Institute of Aerospace Thermodynamics H. Kamoun, G. Lamanna, B. Weigand Institute of Aerospace...

34
Institute of Aerospace Thermodynamics H. Kamoun , G. Lamanna, B. Weigand Institute of Aerospace Thermodynamics, Universität Stuttgart 70569 Stuttgart Germany J. Steelant ESTEC-ESA, 2200 AG Noordwijk, The Netherlands Thermal characterisation of an ethanol flashing jet using differential infrared thermography Eucass 2011, St Petersburg

Transcript of Institute of Aerospace Thermodynamics H. Kamoun, G. Lamanna, B. Weigand Institute of Aerospace...

Page 1: Institute of Aerospace Thermodynamics H. Kamoun, G. Lamanna, B. Weigand Institute of Aerospace Thermodynamics, Universität Stuttgart 70569 Stuttgart Germany.

Institute of Aerospace Thermodynamics

H. Kamoun , G. Lamanna, B. WeigandInstitute of Aerospace Thermodynamics, Universität Stuttgart

70569 Stuttgart Germany

J. SteelantESTEC-ESA, 2200 AG Noordwijk, The Netherlands

Thermal characterisation of an ethanol flashing jet using

differential infrared thermography

Eucass 2011, St Petersburg

Page 2: Institute of Aerospace Thermodynamics H. Kamoun, G. Lamanna, B. Weigand Institute of Aerospace Thermodynamics, Universität Stuttgart 70569 Stuttgart Germany.

2

Institute of Aerospace Thermodynamics

Contents

Motivation & Objectives

Differential Infrared Thermography

Experimental Setup

Uncertainty analysis

Results

Summary

Page 3: Institute of Aerospace Thermodynamics H. Kamoun, G. Lamanna, B. Weigand Institute of Aerospace Thermodynamics, Universität Stuttgart 70569 Stuttgart Germany.

3

Institute of Aerospace Thermodynamics

Contents

Motivation & Objectives

Differential Infrared Thermography

Experimental Setup

Uncertainty analysis

Results

Summary

Page 4: Institute of Aerospace Thermodynamics H. Kamoun, G. Lamanna, B. Weigand Institute of Aerospace Thermodynamics, Universität Stuttgart 70569 Stuttgart Germany.

4

Institute of Aerospace Thermodynamics

Motivation & Objectives

Flashing: Sudden exposure of a superheated pressurized liquid to a low pressure environment Fast phase transition

Relevant in many technical application Accidental release of flammable and toxic pressure-liquefied gases in

nuclear and chemical industry. Benefit in propulsion system enhanced atomisation

P

T

Pinj

Psat(Tinj)

P∞

Tsat(P∞) Tinj

Liquid

VaporRp

ΔT

Page 5: Institute of Aerospace Thermodynamics H. Kamoun, G. Lamanna, B. Weigand Institute of Aerospace Thermodynamics, Universität Stuttgart 70569 Stuttgart Germany.

5

Institute of Aerospace Thermodynamics

Motivation & Objectives

Flash-atomisation/vaporisation model Temperature data for validation

Non-intrusive methods are needed

New method Differential Infrared Thermography (DIT)

Page 6: Institute of Aerospace Thermodynamics H. Kamoun, G. Lamanna, B. Weigand Institute of Aerospace Thermodynamics, Universität Stuttgart 70569 Stuttgart Germany.

6

Institute of Aerospace Thermodynamics

Contents

Motivation & Objectives

Differential Infrared Thermography

Experimental Setup

Uncertainty analysis

Results

Summary

Page 7: Institute of Aerospace Thermodynamics H. Kamoun, G. Lamanna, B. Weigand Institute of Aerospace Thermodynamics, Universität Stuttgart 70569 Stuttgart Germany.

7

Institute of Aerospace Thermodynamics

Differential Infrared Thermography

Problem: Spray emissivity: ε unknown For a liquid or a gas ε = f (T, λ, density)

DIT

Page 8: Institute of Aerospace Thermodynamics H. Kamoun, G. Lamanna, B. Weigand Institute of Aerospace Thermodynamics, Universität Stuttgart 70569 Stuttgart Germany.

