Integrability in the Multi-Regge Regime Volker Schomerus DESY Hamburg Based on work w. Jochen...

26
Integrability in the Multi-Regge Regime Volker Schomerus DESY Hamburg Based on work w. Jochen Bartels, Jan Kotanski , Martin Sprenger, Andrej Kormilitzin, 1009.3938, 1207.4204 & in Amplitudes 2013, Ringberg

Transcript of Integrability in the Multi-Regge Regime Volker Schomerus DESY Hamburg Based on work w. Jochen...

Page 1: Integrability in the Multi-Regge Regime Volker Schomerus DESY Hamburg Based on work w. Jochen Bartels, Jan Kotanski, Martin Sprenger, Andrej Kormilitzin,

Integrability in the

Multi-Regge Regime

Volker SchomerusDESY Hamburg

Based on work w. Jochen Bartels, Jan Kotanski , Martin Sprenger,

Andrej Kormilitzin, 1009.3938, 1207.4204 & in preparation

Amplitudes 2013, Ringberg

Page 2: Integrability in the Multi-Regge Regime Volker Schomerus DESY Hamburg Based on work w. Jochen Bartels, Jan Kotanski, Martin Sprenger, Andrej Kormilitzin,

Introduction

Goal: Interpolation of scattering amplitudes from weak to strong coupling

N=4 SYM: find remainder function R = R (u) cross ratios

From successful interpolation of anomalous dimensions

→ String theory in AdS can provide decisive input integrability at weak coupling not enough

Page 3: Integrability in the Multi-Regge Regime Volker Schomerus DESY Hamburg Based on work w. Jochen Bartels, Jan Kotanski, Martin Sprenger, Andrej Kormilitzin,

Introduction: High Energy limit

Main Message: HE limit of remainder R at a=∞ is

determined by IR limit of 1D q-integrable system

Weak coupl: HE limit computable ← integrabilityBFKL,BKP

TBA integral eqs algebraic BA eqse.g.

Useful to consider kinematical limits: here HE limit [↔ Sever’s talk]

Page 4: Integrability in the Multi-Regge Regime Volker Schomerus DESY Hamburg Based on work w. Jochen Bartels, Jan Kotanski, Martin Sprenger, Andrej Kormilitzin,

Main Result and Plan1. Multi-Regge kinematics and regions

2. Multi-Regge limit at weak coupling

(N)LLA and (BFKL) integrability, n=6,7,8…

3. Multi-Regge limit at strong coupling

• MRL as low temperature limit of TBA

• Mandelstam cuts & excited state TBA

• Formulas for MRL of Rn ,n=6,7 at a=∞

Cross ratios, MRL and regions

Page 5: Integrability in the Multi-Regge Regime Volker Schomerus DESY Hamburg Based on work w. Jochen Bartels, Jan Kotanski, Martin Sprenger, Andrej Kormilitzin,

Kinematics

Page 6: Integrability in the Multi-Regge Regime Volker Schomerus DESY Hamburg Based on work w. Jochen Bartels, Jan Kotanski, Martin Sprenger, Andrej Kormilitzin,

1.1 Kinematical invariants

t1

t2

t4 s4

s

s12

s123

2 → n – 2 = 5 production amplitude

t3 s3

s2

s1

½ (n2 -3n)

Mandelstam

invariants

Page 7: Integrability in the Multi-Regge Regime Volker Schomerus DESY Hamburg Based on work w. Jochen Bartels, Jan Kotanski, Martin Sprenger, Andrej Kormilitzin,

1.1 Kinematical invariants

Page 8: Integrability in the Multi-Regge Regime Volker Schomerus DESY Hamburg Based on work w. Jochen Bartels, Jan Kotanski, Martin Sprenger, Andrej Kormilitzin,

1.2 Kinematics: Cross Ratios

u3

1

u3

2u1

1 u1

2 u2

2

u2

1

u

½ (n2 -5n)

basic cross

ratios (tiles) 3(n-5)

fundamental

cross ratios from

Gram det

Page 9: Integrability in the Multi-Regge Regime Volker Schomerus DESY Hamburg Based on work w. Jochen Bartels, Jan Kotanski, Martin Sprenger, Andrej Kormilitzin,

