Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian 1.

140
Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian 1

Transcript of Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian 1.

Page 1: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian 1.

Information Theory For Data Management

Divesh Srivastava

Suresh Venkatasubramanian

1

Page 2: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian 1.

-- Abstruse Goose (177)

Motivation

Information Theory is relevant to all of humanity...2Information Theory for Data Management - Divesh & Suresh

Page 3: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian 1.

Background

Many problems in data management need precise reasoning about information content, transfer and loss– Structure Extraction– Privacy preservation– Schema design– Probabilistic data ?

3Information Theory for Data Management - Divesh & Suresh

Page 4: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian 1.

Information Theory

First developed by Shannon as a way of quantifying capacity of signal channels.

Entropy, relative entropy and mutual information capture intrinsic informational aspects of a signal

Today:– Information theory provides a domain-independent way to

reason about structure in data– More information = interesting structure– Less information linkage = decoupling of structures

4Information Theory for Data Management - Divesh & Suresh

Page 5: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian 1.

Tutorial Thesis

Information theory provides a mathematical framework for the quantification of information content, linkage and loss.

This framework can be used in the design of data management strategies that rely on probing the structure of information in

data.

Information Theory for Data Management - Divesh & Suresh 5

Page 6: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian 1.

Tutorial Goals

Introduce information-theoretic concepts to DB audience Give a ‘data-centric’ perspective on information theory Connect these to applications in data management Describe underlying computational primitives

Illuminate when and how information theory might be of use in new areas of data management.

Information Theory for Data Management - Divesh & Suresh 6

Page 7: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian 1.

Outline

Part 1 Introduction to Information Theory Application: Data Anonymization Application: Database Design

Part 2 Review of Information Theory Basics Application: Data Integration Computing Information Theoretic Primitives Open Problems

Information Theory for Data Management - Divesh & Suresh 7

Page 8: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian 1.

Histograms And Discrete Distributions

x1

x2

x1

x1

x4

x2

x3

x1

X

Column of data

X f(X)

x1 4

x2 2

x3 1

x4 1

Histogram

X p(X)

x1 0.5

x2 0.25

x3 0.125

x4 0.125

Probability distribution

normalizeaggregate counts

Information Theory for Data Management - Divesh & Suresh 8

Page 9: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian 1.

Histograms And Discrete Distributions

x1

x2

x1

x1

x4

x2

x3

x1

X

Column of data

X f(X)

x1 4

x2 2

x3 1

x4 1

Histogram

X p(X)

x1 0.667

x2 0.2

x3 0.067

x4 0.067

Probability distribution

aggregate counts

X f(x)*w(X)

x1 4*5=20

x2 2*3=6

x3 1*2=2

x4 1*2=2

normalizereweight

Information Theory for Data Management - Divesh & Suresh 9

Page 10: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian 1.

From Columns To Random Variables

We can think of a column of data as “represented” by a random variable: – X is a random variable– p(X) is the column of probabilities p(X = x1), p(X = x2), and so on– Also known (in unweighted case) as the empirical distribution

induced by the column X. Notation:

– X (upper case) denotes a random variable (column)– x (lower case) denotes a value taken by X (field in a tuple)– p(x) is the probability p(X = x)

Information Theory for Data Management - Divesh & Suresh 10

Page 11: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian 1.

Joint Distributions

Discrete distribution: probability p(X,Y,Z)

p(Y) = ∑x p(X=x,Y) = ∑x ∑z p(X=x,Y,Z=z)

X Y Z p(X,Y,Z)

x1 y1 z1 0.125

x1 y2 z2 0.125

x1 y1 z2 0.125

x1 y2 z1 0.125

x2 y3 z3 0.125

x2 y3 z4 0.125

x3 y3 z5 0.125

x4 y3 z6 0.125

X p(X)

x1 0.5

x2 0.25

x3 0.125

x4 0.125

Y p(Y)

y1 0.25

y2 0.25

y3 0.5

X Y p(X,Y)

x1 y1 0.25

x1 y2 0.25

x2 y3 0.25

x3 y3 0.125

x4 y3 0.125

Information Theory for Data Management - Divesh & Suresh 11

Page 12: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian 1.

Entropy Of A Column

Let h(x) = log2 1/p(x) h(X) is column of h(x) values.