8

Institute of Aerospace Thermodynamics

Differential Thermography

1,1 1 BackgroundSpraybSpraySprayCam III

2,2 1 BackgroundSpraybSpraySprayCam III

12

121BackgroundBackground

CamCamSpray II

II

-

Liquid: ethanol, Tinj = 389K, pam = 0.2bar, pinj = 10bar

TBack = 286 K TBack = 366 K

Page 9: Institute of Aerospace Thermodynamics H. Kamoun, G. Lamanna, B. Weigand Institute of Aerospace Thermodynamics, Universität Stuttgart 70569 Stuttgart Germany.

9

Institute of Aerospace Thermodynamics

Contents

Motivation & Objectives

Differential Infrared Thermography

Experimental Setup

Uncertainty analysis

Results

Summary

Page 10: Institute of Aerospace Thermodynamics H. Kamoun, G. Lamanna, B. Weigand Institute of Aerospace Thermodynamics, Universität Stuttgart 70569 Stuttgart Germany.

10

Institute of Aerospace Thermodynamics

Experimental Setup

High-pressure liquid supply system

Liquid tank

Optical setup

Vacuum chamber

Vacuum Pump

Page 11: Institute of Aerospace Thermodynamics H. Kamoun, G. Lamanna, B. Weigand Institute of Aerospace Thermodynamics, Universität Stuttgart 70569 Stuttgart Germany.

11

Institute of Aerospace Thermodynamics

Experimental Setup

Heated modified diesel injector with D=150 μm and L/D= 6.6 Short injection and transient times → Constant backpressure Constant injection conditions (i.e. pressure & temperature) Reproducible test conditions

Courtesy of Bosch GmbH

Page 12: Institute of Aerospace Thermodynamics H. Kamoun, G. Lamanna, B. Weigand Institute of Aerospace Thermodynamics, Universität Stuttgart 70569 Stuttgart Germany.

12

Institute of Aerospace Thermodynamics

Experimental Setup

Heated background

Cooled background

303 K<TBack <389 K

280 K<TBack <290 K

Page 13: Institute of Aerospace Thermodynamics H. Kamoun, G. Lamanna, B. Weigand Institute of Aerospace Thermodynamics, Universität Stuttgart 70569 Stuttgart Germany.

13

Institute of Aerospace Thermodynamics

Differential Infrared Thermography

Page 14: Institute of Aerospace Thermodynamics H. Kamoun, G. Lamanna, B. Weigand Institute of Aerospace Thermodynamics, Universität Stuttgart 70569 Stuttgart Germany.

14

Institute of Aerospace Thermodynamics

IR Kamera

Resolution: 640x512 pixel

Detector: InSb

Detector cooling: Stirling Cooler

Spectral range: 1.5 - 5µm

Integrationmode: Snapshot

Calibration range: 5°C – 300°C

FLIR Orion SC7000 Series

Page 15: Institute of Aerospace Thermodynamics H. Kamoun, G. Lamanna, B. Weigand Institute of Aerospace Thermodynamics, Universität Stuttgart 70569 Stuttgart Germany.

15

Institute of Aerospace Thermodynamics

Contents

Motivation & Objectives

Differential Infrared Thermography

Experimental Setup

Uncertainty analysis

Results

Summary

Page 16: Institute of Aerospace Thermodynamics H. Kamoun, G. Lamanna, B. Weigand Institute of Aerospace Thermodynamics, Universität Stuttgart 70569 Stuttgart Germany.

16

Institute of Aerospace Thermodynamics

Uncertainty analysis

The choice of the background temperatures

If Ispray < IBackground1,2 and for the spray dilute region (εspray<<1)

A calculation of the spray temperature is impossible

Key point: the selection of the background temperature should enhance the contrast between spray and surroundings

1,1 1 BackgroundSpraybSpraySprayCam III

2,2 1 BackgroundSpraybSpraySprayCam III

11 1 BackgroundsprayCam II

22 1 BackgroundsprayCam II

Page 17: Institute of Aerospace Thermodynamics H. Kamoun, G. Lamanna, B. Weigand Institute of Aerospace Thermodynamics, Universität Stuttgart 70569 Stuttgart Germany.