1.3 Kinematics: Multi-Regge Limit

-ti << si xij ≈ si-1..sj-3

small

large

larger

Page 10: Integrability in the Multi-Regge Regime Volker Schomerus DESY Hamburg Based on work w. Jochen Bartels, Jan Kotanski, Martin Sprenger, Andrej Kormilitzin,

1.4 Multi-Regge Regions

2n-4 regions depending on the sign of ki0 = Ei

u2σ > 0 u3σ > 0 u2σ < 0 u3σ < 0

s1 < 0 s12 > 0 s123 < 0

s4 < 0 s34 > 0 s234 < 0

s1 > 0 s12 > 0 s123 > 0

s4 > 0 s34 > 0 s234 > 0

Page 11: Integrability in the Multi-Regge Regime Volker Schomerus DESY Hamburg Based on work w. Jochen Bartels, Jan Kotanski, Martin Sprenger, Andrej Kormilitzin,

Weak Coupling

Page 12: Integrability in the Multi-Regge Regime Volker Schomerus DESY Hamburg Based on work w. Jochen Bartels, Jan Kotanski, Martin Sprenger, Andrej Kormilitzin,

Weak Coupling: 6-gluon 2-loop

[Lipatov,Prygarin]

2-loop n=6 remainder function R(2)(u1,u2,u3) known [Del Duca et al.] [Goncharov et al.]

leading log

discontinuity

Continue cross ratios along

MHV

Page 13: Integrability in the Multi-Regge Regime Volker Schomerus DESY Hamburg Based on work w. Jochen Bartels, Jan Kotanski, Martin Sprenger, Andrej Kormilitzin,

Leading log approximation LLA The (N)LLA for can be obtained from

Impact factor Φ & BFKL eigenvalue ω known in (N)LLA

Explicit formulas for R in (N)LLA derived to 14(9) loops[Dixon,Duhr,Pennington] all loop LLA proposal using SVHP [Pennington]

[Bartels, Lipatov,Sabio Vera]

[Fadin,Lipatov]

LLA: [Bartels et al.]

([Lipatov,Prygarin])

Page 14: Integrability in the Multi-Regge Regime Volker Schomerus DESY Hamburg Based on work w. Jochen Bartels, Jan Kotanski, Martin Sprenger, Andrej Kormilitzin,

H2 and its multi-site extension ↔ BKP Hamiltonian

are integrable

LLA and integrability

[Faddeev, Korchemsky]

ω(ν,n) eigenvalues of `color octet’ BFKL Hamiltonian

BFKL Greens fct in s2 discontinuity

← wave fcts of 2 reggeized gluons

[Lipatov]

↔ integrability in color singlet case = XXX spin chain

H2 = h + h*

Page 15: Integrability in the Multi-Regge Regime Volker Schomerus DESY Hamburg Based on work w. Jochen Bartels, Jan Kotanski, Martin Sprenger, Andrej Kormilitzin,

Beyond 6 gluons - LLAn=7: Four interesting regions

(N)LLA remainder involves the

same BFKL ω(ν,n) as for n = 6 [Bartels, Kormilitzin,Lipatov,Prygarin]

n=8: Eleven interesting regions

Including one that involves the

Eigenvalues of 3-site spin chain

?

paths

Page 16: Integrability in the Multi-Regge Regime Volker Schomerus DESY Hamburg Based on work w. Jochen Bartels, Jan Kotanski, Martin Sprenger, Andrej Kormilitzin,

Strong Coupling

Page 17: Integrability in the Multi-Regge Regime Volker Schomerus DESY Hamburg Based on work w. Jochen Bartels, Jan Kotanski, Martin Sprenger, Andrej Kormilitzin,

3.1 Strong Coupling: Y-System

Scattering amplitude → Area of minimal surface

[Alday,Gaiotto, Maldacena][Alday,Maldacena,Sever,Vieira]

A=(a,s) a=1,2,3; s = 1, …, n-5 `particle densities’

rapidity

R = free energy of 1D quantum system involving 3n-15

particles [mA,CA] with integrable interaction [KAB ↔ SAB] complex masses chemical potentials

