Infrared Telescopes. The Electromagnetic Spectrum.

39
Infrared Telescopes Infrared Telescopes

Transcript of Infrared Telescopes. The Electromagnetic Spectrum.

Page 1: Infrared Telescopes. The Electromagnetic Spectrum.

Infrared TelescopesInfrared Telescopes

Page 2: Infrared Telescopes. The Electromagnetic Spectrum.

The Electromagnetic Spectrum

Page 3: Infrared Telescopes. The Electromagnetic Spectrum.

see different phenomena at different wavelengths

Page 4: Infrared Telescopes. The Electromagnetic Spectrum.

1800: Discovery of IR Light

Herschel used a prism to separate sunlight into colors.

He used a thermometer to determine the temperature in each color. Two were placed off to the side as controls.

The highest temperature was found beyond red light where no light was seen.

Page 5: Infrared Telescopes. The Electromagnetic Spectrum.

Infrared

Optical

IR penetrates dust more easily than optical

Page 6: Infrared Telescopes. The Electromagnetic Spectrum.

Far-infraredOptical

Dust glows at the longest IR (and radio) wavelengths

QuickTime™ and a decompressor

are needed to see this picture.

Near-Infrared

Page 7: Infrared Telescopes. The Electromagnetic Spectrum.
Page 8: Infrared Telescopes. The Electromagnetic Spectrum.
Page 9: Infrared Telescopes. The Electromagnetic Spectrum.
Page 10: Infrared Telescopes. The Electromagnetic Spectrum.

Because the most distant galaxies are highly redshifted, IR telescopes are needed to detect them

QuickTime™ and aYUV420 codec decompressor

are needed to see this picture.

Page 11: Infrared Telescopes. The Electromagnetic Spectrum.

Challenges for IR telescopesThe atmosphere produces many absorption lines at IR wavelengths (called telluric absorption); some wavelength ranges are totally opaque

Page 12: Infrared Telescopes. The Electromagnetic Spectrum.

in space

on the ground

The telescope and atmosphere glow brightly at IR wavelengths, which hampers detection of faint IR photons from space. It’s like trying to observe stars at optical wavelengths during the day!

Challenges for IR telescopes

Page 13: Infrared Telescopes. The Electromagnetic Spectrum.

Designing an Infrared TelescopeThe same basic design and materials are used for collecting both optical and IR light. As a result, telescopes often can observe in both wavelength regimes. However, telescopes are usually optimized for specific wavelengths through the details of their design (mirror coatings, camera detectors, etc.).

Page 14: Infrared Telescopes. The Electromagnetic Spectrum.

Designing an Infrared TelescopeTo reduce the absorption of starlight by the atmosphere (mostly water vapor) and thermal emission from the atmosphere, place a telescope on a high mountain, on an airplane, or in space.

Page 15: Infrared Telescopes. The Electromagnetic Spectrum.

Designing an Infrared TelescopeTo reduce the thermal emission by the telescope and instrument, make them as cold as possible. For shorter IR wavelengths, it is sufficient to cool the instrument with liquid nitrogen (77 K); the telescope can be at room temperature. But for longer IR wavelengths, both the telescope and instrument need to be close to absolute zero, so they are placed in space.

Page 16: Infrared Telescopes. The Electromagnetic Spectrum.

IR telescopes became possible in the 1960's with the advances in IR detectors. At an elevation of 13,796 ft., the summit of Mauna Kea on the island of Hawaii is above much of the absorbing water vapor in the atmosphere. It was one of the first sites for IR telescopes.

Mauna Kea

Page 17: Infrared Telescopes. The Electromagnetic Spectrum.

In 1983, the Infrared Astronomical Satellite (IRAS) scanned most of the sky at far-IR wavelengths. IRAS doubled the number of cataloged astronomical sources by detecting about 500,000 IR sources. IRAS discoveries included a disk of dust grains around the star Vega, six new comets, and ultra-luminous IR galaxies, as well as wisps of warm dust called IR cirrus.

IRAS

Page 18: Infrared Telescopes. The Electromagnetic Spectrum.

Between 1997 and 2001, the Two Micron All-Sky Survey (2MASS) imaged the entire sky at near-IR wavelengths using two telescopes in Arizona and Chile. 2MASS has been valuable for many topics in astronomy, including the structure of the Milky Way and the discovery of brown dwarfs.

2MASS

Page 19: Infrared Telescopes. The Electromagnetic Spectrum.

2MASS movie of Milky Way

QuickTime™ and aSorenson Video decompressorare needed to see this picture.

Page 20: Infrared Telescopes. The Electromagnetic Spectrum.

Although it focuses primarily on optical wavelengths, Hubble does operate at near-IR wavelengths as well. As in the optical, Hubble provides very sharp images at IR wavelengths because it is above the atmosphere.

Hubble Space Telescope

2MASS Hubble

Page 21: Infrared Telescopes. The Electromagnetic Spectrum.

The Spitzer Space Telescope was full operational from 2003-2009, and continues to function in a more limited capacity. It operates from near- to far-IR wavelengths and is the last of NASA's "great observatories”. Like Hubble, Spitzer observes specific targets rather than the entire sky.

Spitzer Space Telescope

Spitzer

Page 22: Infrared Telescopes. The Electromagnetic Spectrum.

QuickTime™ and aSorenson Video decompressorare needed to see this picture.

Page 23: Infrared Telescopes. The Electromagnetic Spectrum.

optical

Finding brown dwarfs companions with Spitzer

Page 24: Infrared Telescopes. The Electromagnetic Spectrum.

infrared with Spitzer

Finding brown dwarfs companions with Spitzer

Page 25: Infrared Telescopes. The Electromagnetic Spectrum.

optical

Finding brown dwarfs companions with Spitzer

Page 26: Infrared Telescopes. The Electromagnetic Spectrum.

infrared with Spitzer

Finding brown dwarfs companions with Spitzer

Page 27: Infrared Telescopes. The Electromagnetic Spectrum.

QuickTime™ and aYUV420 codec decompressor

are needed to see this picture.

Page 28: Infrared Telescopes. The Electromagnetic Spectrum.
Page 29: Infrared Telescopes. The Electromagnetic Spectrum.
Page 30: Infrared Telescopes. The Electromagnetic Spectrum.

Herschel Space ObservatoryHerschel was launched in 2009 by the European Space Agency for a 3 year mission. It operates at far-IR wavelengths. Because it has a larger mirror than Spitzer (3.5 m vs. 0.85 m), it produces sharper images.

QuickTime™ and a decompressor

are needed to see this picture.

Page 31: Infrared Telescopes. The Electromagnetic Spectrum.

QuickTime™ and aH.264 decompressor

are needed to see this picture.

Page 32: Infrared Telescopes. The Electromagnetic Spectrum.

Herschel’s Orbit

Page 33: Infrared Telescopes. The Electromagnetic Spectrum.

Wide-field Infrared Survey Explorer (WISE)

WISE was launched by NASA in late 2009 and completed a mid-IR imaging survey of the entire sky in July 2010. The survey is a new version of IRAS with much sharper and more sensitive images. WISE will be used to search for objects that are cold, dusty, or highly redshifted. IRAS WISE (predicted)

Page 34: Infrared Telescopes. The Electromagnetic Spectrum.

Orbit of Wise

QuickTime™ and aYUV420 codec decompressor

are needed to see this picture.

Page 35: Infrared Telescopes. The Electromagnetic Spectrum.

As Earth orbits the Sun, WISE’s orbit also rotates to maintain the spacecraft’s orientation to Earth and Sun.

Orbit of Wise

QuickTime™ and aYUV420 codec decompressor

are needed to see this picture.

Page 36: Infrared Telescopes. The Electromagnetic Spectrum.

Each orbit, a circular strip of the sky is imaged. As the orbit itself rotates, a slightly different strip is imaged.

Orbit of Wise

Page 37: Infrared Telescopes. The Electromagnetic Spectrum.

B) HubbleA) ChandraC) Spitzer

Compton

Which of these 3 space telescopes would be best for detecting light from a brown dwarf? (Brown dwarfs are very cold objects, sort of like planets free-floating in space.)

Page 38: Infrared Telescopes. The Electromagnetic Spectrum.

B) HubbleA) ChandraC) Spitzer

Compton

Which of these 3 space telescopes would be best for detecting light from very hot gas spiraling into a black hole?

Page 39: Infrared Telescopes. The Electromagnetic Spectrum.

B) HubbleA) ChandraC) Spitzer

Compton

Which of these 3 space telescopes would be best for obtaining a sharp image of Mars to study its surface features?