H(X) = EX[h(x)] = X p(x) log2 1/p(x)

Two views of entropy It captures uncertainty in data: high entropy, more

unpredictability It captures information content: higher entropy, more

information.

X p(X) h(X)

x1 0.5 1

x2 0.25 2

x3 0.125 3

x4 0.125 3

H(X) = 1.75 < log |X| = 2

Information Theory for Data Management - Divesh & Suresh 12

Page 13: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian 1.

Examples

X uniform over [1, ..., 4]. H(X) = 2 Y is 1 with probability 0.5, in [2,3,4] uniformly.

– H(Y) = 0.5 log 2 + 0.5 log 6 ~= 1.8 < 2– Y is more sharply defined, and so has less uncertainty.

Z uniform over [1, ..., 8]. H(Z) = 3 > 2– Z spans a larger range, and captures more information

X Y ZInformation Theory for Data Management - Divesh & Suresh 13

Page 14: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian 1.

Comparing Distributions

How do we measure difference between two distributions ? Kullback-Leibler divergence:

– dKL(p, q) = Ep[ h(q) – h(p) ] = i pi log(pi/qi)

Inference mechanism

Prior belief Resulting belief

Information Theory for Data Management - Divesh & Suresh 14

Page 15: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian 1.

Comparing Distributions

Kullback-Leibler divergence:– dKL(p, q) = Ep[ h(q) – h(p) ] = i pi log(pi/qi)

– dKL(p, q) >= 0 – Captures extra information needed to capture p given q– Is asymmetric ! dKL(p, q) != dKL(q, p) – Is not a metric (does not satisfy triangle inequality)

There are other measures:– 2-distance, variational distance, f-divergences, …

Information Theory for Data Management - Divesh & Suresh 15

Page 16: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian 1.

Conditional Probability

Given a joint distribution on random variables X, Y, how much information about X can we glean from Y ?

Conditional probability: p(X|Y)– p(X = x1 | Y = y1) = p(X = x1, Y = y1)/p(Y = y1)

X Y p(X,Y) p(X|Y) p(Y|X)

x1 y1 0.25 1.0 0.5

x1 y2 0.25 1.0 0.5

x2 y3 0.25 0.5 1.0

x3 y3 0.125 0.25 1.0

x4 y3 0.125 0.25 1.0

X p(X)

x1 0.5

x2 0.25

x3 0.125

x4 0.125

Y p(Y)

y1 0.25

y2 0.25

y3 0.5

Information Theory for Data Management - Divesh & Suresh 16

Page 17: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian 1.

Conditional Entropy

Let h(x|y) = log2 1/p(x|y)

H(X|Y) = Ex,y[h(x|y)] = x y p(x,y) log2 1/p(x|y) H(X|Y) = H(X,Y) – H(Y)

H(X|Y) = H(X,Y) – H(Y) = 2.25 – 1.5 = 0.75 If X, Y are independent, H(X|Y) = H(X)

X Y p(X,Y) p(X|Y) h(X|Y)

x1 y1 0.25 1.0 0.0

x1 y2 0.25 1.0 0.0

x2 y3 0.25 0.5 1.0

x3 y3 0.125 0.25 2.0

x4 y3 0.125 0.25 2.0

Information Theory for Data Management - Divesh & Suresh 17

Page 18: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian 1.

Mutual Information

Mutual information captures the difference between the joint distribution on X and Y, and the marginal distributions on X and Y.

Let i(x;y) = log p(x,y)/p(x)p(y) I(X;Y) = Ex,y[I(X;Y)] = x y p(x,y) log p(x,y)/p(x)p(y)

X Y p(X,Y) h(X,Y) i(X;Y)

x1 y1 0.25 2.0 1.0

x1 y2 0.25 2.0 1.0

x2 y3 0.25 2.0 1.0

x3 y3 0.125 3.0 1.0

x4 y3 0.125 3.0 1.0

X p(X) h(X)

x1 0.5 1.0

x2 0.25 2.0

x3 0.125 3.0

x4 0.125 3.0

Y p(Y) h(Y)

y1 0.25 2.0

y2 0.25 2.0

y3 0.5 1.0

Information Theory for Data Management - Divesh & Suresh 18

Page 19: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian 1.

Mutual Information: Strength of linkage I(X;Y) = H(X) + H(Y) – H(X,Y) = H(X) – H(X|Y) = H(Y) – H(Y|X) If X, Y are independent, then I(X;Y) = 0:

– H(X,Y) = H(X) + H(Y), so I(X;Y) = H(X) + H(Y) – H(X,Y) = 0 I(X;Y) <= max (H(X), H(Y))

– Suppose Y = f(X) (deterministically)– Then H(Y|X) = 0, and so I(X;Y) = H(Y) – H(Y|X) = H(Y)

Mutual information captures higher-order interactions:– Covariance captures “linear” interactions only – Two variables can be uncorrelated (covariance = 0) and have

nonzero mutual information:– X R [-1,1], Y = X2. Cov(X,Y) = 0, I(X;Y) = H(X) > 0

Information Theory for Data Management - Divesh & Suresh 19

Page 20: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian 1.

Information Theory: Summary

We can represent data as discrete distributions (normalized histograms)

Entropy captures uncertainty or information content in a distribution

The Kullback-Leibler distance captures the difference between distributions

Mutual information and conditional entropy capture linkage between variables in a joint distribution

Information Theory for Data Management - Divesh & Suresh 20

Page 21: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian 1.

Outline

Part 1 Introduction to Information Theory Application: Data Anonymization Application: Database Design

Part 2 Review of Information Theory Basics Application: Data Integration Computing Information Theoretic Primitives Open Problems

Information Theory for Data Management - Divesh & Suresh 21

Page 22: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian 1.

Data Anonymization Using Randomization Goal: publish anonymized microdata to enable accurate ad hoc

analyses, but ensure privacy of individuals’ sensitive attributes

Key ideas: – Randomize numerical data: add noise from known distribution– Reconstruct original data distribution using published noisy data

Issues:– How can the original data distribution be reconstructed?– What kinds of randomization preserve privacy of individuals?

Information Theory for Data Management - Divesh & Suresh 22

Page 23: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian 1.

Data Anonymization Using Randomization Many randomization strategies proposed [AS00, AA01, EGS03]

Example randomization strategies: X in [0, 10]– R = X + μ (mod 11), μ is uniform in {-1, 0, 1}– R = X + μ (mod 11), μ is in {-1 (p = 0.25), 0 (p = 0.5), 1 (p = 0.25)}– R = X (p = 0.6), R = μ, μ is uniform in [0, 10] (p = 0.4)

Question:– Which randomization strategy has higher privacy preservation?– Quantify loss of privacy due to publication of randomized data

23Information Theory for Data Management - Divesh & Suresh

Page 24: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian 1.

Data Anonymization Using Randomization X in [0, 10], R1 = X + μ (mod 11), μ is uniform in {-1, 0, 1}

Id X

s1 0

s2 3

s3 5

s4 0

s5 8

s6 0

s7 6

s8 0

24Information Theory for Data Management - Divesh & Suresh

Page 25: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian 1.

Data Anonymization Using Randomization X in [0, 10], R1 = X + μ (mod 11), μ is uniform in {-1, 0, 1}

Id X μ

s1 0 -1

s2 3 0

s3 5 1

s4 0 0

s5 8 1

s6 0 -1

s7 6 1

s8 0 0

Id R1

s1 10

s2 3

s3 6

s4 0

s5 9

s6 10

s7 7

s8 0

25Information Theory for Data Management - Divesh & Suresh

Page 26: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian 1.

Data Anonymization Using Randomization X in [0, 10], R1 = X + μ (mod 11), μ is uniform in {-1, 0, 1}

Id X μ

s1 0 0

s2 3 -1

s3 5 0

s4 0 1

s5 8 1

s6 0 -1

s7 6 -1

s8 0 1

Id R1

s1 0

s2 2

s3 5

s4 1

s5 9

s6 10

s7 5

s8 1

26Information Theory for Data Management - Divesh & Suresh

Page 27: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian 1.