17

Institute of Aerospace Thermodynamics

Uncertainty analysis

4/1

42

41

42

41

42

41

41

42

414

1

1

BackBack

CamCam

BackBack

BackCamCamCam

spray

TT

TT

TTTTT

T

T

The sensitivity to measurement errors in e.g. the temperature recorded by the infrared camera TCam1

For a given Tspray and Tback1,2 ,the temperature recorded by the camera and the spray temperature error can be computed as a function of εspray

1Cam

spray

dT

dT

Page 18: Institute of Aerospace Thermodynamics H. Kamoun, G. Lamanna, B. Weigand Institute of Aerospace Thermodynamics, Universität Stuttgart 70569 Stuttgart Germany.

18

Institute of Aerospace Thermodynamics

Uncertainty analysis

1,1 1 BackgroundSpraybSpraySprayCam III

Liquid: ethanol, Tinj = 389K, pam = 0.2bar, pinj = 10bar

The best results are obtained when the spray temperature distribution is intermediate between the two background values

Page 19: Institute of Aerospace Thermodynamics H. Kamoun, G. Lamanna, B. Weigand Institute of Aerospace Thermodynamics, Universität Stuttgart 70569 Stuttgart Germany.

19

Institute of Aerospace Thermodynamics

Uncertainty analysis

Tback1=286 K, Tback1=366 K

Max error: 4K

Tback1=337K, Tback1=366 K

Max error: 25K

Page 20: Institute of Aerospace Thermodynamics H. Kamoun, G. Lamanna, B. Weigand Institute of Aerospace Thermodynamics, Universität Stuttgart 70569 Stuttgart Germany.

20

Institute of Aerospace Thermodynamics

Uncertainty analysis (Outlook)

Influence of multiple scattering inside the spray:

Neglecting infrared scattering may lead to an overestimation of the emitted spray radiation

Further investigation are needed to evaluate this effect on the temperature results

Comparison of the temperature results with Global Rainbow Thermometry data to validate the assumption made here.

Page 21: Institute of Aerospace Thermodynamics H. Kamoun, G. Lamanna, B. Weigand Institute of Aerospace Thermodynamics, Universität Stuttgart 70569 Stuttgart Germany.

21

Institute of Aerospace Thermodynamics

Contents

Motivation & Objectives

Differential Infrared Thermography

Experimental Setup

Uncertainty analysis

Results

Summary

Page 22: Institute of Aerospace Thermodynamics H. Kamoun, G. Lamanna, B. Weigand Institute of Aerospace Thermodynamics, Universität Stuttgart 70569 Stuttgart Germany.

22

Institute of Aerospace Thermodynamics

Results (Validation)

Liquid: ethanol, Tinj = 403K, pam = 1 bar, pinj = 10bar

the window does not affect the temperature results

good agreement with the temperature measured by the thermocouples

Despite the good agreement a validation of the DIT can be accomplished only upon comparison with other non-

intrusive thermographic technique (e.g. GRT)

estimation of infrared scattering from a cloud of finely atomised droplets.

Page 23: Institute of Aerospace Thermodynamics H. Kamoun, G. Lamanna, B. Weigand Institute of Aerospace Thermodynamics, Universität Stuttgart 70569 Stuttgart Germany.

23

Institute of Aerospace Thermodynamics

Results

r

x

Example of flash a atomising spray. Liquid: Ethanol, Tinj = 389 K, pam = 0.2 bar,

p inj = 10 barNear the nozzle exit: narrow temperature profile

Downstream: flatter temperature profileRapidly decay of the temperature downstream the nozzle

Page 24: Institute of Aerospace Thermodynamics H. Kamoun, G. Lamanna, B. Weigand Institute of Aerospace Thermodynamics, Universität Stuttgart 70569 Stuttgart Germany.

24

Institute of Aerospace Thermodynamics

Results (Axial Profile)

Liquid: ethanol, Tinj = 342 K, pinj = 10bar

am

injsatp p

TpR

)(

Superheating Rp ↑ → Cooling rate ↑

Page 25: Institute of Aerospace Thermodynamics H. Kamoun, G. Lamanna, B. Weigand Institute of Aerospace Thermodynamics, Universität Stuttgart 70569 Stuttgart Germany.