R = R(u) = R(m(u),C(u)) by inverting

R

Wall crossing & cluster algebras

Page 18: Integrability in the Multi-Regge Regime Volker Schomerus DESY Hamburg Based on work w. Jochen Bartels, Jan Kotanski, Martin Sprenger, Andrej Kormilitzin,

3.2 TBA: Continution & Excitations [Dorey, Tateo]

Continue m along a curve in complex plane to m’ R

Solutions of = poles in integrand sign

contribution from excitations

Excitations created through change of parameters

Page 19: Integrability in the Multi-Regge Regime Volker Schomerus DESY Hamburg Based on work w. Jochen Bartels, Jan Kotanski, Martin Sprenger, Andrej Kormilitzin,

3.3 TBA: Low Temperature Limit

In limit m → ∞ the integrals can be ignored:

Bethe Ansatz equations

energy of bare excitations

In low temperature limit, all energy is carried by

bare excitations whose rapidities θ satisfy BAEs.

= large volume L => large m = ML ; IR limit

,

Page 20: Integrability in the Multi-Regge Regime Volker Schomerus DESY Hamburg Based on work w. Jochen Bartels, Jan Kotanski, Martin Sprenger, Andrej Kormilitzin,

3.4 The Multi-Regge Regime[Bartels, VS, Sprenger] Multi-Regge regime reached when

Casimir energy vanishes

at infinite volume

[Bartels,Kotanski, VS]n=6 gluons:

u1→ 1u2,u3 → 0

while keeping Cs and fixed

4D MRL = 2D IR

using check

Page 21: Integrability in the Multi-Regge Regime Volker Schomerus DESY Hamburg Based on work w. Jochen Bartels, Jan Kotanski, Martin Sprenger, Andrej Kormilitzin,

6-gluon casesystem parameters solutions of Y3(θ) = -1 as function of ϕ

Page 22: Integrability in the Multi-Regge Regime Volker Schomerus DESY Hamburg Based on work w. Jochen Bartels, Jan Kotanski, Martin Sprenger, Andrej Kormilitzin,

6-gluon case (contd)

solutions of Y1(θ) = -1solutions of Y2(θ) = -1

Solution of BA equations with 4 roots θ(2) = 0, θ3 = ± i π/4

Page 23: Integrability in the Multi-Regge Regime Volker Schomerus DESY Hamburg Based on work w. Jochen Bartels, Jan Kotanski, Martin Sprenger, Andrej Kormilitzin,

n > 6 - gluons

[Bartels,VS, Sprenger ]

in prep.

Same identities at in LLA at weak coupling

n=7 gluons:

Page 24: Integrability in the Multi-Regge Regime Volker Schomerus DESY Hamburg Based on work w. Jochen Bartels, Jan Kotanski, Martin Sprenger, Andrej Kormilitzin,

n = 7 gluons (contd)

Page 25: Integrability in the Multi-Regge Regime Volker Schomerus DESY Hamburg Based on work w. Jochen Bartels, Jan Kotanski, Martin Sprenger, Andrej Kormilitzin,

n > 6 - gluons

[Bartels,VS, Sprenger ]

in prep.

Same identities as in LLA at weak coupling

n=7 gluons:

is under investigation….

General algorithm exists to compute remainder fct.

for all regions & any number of gluons at ∞ coupling

involves same number e2 ?

Page 26: Integrability in the Multi-Regge Regime Volker Schomerus DESY Hamburg Based on work w. Jochen Bartels, Jan Kotanski, Martin Sprenger, Andrej Kormilitzin,

Conclusions and Outlook

Multi-Regge limit is low temperature limit of TBA natural kinematical regime Simplifications: TBA Bethe Ansatz

Mandelstam cut contributions ↔ excit. energies

Regge regime is the only known kinematic limit in

which amplitudes simplify at weak and strong coupling

Regge Bethe Ansatz provides qualitative and quantitative

predictions for Regge-limit of amplitudes at strong coupling

Interpolation between weak and strong coupling ?

Two new entries in AdS/CFT dictionary: