units on Toronto Community Housing Corporation 

owned land.  The development by TCHC and real estate co‐developer Daniels Corporation will take place 

in six phases and create approximately 5,000 new residential units.  

The market risk for this DES is mitigated by the commitment of TCHC and the co‐developer to connect 

all of the new buildings (except about 500 townhomes).  The co‐developer agreed to connect their 

buildings under the co‐development agreement with TCHC.  This agreement was no doubt facilitated by 

the facts that TCHC owned the land and it is in an excellent location for development, close to 

downtown. 

8.5. South East False Creek The South East False Creek Neighborhood Energy Utility (anchored by the 2010 Olympic Athletes Village) 

is owned and operated by the City of Vancouver.  It commenced operation towards the end of 2009.   

The City of Vancouver owned the land and entered an agreement with a real estate developer, which 

included connection of the new buildings to DE. 

8.6. City of Victoria The City of Victoria awarded development rights to City owned land at Dockside Green based on a 

competition.  The resulting development agreement committed the developers to establish a DE utility, 

among other sustainability features, and connect the new buildings to it.   

8.7. Other Jurisdictions Integrated Community Energy Systems are currently being evaluated and / or implemented in numerous 

municipalities including Guelph, Newmarket, Woodstock, Kingston and others.   

Page 47: Integrated Community Feasibility Study · Integrated Community Energy Feasibility Study ‐ 215247 In general, initial investments in DES are in the $15 to $20 million dollar range

P a g e  | 41 Integrated Community Energy Feasibility Study ‐ 215247 

 

9. Recommendations and Next Steps Never in the past 25 years has been a better time to consider the benefits of ICES in the City of 

Burlington.  Furthermore, with the aggregated thermal interconnections, the economies of scale 

improve for inclusions of associated technologies to yield an Integrated Community Energy Plan 

featuring; 

Improved efficiency with the inclusion of CHP.  This embedded generation improves resiliency 

and is an eligible measure in conformance with the Ontario Energy Board mandate to the Local 

Distribution Companies (LDC) to support energy conservation in their CDM targets. 

Heat recovery and thermal storage. 

Inclusion of renewable resources ‐ at a later time. 

Developments which are “future proofed” and able to readily incorporate new technology at 

the Energy Centre. 

With the forecast for increasing electrical costs and stable natural gas pricing, the “spark spread” 

(differential natural gas versus electrical unit pricing) supports the measures recommended in this 

report.  There is also considerable financial support to implementation (Section 8.4 of this report). 

9.1. Recommended Nodes It is clear that the development of DES in identified nodes will secure the economic and environmental 

benefits described in this report as well as the 2014 City of Burlington Community Energy Plan.  As per 

the discussion in this report, and review of Appendices A and B, it is clear that each node has its own 

unique characteristics and triggers for DES consideration.   

At this point, we suggest that DES development may be further investigated in the following order; 

1. The Downtown Core ‐ the City Hall / Burlington Centre for the Performing Arts node features a 

high content of municipal assets, highest density, and no physical barriers to implementation.  

With the ability of the City to influence DES, a showcase installation in the core of the City will 

be well positioned to readily interconnect to existing facilities as well as forecast infill 

development. 

2. Existing electric heating multi residential buildings represents an opportunity to utilize existing 

electrically heated facilities to establish a CHP with thermal energy to be distributed to nearby 

multi residential facilities.  This offsets the high cost of electricity to heat and cool these 

buildings. 

3. It is strongly recommended that the development of the Mobility Hubs be DES ready with CHP 

in these medium density sites. 

4. The City owned Athletic and Recreation facilities also may be readily able to immediately 

establish smaller DES and enable them to be established as Emergency Centres during electrical 

outage events and enhance the resiliency of the Community. 

5. The McMaster DeGroote node in the Economic Prosperity Corridor may warrant consideration 

when the adjacent Greenfield is considering development. 

Page 48: Integrated Community Feasibility Study · Integrated Community Energy Feasibility Study ‐ 215247 In general, initial investments in DES are in the $15 to $20 million dollar range

P a g e  | 42 Integrated Community Energy Feasibility Study ‐ 215247 

 

6. Identified sites which have high electrical loads to establish CHP and may be in proximity to one 

or more schools.  Schools offer an excellent opportunity to showcase the technology to the 

students so that the DES concept may be included in the curriculum and become the “default 

BAU” for the upcoming generation – and their parents. 

9.2. Next Steps 

9.2.1. Appointment of DES Project Champion  

The Community Energy Plan and the participation of the City of Burlington upon this report 

demonstrates a commitment to the merits of DES.  It is suggested that the City of Burlington appoint a 

champion to the DES initiative to continue the momentum.  This champion will provide a focus to all 

internal and external stakeholders and a single point of accountability.  The qualifications of this role 

may be drawn from a business and/or engineering background or it may be someone who has a 

sustained passion for the merit of DES to the community and an understanding of the relevant pillars of 

success.  The champion should also facilitate site visits to other DES systems for their team of inter 

disciplinary committee stakeholders to enable discussions of project success and lessons learned. 

9.2.2. Public Information to Attract Potential Customers 

Continue to keep the residents of the City informed of the intention to develop DES for resiliency and 

sustainability within the City of Burlington in the context of the Community Energy Plan.  Initiate 

information sessions with the public and developers who are anticipated to be active in the City to 

ensure they are fully aware of the sustainability benefits of DES and its advantages to Community.  This 

will be important for the public to drive the interest and for the facilities to interconnect.   

The recent micro turbine CHP at Burlington Hydro should continue its role to be a showcase for the 

public to gain access to a representative CHP.  Burlington Hydro should also release performance data of 

the economic and environmental benefits of this installation. 

It is also important to establish information of the DES systems which are in Ontario and representative 

of the opportunity to Burlington.  Markham District Energy (see Section 3.5.1 of this report) and 

Hamilton Community Energy (see Section 3.5.2 of this report) are excellent examples of DES which are 

also generally supportive of plant tours and meetings to discuss their systems. 

9.2.3. Proceed to Business Case Studies 

The opportunities in the previously identified short‐listed nodes should proceed to a more detailed 

Business Case Study.  The following parameters describe a more detailed investigation to more fully 

assess the eligibility; 

For the identified groupings of buildings, engage the owners to establish who has interest for 

DES consideration for a Business Case Study, or interest in a meeting to learn more about the 

Community Energy initiatives. 

Continue discussions with Burlington Hydro with particular interest in the Connection Impact 

Assessment of the CHP in the grid. 

Page 49: Integrated Community Feasibility Study · Integrated Community Energy Feasibility Study ‐ 215247 In general, initial investments in DES are in the $15 to $20 million dollar range

P a g e  | 43 Integrated Community Energy Feasibility Study ‐ 215247 

 

Review of the candidate sites for the central plant to be located with particular attention to 

buffer zones around the plant for air emissions and noise mitigation and future expansions. 

Review specific key facilities to establish which have interest to either implement behind the 

meter CHP within their facility or thermally interconnect to a proposed DES. 

Review node relative to ability to develop a distribution system and ability to install during 

roadwork or transit developments. 

Undertake site inspections and interviews of existing key facilities and anchor tenants who may 

interconnect; 

o Confirm hot water heating systems are present ‐ rather than gas fired rooftop air 

handling units, 

o Rooftop penthouse versus grade level mechanical room.  It is desirable that candidate 

buildings have constant diameter hot water risers to enable the facilities to be district 

energy ready, 

o Review a minimum of 12 consecutive months of electrical and natural gas billings to 

establish load profiles, 

o Electric versus gas fired domestic hot water systems – confirm presence of thermal 

storage, 

o Unique thermal loads such as swimming pools, hot tubs, 

o Age of major equipment (boilers, chillers) and remaining reliable life expectancy until 

reinvestment, 

o Interest to interconnect to DES. 

