Insect pest management in vegetable crops

Click here to load reader

  • date post

    06-Dec-2014
  • Category

    Education

  • view

    2.116
  • download

    13

Embed Size (px)

description

vegetable pest management

Transcript of Insect pest management in vegetable crops

  • 1. Latest trends and techniques of insect-pest management in commercial vegetable production Kamaldeep Singh Matharu Department of Entomology HPAU, Palampur

2. INTRODUCTION Vegetable provide nutritional security in addition to foodsecurity. They supply carbohydrate, proteins, vitamins and minerals. They constitute the major part of the diet of the Indians. In 2010, vegetables grown on 79.8 million hectare, withproduction of 133.7 million tonnes.Anonymous (2011) 3. Yield loss in some vegetables caused by major insect-pestsCropPest common namePest Scientific name Per centReference damageCabbage Diamondback mothPlutella xylostella (L.)52Raja et al. (1999)Onion Onion thrips Thrips tabaci Linderman 50More (1977)Brinjal Brinjal fruit and shoot Leucinodes orbonalis Guenee20.7-60 Gangwar andborerSachan (1981)OkraShoot and fruit borerEarias vittella (Fabricius)63.53Chaudhary andDadheech (1989)JassidAmrasca biguttula biguttula 32.06-40.84Singh and Brar(Ishida) (1994)Tomato Tomato fruit borer Helicoverpa armigera (Hubner)30-57.79 Dhandapani et al.(2003)Bitter Fruit flyBactrocera cucurbitae Coquillet100 Srivastava andgourdButani (1998) 4. Why pest problems in vegetable cultivation ?MonocultureOverlapping of cropsDense croppingAvailability of preferred hostExcessive use of fertilizersIndiscriminate use of pesticide 5. Technique of Pest ManagementCultural methods1. Plant diversity2. Mulchingi. Polythene mulchingii. Straw mulching 6. Plant diversity Intra-field diversity Trap crop attracts insect Intercrop Insecticides are seldom required It enhances natural control Suitable for IPM programme 7. Successful examples of trap crop in vegetable cropsMain cropTrap cropMethod of plantingPest (s) controlledCabbage Collards Border crop Diamondback MothTomatolovageRow intercrop Tomato hornwormCarrot Onion and garlicBorder cropThrips and Carrot root flyGarlicmarigold Border crop ThripsCabbageIndian mustardStrip intercrop in Cabbage headbetween cabbage plots caterpillarPotatoTansy Intercrop Colorado potato beetle 8. Effect of intercropping on population of fruit borer in tomato crop 1.6 Larval population/plant 1.4 1.261.511.09 1.21.391.38 0.941 0.8 0.6 0.4 0.20TomatoTomatoTomatoTomatoTomatoTomato ++ + + + + Coriander FenugreekBarleyCarrotMustard Dill Crop combination DehradunRam and Singh, 2010 9. Effect of intercropping brinjal on the incidence of L. orbonalisTreatments Shoot damage Fruit damage per Marketable per centcentyield (t/ha)Brinjal+ Roselle 16.4 29.0 23.4Brinjal+Sowa 17.2 31.9 22.1Brinjal+ Marigold23.6 36.9 18.5Brinjal+Maize30.4 38.5 17.2Brinjal (Sole protected) 8.722.3 27.3Brinjal (Sole Control) 46.9 64.2 14.6CD (P=0.05)5.23.83.2Port BlairPrasad et al. 2007 10. Effect of split burying of two rows of crucifer cultivars in soil on fruit damage by H. armigera Mean fruit damage (%) in tomato grown adjacentto crucifer cultivars Days after Control Mean buryingBrassicaEruca B. NapaB. Napajuncea var. sativa var. var. GSL-1 var. PGSH-PBR-91TMLC-2 51 62 14.28 (22.01) 14.01 (21.89) 8.83 (16.44) 11.90 (19.38) 25.02 (29.96) 14.81 (21.94) 69 4.58 (11.62)3.77 (10.63)3.38 (10.33) 4.95 (10.52)16.34 (24.11) 6.69 (13.42) 76 3.31 (10.46)2.36 (7.22) 4.12 (11.58) 5.70 (13.09)12.98 (21.05) 5.69 (12.68) 83 10.85 (19.22) 8.29 (16.34)2.5 (7.34) 6.83 (15.03)17.13 (24.43) 9.12 (16.47) Mean 8.26 (18.83)7.11 (14.02)4.71 (11.40) 7.34 (14.51)17.87 (24.89) Pandher et al. 2008CD (P=0.05) Days after burying = 3.32Cultivars= 3.71Ludhiana 11. Mulching Increase the soil temperature Reduce inter movement of insect Suppress the alternate host. 12. Mean population of Tetranychus urticae/2 cm2 leaf area of brinjal hybrid BH-2 in different cultural treatments under nethouse conditionsCultural control Mean mite population/ 2cm2 leaf area of brinjal under different growingsystemsTraining Without training MeanWhite polythene mulching5.27 (29.03) 6.86 (46.96)6.17 (38.00)Black polythene mulching5.25 (26.86) 6.14 (37.00)5.70 (31.93)Low tunnel white polythene5.59 (30.43) 7.18 (51.86)6.38 (41.15)mulchingControl 6.43 (42.13) 7.68 (58.53)7.06 (50.33)Mean5.69 (32,11) 6.97 (48.59)-C.D (P=0.05) 0.27 LudhianaBhullar and Dhatt 2011 13. Straw mulch Straw treated plots havelower T. tabaci (Adult andlarval) populationascompared to control. Emergence of T. tabacireduced 54 per cent ascompared to bare soil.New York Larentzaki et al. 2008 14. Mechanical methods1. Trellis system2. Protected cultivation3. Traps4. Lure and kill 15. Trellis system More light penetration Pest monitoring becomes too easy Less pest and disease problems Comparatively less health hazards. 16. Effect of trellis system on fruit yield and borer infestation inbitter gourdTreatment Population ofPercent loss Percent lossFruit yieldspecification Diaphania in fruit weightin fruit (q/ha) indica/fruit (g/fruit) numberSingle line0.86 13.7014.70225.78Double line1.14 17.6019.40206.50Bower system 1.37 25.5031.10197.12CD (P=0.05)0.102.10 2.10 12.40 Bhubaneswar Singh et al. 2007 17. Protected cultivation technology Insect-pests cause direct and indirect damage Polyhouse and nethouse act as physical barrier Incidence of insect-pest less in protected cultivation Superior quality of produce. 18. Effect of insect pest incidence on high value vegetableunder open field and polyhouse conditionsCrop Open field conditionPolyhouse condition Name ofNo. of Total No.Marketabl Net No. ofTotal No.MarketablNetinsect-insect- of e yield income insect-of e yieldincomepest pest/ plantinsecticide (kg/plant) (Rs/ plant) pest/ plant insecticide (kg/plant) (Rs/sprayedsprayed plant)TomatoWhitefly 20.258 1.554.750.66 3 3.75 15.75 Aphid 25.600.83 Beetle17.400.33 Mealybug15.500.00 Fruit borer5.600.00 Awani (2005) 19. Trapping Monitoring: Insect trap catches indicate adult pest activity. Economic thresholds are based on trap catch numbers Light trap Pheromones trap Sticky trap 20. Yellow sticky trap Yellow traps, trapped higher number of adults leafminer(1879.1) and whiteflies (544.5). Black color trap, trapped lesser number of adults leafminer(14.0) and whiteflies (2.6). One trap per 20m2 for mass trapping of whitefly.Durairaj et al. 2007 21. Flower Model trap (FMT) Flower model trap (FMT) made from artificial yellow chrysanthemum flowercoated with sticky material. It attracts higher number (1.8 times more) of greenhouse whitefly, Trialeurodesvaporariorum Westwood as compared to the conventional yellow sticky trap. The color exhibited by the petals and/or geometrical pattern of the flowermodels might have tempted the whitefly to land on them. Installation of 80 FMTs in a 500 m2 commercial tomato greenhouse significantlyreduced the adult population of T. vaporariorum. Shooty mold infestation was also reduced by 85 per cent on the greenhousefruits. South Korea Mainali and Lim (2008) 22. Lure and kill (Bait technique) Cucurbits are vines and creepers They provide hiding place to Insect-pest Fruit fly lays eggs in fruit tissue Control directed toward adult flies(Palam fruit fly trap) Eg: Cue-lure, methyl eugenol, molasses etc 23. Efficacy of eco-friendly insecticides and bait spray on the bottle gourd fruit damage by B. cucurbitaeTreatmentFirst spray Second sprayThird sprayFruit damageaverageT1NSKE 5% Malathion 50gm +500g Cypermethrin7.50 (8.24) molasses +50 liter of water (0.006%)T2Nimbecidine Malathion 50gm +500gMalathion 13.37 (13.04)(2ml/l water)molasses +50 liter of waterT3 Neem goldMalathion 50gm +500g Diazinon 16.53 (17.19)(2ml/ l water) molasses +50 liter of waterT4Achook (2ml/l Malathion 50gm +500gMalathion 15.00 (15.72) water)molasses +50 liter of waterT5CypermethrinCypermethrin (0.006%)Cypermethrin 9.22 (10.09)(0.006 %)(0.006%)T6Control ControlControl24.49 (28.57)CD7.26(P=0.05) Varanasi Nath et al. 2007 24. Host plant resistance The most cheapest and safest techniques, if availablenaturally Bases of resistance Biophysical (thickening of cell wall, trichomes, surface waxes etc) Biochemical (Nutrient, Allelochemicals ) 25. Resistance of okra varieties against A. biguttula biguttula inkangra valleyVariety Mean nymphs/3 leaves Mean nymphs/3 leaves (Palampur) (Kachhiari)Arka Anamica9.75 (3.27)13.19 (3.72)Harbhajan14.22 (3.88)16.75 (4.19)P-814.48 (3.91)16.87 (4.21)Panchaali11.09 (3.56)13.45 (3.76)Parbhani Kranti10.91 (3.44)13.73 (3.80)Pusa Makhmali15.25 (4.02)20.08 (4.57)Shagun 18.25 (4.37)20.32 (4.59)Tulsi 6.40 (2.70)8.64 (3.05)Varsha Uphar6.64 (2.75)10.72 (3.39)Pusa Sawani21.03 (4.69)23.77 (4.95)CD (P=0.05)0.23 0.18 Badiyala et al. 2010 26. Resistance genotypesCropPlaceResistant genotype Target ReferenceinsectBrinjal Palampur Moderately Resistant: ASRB 2, BB 60C, L. orbonalis Patial et al. H8, Ornamental brinjal, Solanum2008 integrifolium, S.uporo Resistant: Local brinjal, OrnamentalL. orbonalis Patial et al. brinjal, Solanum integrifolium, S.uporo2008 and BB 46-13.OkraPalampur Tulsi (6.40), Varsha Uphar (6.64) A. biguttula Badiyala et al. biguttula2010TomatoFaisalabad Resistance: Sahil, Pakit and Nova Mecb H. armigera Sajjad et al.2011 27. Biorational control1. Biological2. Botanical3. Insect growth regulator (IGR)4. Plant incorporated protectant (PIPs) 28. Why biorational ?Control insect at lower dosesHigh level of selectivityLower the residual toxicity Non-harmful to beneficial insectReduce the health hazards Environmentally safe 29. Biological control Utilization of predator, parasitoid and pathogens Biological control approaches. Conservation Release Pathogens (Bacteria, fungi, virus, nematode, protozoa) 30. Conservation Preserving the natural enemies already existing Use of pest control tactics which are compatible to natural enemies e.g., planting refuge crops (ideal for maintenance of natural enemies etc.) Avoiding pest control tactics which are harmful to natural enemies e.g., Broad spectrum pesticides Use of selective insecticidesInsect pathogensInsect growth regulators 31. Natural enemiesLady bird beetleGreen lace wing Aphidius spSyrphid larvae 32. Natu