25

Institute of Aerospace Thermodynamics

Contents

Motivation & Objectives

Differential Infrared Thermography

Experimental Setup

Uncertainty analysis

Results

Summary

Page 26: Institute of Aerospace Thermodynamics H. Kamoun, G. Lamanna, B. Weigand Institute of Aerospace Thermodynamics, Universität Stuttgart 70569 Stuttgart Germany.

26

Institute of Aerospace Thermodynamics

Summary and Outlook

The potential of the differential infrared thermography (DIT) for the characterisation of the temperature evolution in am flashing jet has been explored

Experiments were carried out under vacuum condition employing ethanol as test fluid.

The best results are obtained when the spray temperature is intermediate between the two background values

The temperature showed a decay along the spray centreline

With increasing superheat level, the cooling rate increases

Results with a good agreement with the thermocouple measurement.

Outlookfurther investigation are needed to evaluate the effect of radiative, infrared scattering on the temperature measurement

Page 27: Institute of Aerospace Thermodynamics H. Kamoun, G. Lamanna, B. Weigand Institute of Aerospace Thermodynamics, Universität Stuttgart 70569 Stuttgart Germany.

27

Institute of Aerospace Thermodynamics

Thank You

Page 28: Institute of Aerospace Thermodynamics H. Kamoun, G. Lamanna, B. Weigand Institute of Aerospace Thermodynamics, Universität Stuttgart 70569 Stuttgart Germany.

28

Institute of Aerospace Thermodynamics

Page 29: Institute of Aerospace Thermodynamics H. Kamoun, G. Lamanna, B. Weigand Institute of Aerospace Thermodynamics, Universität Stuttgart 70569 Stuttgart Germany.

29

Institute of Aerospace Thermodynamics

Backup

Page 30: Institute of Aerospace Thermodynamics H. Kamoun, G. Lamanna, B. Weigand Institute of Aerospace Thermodynamics, Universität Stuttgart 70569 Stuttgart Germany.

30

Institute of Aerospace Thermodynamics

Experimental Setup

Requirements: Reproducible test conditions

• P∞: from 0.02 bar to 0.4 bar

• T∞=20°C

• Tinj: from 35 °C to 140°C

• Pinj= 10 bar

Good Vacuum (P∞=390 Pa)

Possibility to vary independently injection pressure and temperature

Problem: Maintaining a constant

backpressure

Solution: Fast response injection

Page 31: Institute of Aerospace Thermodynamics H. Kamoun, G. Lamanna, B. Weigand Institute of Aerospace Thermodynamics, Universität Stuttgart 70569 Stuttgart Germany.

31

Institute of Aerospace Thermodynamics

Injector

Requirements: Short injection and transient times → Constant backpressure Constant injection conditions (i.e. pressure & temperature) Reproducible test conditions

heated, modified diesel injector

Courtesy of Bosch GmbH

Page 32: Institute of Aerospace Thermodynamics H. Kamoun, G. Lamanna, B. Weigand Institute of Aerospace Thermodynamics, Universität Stuttgart 70569 Stuttgart Germany.

32

Institute of Aerospace Thermodynamics

Results (Axial Profile)

Liquid: ethanol, pam = 0.1 bar, pinj = 10bar

Page 33: Institute of Aerospace Thermodynamics H. Kamoun, G. Lamanna, B. Weigand Institute of Aerospace Thermodynamics, Universität Stuttgart 70569 Stuttgart Germany.

33

Institute of Aerospace Thermodynamics

Results (Axial Profile)

Liquid: ethanol, Tinj = 389 K, pinj = 10bar

Page 34: Institute of Aerospace Thermodynamics H. Kamoun, G. Lamanna, B. Weigand Institute of Aerospace Thermodynamics, Universität Stuttgart 70569 Stuttgart Germany.

34

Institute of Aerospace Thermodynamics

Vacuum Chamber

Water cooling → to prevent temperature gradients in the test chamber

Chamber temperature controlled through 3 thermocouples