Based on the above findings, the Business Case Study for each would result in; 

o An indication of the contemplated facilities which would be involved, 

o An aggregated thermal load and commentary of thermal resiliency / redundancy, 

o An indication of whether the DES will feature an energy centre or if CHP equipment may 

be embedded in a specific facility, 

o An indication of the CHP sizing which may be achieved with a representative selection, 

o A conceptual layout of the DES, and piping routings, etc. 

o Based on the amount of piping and energy transfer stations, a cost estimate and 

feasibility study of the DES initiative can be developed, 

o An indication of the environmental performance benefits relative to BAU, 

o A preliminary schedule of the DES implementation. 

With this information, this document will enable the City of Burlington to re‐visit the DES initiatives 

within its Community Energy Plan.  It has been shown that Community Energy initiatives leads to 

attracting premium employment within the City and associated jobs for its residents.  The business case 

study will also enable Burlington to assess its further interest in DES Ownership or pursue alternative 

models.   

Page 50: Integrated Community Feasibility Study · Integrated Community Energy Feasibility Study ‐ 215247 In general, initial investments in DES are in the $15 to $20 million dollar range

P a g e  | 44 Integrated Community Energy Feasibility Study ‐ 215247 

 

9.3. Review of Ownership Models During the execution of the Business Case Studies, the City of Burlington should be considering the 

Ownership Model of the DES.  The cost to implement a DES system is significant but the City of 

Burlington will need to address how it may be implemented.   

DES is a mature technology with support by qualified consultants, developers, equipment vendors and 

contractors.  There are numerous examples of successful DES, but there is still risk associated with any 

project.  Generally, there are 3 Ownership Models as follows; 

Public Sector – the City maintains the ownership and is able to maintain better control of the 

DES and its potential for expansion and long term operation.  The City is generally better 

positioned to carry long term, lower interest type projects and is able to seek support from FCM.  

Examples include Markham, Ottawa, Vancouver, etc. 

Private Sector – a private developer takes the lead in the design and operation of the facility.  As 

they seek an appropriate return on investment, the preference is either for high demand 

greenfield developments of suitable size or the purchase of an existing DES (an example is 

Enwave). 

Public Private Partnerships are a hybrid of the above ownership models. 

The overwhelming majority of DES which are in operation are developed by the public sector. 

9.4. Review Funding Sources Several sources may exist for financial support with various programs.  These programs have different 

requirements and end of program dates but should be reviewed for eligibility. 

Save on Energy Process and Systems (PSUI) for behind the meter cogeneration with combined efficiency 

greater than 65% on an annual basis. 

https://www.saveonenergy.ca/Business/Program‐Overviews/Process‐and‐System‐Upgrades.aspx 

Building Owners and Managers Association (BOMA) 

http://www.bomabest.com/about‐boma‐best/ 

Federation of Canadian Municipalities (FCM) Green Municipal Fund 

http://www.fcm.ca/home/programs/green‐municipal‐fund.htm 

Union Gas 

https://www.uniongas.com/business/save‐money‐and‐energy 

Natural Resources Canada (NRCAN)  

http://www.nrcan.gc.ca/energy/funding/4943 

Page 51: Integrated Community Feasibility Study · Integrated Community Energy Feasibility Study ‐ 215247 In general, initial investments in DES are in the $15 to $20 million dollar range

P a g e  | 45 Integrated Community Energy Feasibility Study ‐ 215247 

 

Burlington Hydro  

http://burlingtonhydro.com/ 

Government of Canada – Infrastructure Canada Gas Tax Fund 

http://www.infrastructure.gc.ca/plan/gtf‐fte‐eng.html 

   

Page 52: Integrated Community Feasibility Study · Integrated Community Energy Feasibility Study ‐ 215247 In general, initial investments in DES are in the $15 to $20 million dollar range

P a g e  | 46 Integrated Community Energy Feasibility Study ‐ 215247 

 

Appendix A. Map of Downtown Burlington  

   

Page 53: Integrated Community Feasibility Study · Integrated Community Energy Feasibility Study ‐ 215247 In general, initial investments in DES are in the $15 to $20 million dollar range

WESL

EY ST

.

BERDEA DR.

MILN

E LAN

E

WA RDRD.

EDITH AVE.

CA MPBELL CRT.

WANDA DR.

BRUCE ST.

PEAR

SON S

T.

FIRST ST.

BLENHEIM ST.

SWANSONCR T.

BIRCH AVE.

KAREN DR.

BLAIRHOLM AVE.

LEGI

ON R

D.

ROSS

ST.

EMER

ALD S

T.

STIN

SON

AVE.

RAYMORE DR.

CAROLINE ST.

MARIA ST.

PINE ST.

BREN

TWOO

D DR

.

FAIRLEIGH PL.

INDI

ANR D

.

TEEN TOUR WAY

MARL

EY CRT.

OLGA DR.

YOUNG AVE.

PERR

Y DR.

REDFERN RD.

HARRIS CR ES.

NEW

BOLD

DR.

JAMES ST.

GREENWOOD DR.

HALIFAX PL.

EDEN PL.

MARK

ET ST

.

BLAT

HWAY

TE LA

NE

GREE

N ST

.

LAKESHORE RD.

PROC

TOR

RD.

PALIN

G RD

.

CEDAR AVE.

EARLCRES.

PARK

ER C

RES.

GEOR

GEST

.

ROBINSON ST.

YORKS HI R E CRES.

ONEIDA D R.

ANDREA C RT.

JO HNST. E X

P

O WELL CRT.

LAMBSHEADDR.

BALDWIN ST.

COURTL ANDPL.

MOHAWK RD.

PEAR

L ST.

CORN

ICK

DR.

JOHN

ST.

ELIZA

BETH

ST.

WATE

RLOO

ST.

HURO

N DR

.

VICTORIA AVE.

CLOVERLEAF DR .

ONTARIO ST.

CRO SBY AV E.

ASHLEY AVE.

WAGNER CRES.

HYDE RD.

GRAHAM'S LANE

HOLT

BY AV

E.

GREE

NWOO

DPL

.

NELS

ON AV

E.

HURD

AVE.

LOCU

ST ST

.

BURL

INGT

ON AV

E.

NEW ST.

REG I NA DR.

HAWKINS CRES.

RAMBO CRES.

ALFRED CRE S.

HAMM

OND

ST.

GROVETREE L ANE

BR O CKAV E.

B

A RONS C RT.

MART

HA ST

.

BRAN

T ST.

DRUR

Y LAN

E

TORR

ANCE

ST.

THORPE RD.

ELGIN ST.

WELLINGTON AVE.

LOCKHART RD.

CLARK AVE.

LAKESHORE RD.

STRATHEDEN DR.

HAGE

RAVE

.

PE

PPER DR.

STRATHALL A NA V

E.

LORN

EST

.

TALLMAN AVE.

BEAV

ER ST

.

SHARRON ST.

OLD LAKESHORE RD.

WOODWARD AVE.

MAPLE AVE.

NORTH SHORE BLVD. E

BELLWOOD AVE.

WOODLAND AVE.

PEEL

E BLV

D.

CLARENDON PARK DR.

EMERALD CRES.

BELLVIEW CRES.

BELLVIEW ST.

NATHANIEL C R ES.

COURTLAND DR.

MAYZ

E LRD

.

MIRIAM CRES.

CAROL ST.

BEVERLE YDR.

FREEMAN ST.

EA

ST SIDE CRES.

S HEPHERD'S DR.

STEPHENSON DR.

BRIDGMAN AVE.

PAISLEY AVE.

JOYCE ST.

GARY CRES.

GHENT AVE.

SENE

CA AV

E.

EAST

PORT

DR.

DELA

WARE

AVE.

MAPLE CROSSING BLVD.

AUGUSTUS DR.

DEYNCOURT DR.MARLEY CRES.

SABLE DR.

SMITH

AVE.

PROSPECT ST.

RICHMOND RD.

QUEEN ELIZABETH WAY

DETLOR CMN.ALMAS CMN.

HILLCREST DR.

HALTON PL.

ONEIDA PL.

LILNAN CRT.

WILLIAMSON CRT.

BATES CMN.

EILEEN DR.

LAMB'S CRT.

WAYNE PL.

ALEXANDER CRT.

CLIFFCREST CRT.

PROSPECT ST.

IROQUOIS RD.

CASADOR CRT.

McMILLANS LANE

WALLACE ST.

NEWBOLD CRT.

ALGONQUIN RD.

0

2.295113

0

0

5

0

0

0

0

0

00

5

0

1.5

1.5

1.5

0

0

0

0

1.5

44

0

0

4

0

4

0

0

2.780388

0

4

0

0

00

05

4

5

04

4

0

4

4

0

4

0

44

4

4.5

4

4

4

0

4

4

4

4.5

4

4

4

4.5

5.31086

0

4

0

3.438514

0

4.148518

0

0

0

0

4

4

4

1.51.5

1.5

0

44

0

01.5

1.51.5

0

00

4

0

4

4

0

40

4

0

1.5

3.952158

0

0

0

0

5

4

7.406973

0

44

0

4

4

0

0 0

4

4

4.5

0

4

4

0

0

0

0

0

0

0

0

3.218604

0

3.185778

0

1.5

1.5

1.5

0

0

0

1.5

5

0

4

1.5

0

4

0

00

000 0

0

0

0

0

4

4

4

4

4

4

4

0

4

0

40

4

0 0

0

4

4

4

1.5

0

3.438514

4

0

0

5

0

0

0

0

5

1.5

0

0

0

0

0

00

0

0

0

4 4

0

5

00

0

0000

0

0

4

4

3.237736

4

4

4

0

4 4

4

4

4

5 5

0

0

4

4

4

0

0

0

0

7.812172

00

0

0

0

1.5

0

4

0

1.5

4

1.5

0

0

0

0

0

0

0

4

4

4

4

3.25

5

4

0

0

00

0

0

0

0

54

4

0

0

44

5

4

4

0

0

4

0 0

0

0

4

4

4

3.25

0

0

0

00

0

00

0

2.925001

1.5

4

1.5

1.5

00

0

1.5

55

4

4

4

4

0

1.5

0

4 4

5

0

5

0

0

0

40

0

0

5

4

5

4 4

0

44

4

2.570542

0

4

0

0

4

4

04

4

4

3.25

0

4.5

4

0

1.5

00

00

4.1485180

2.981265

0

0

4

4

1.5

1.5

0

0

1.5

0 0 0

0

5

4

0

4

0

0

4

4

1.5

5

0

0

0

4

0

4

4

0

4

0

44

0

5

0

0

0

4

0

0

0

4

4

4

0

04

1.5

0

0

2.295113

4

0

4.616478

0

4

4

4

4

4

0

4

0 0 0

0

4

4

1.5

1.5

0

0

0 0

0

4

4.5

0

5

5

5

4

4

0

44

0

44

4

00

4

4

00

4

LegendOP_Sched_E_colour

Boundary of Downtown MU CentreDT Major Inst PrecinctDowntown Core PrecinctEmerald Neighbourhood PrecinctOld Lakeshore Road MUPResidential - Med. and or HighSt. Luke's NeighbourhoodWaterfront West Public LandsWellington Square Mixed Use

OP_Sched_B

Community CommercialMUC - EmploymentMUC - CommercialMUC - GeneralGeneral EmploymentEmployment CommercialRegional CommercialBusiness CorridorParkway Belt Plan AreaDeferralEnvironmentally Sensitive AreaGreenlandsLand Use Designation to be DeterminedMajor Parks and Open SpaceNeighbourhood CommercialReferralResidential - High DensityResidential - Low DensityResidential - Medium Density

hub_ld_areasName

PrimarySecondary

DOWNTOWN MOBILITY HUB STUDY AREA - (FARS)PRIMARY AND SECONDARY ZONESAND OFFICIAL PLAN DESIGNATIONS.Mobility Hub boundaries represent consultants' opinion and shouldnot be considered official versions of the Official Plan Schedules.Schedules should only be used for discussion purposes.

OCTOBER 23, 2015

Page 54: Integrated Community Feasibility Study · Integrated Community Energy Feasibility Study ‐ 215247 In general, initial investments in DES are in the $15 to $20 million dollar range

P a g e  | 47 Integrated Community Energy Feasibility Study ‐ 215247 

 

   

Page 55: Integrated Community Feasibility Study · Integrated Community Energy Feasibility Study ‐ 215247 In general, initial investments in DES are in the $15 to $20 million dollar range

P a g e  | 48 Integrated Community Energy Feasibility Study ‐ 215247 

 

Appendix B. Results of Screening Matrix  

 

 

Page 56: Integrated Community Feasibility Study · Integrated Community Energy Feasibility Study ‐ 215247 In general, initial investments in DES are in the $15 to $20 million dollar range

City of Burlington Screening Matrix for Appendix B

Integrated Community Energy SystemsFVB Energy Inc.   

Downtown Growth Area Economic Prosperity Corridor McMaster DeGroote  GO Aldershot Mobility Hub GO Burlington Mobility Hub GO Appleby Mobility HubDiscussion Core of the City with buildings which would be 

utilized by all City of Burlington residents 

Highest urban density 

Anchors are located in extreme south west of the 

node 

U shaped node with majority of load in east

Limited City owned facilities to influence 

development  

Large node with QEW as east / west backbone 

which poses challenges to development to 

thermal distribution 

Contained within Economic Prosperity Corridor in 

south central setting

Located in West Central portion of City

South of zone is highly residential

North of node is bound by 403

West is bound by large cement manufacturing 

facility

Located in Central Burlington and is north east of 

Downtown Growth Area

Detached residential, box stores and automobile 

dealership 

Located in East side of City to the south of the 

easternmost portion of the Economic Prosperity 

Corridor

Detached residential to the south and heavy 

industrial (food processing) to the west

Sizing and Intensity 

of DES Node

largest and highest FSR Moderate ‐ significant amount of warehouse and 

single storey

limited current development  limited current development limited current development moderate development with near industrial and 

seniors residence

Available Space for 

Energy Centre

limited limited  yes yes limited limited

Presence of an 

Anchor Client

hospital

WWTP

City Hall

Burlington Recreational Centres McMaster DeGroote limited ‐ GO Station limited ‐ GO Station limited ‐ GO Station

Forecast Greenfield 

Development

limited limited yes ‐ potential for 500,000 sf in adjacent 

greenfield

yes limited limited

Redevelopment 

within Existing Nodes

yes, but uncertain yes, but uncertain yes, but uncertain yes, but uncertain yes, but uncertain yes, but uncertain

Presence of Barriers 

of Thermal 

Distribution

no QEW QEW QEW and rail QEW and rail QEW and rail

Burlington Hydro 

Interconnection 

Capacity

Green Yellow Yellow Green  Green  Yellow

Timeframe to 

Implement

fast with municipal facilities fast with municipal facilities uncertain uncertain uncertain uncertain

Ability of Burlington 

to Influence DES

yes with municipal facilities yes with municipal facilities yes with greenfield development yes with greenfield development limited limited

Ability of Burlington 

to Showcase DES

yes with muniicipal facilities yes with muniicipal facilities yes yes yes yes

LEGEND most desirable attribute

least desirable attribute

Z:\Burlington\Integrated Community Energy System Feasibility (215247)\400 Study\Burlington ICES Node Screening Matrix August 2015 18/01/2016