Reconstruction of Original Data Distribution X in [0, 10], R1 = X + μ (mod 11), μ is uniform in {-1, 0, 1}

– Reconstruct distribution of X using knowledge of R1 and μ– EM algorithm converges to MLE of original distribution [AA01]

Id X μ

s1 0 0

s2 3 -1

s3 5 0

s4 0 1

s5 8 1

s6 0 -1

s7 6 -1

s8 0 1

Id R1

s1 0

s2 2

s3 5

s4 1

s5 9

s6 10

s7 5

s8 1

Id X | R1

s1 {10, 0, 1}

s2 {1, 2, 3}

s3 {4, 5, 6}

s4 {0, 1, 2}

s5 {8, 9, 10}

s6 {9, 10, 0}

s7 {4, 5, 6}

s8 {0, 1, 2}

27Information Theory for Data Management - Divesh & Suresh

Page 28: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian 1.

Analysis of Privacy [AS00]

X in [0, 10], R1 = X + μ (mod 11), μ is uniform in {-1, 0, 1}– If X is uniform in [0, 10], privacy determined by range of μ

Id X μ

s1 0 0

s2 3 -1

s3 5 0

s4 0 1

s5 8 1

s6 0 -1

s7 6 -1

s8 0 1

Id R1

s1 0

s2 2

s3 5

s4 1

s5 9

s6 10

s7 5

s8 1

Id X | R1

s1 {10, 0, 1}

s2 {1, 2, 3}

s3 {4, 5, 6}

s4 {0, 1, 2}

s5 {8, 9, 10}

s6 {9, 10, 0}

s7 {4, 5, 6}

s8 {0, 1, 2}

28Information Theory for Data Management - Divesh & Suresh

Page 29: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian 1.

Analysis of Privacy [AA01]

X in [0, 10], R1 = X + μ (mod 11), μ is uniform in {-1, 0, 1}– If X is uniform in [0, 1] [5, 6], privacy smaller than range of μ

Id X μ

s1 0 0

s2 1 -1

s3 5 0

s4 6 1

s5 0 1

s6 1 -1

s7 5 -1

s8 6 1

Id R1

s1 0

s2 0

s3 5

s4 7

s5 1

s6 0

s7 4

s8 7

Id X | R1

s1 {10, 0, 1}

s2 {10, 0, 1}

s3 {4, 5, 6}

s4 {6, 7, 8}

s5 {0, 1, 2}

s6 {10, 0, 1}

s7 {3, 4, 5}

s8 {6, 7, 8}

29Information Theory for Data Management - Divesh & Suresh

Page 30: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian 1.

Analysis of Privacy [AA01]

X in [0, 10], R1 = X + μ (mod 11), μ is uniform in {-1, 0, 1}– If X is uniform in [0, 1] [5, 6], privacy smaller than range of μ– In some cases, sensitive value revealed

Id X μ

s1 0 0

s2 1 -1

s3 5 0

s4 6 1

s5 0 1

s6 1 -1

s7 5 -1

s8 6 1

Id R1

s1 0

s2 0

s3 5

s4 7

s5 1

s6 0

s7 4

s8 7

Id X | R1

s1 {0, 1}

s2 {0, 1}

s3 {5, 6}

s4 {6}

s5 {0, 1}

s6 {0, 1}

s7 {5}

s8 {6}

30Information Theory for Data Management - Divesh & Suresh

Page 31: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian 1.

Quantify Loss of Privacy [AA01]

Goal: quantify loss of privacy based on mutual information I(X;R)– Smaller H(X|R) more loss of privacy in X by knowledge of R– Larger I(X;R) more loss of privacy in X by knowledge of R– I(X;R) = H(X) – H(X|R)

I(X;R) used to capture correlation between X and R– p(X) is the prior knowledge of sensitive attribute X– p(X, R) is the joint distribution of X and R

31Information Theory for Data Management - Divesh & Suresh

Page 32: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian 1.

Quantify Loss of Privacy [AA01]

Goal: quantify loss of privacy based on mutual information I(X;R)– X is uniform in [5, 6], R1 = X + μ (mod 11), μ is uniform in {-1, 0, 1}

X R1 p(X,R1) h(X,R1) i(X;R1)

5 4

5 5

5 6

6 5

6 6

6 7

X p(X) h(X)

5

6

R1 p(R1) h(R1)

4

5

6

7

32Information Theory for Data Management - Divesh & Suresh

Page 33: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian 1.

Quantify Loss of Privacy [AA01]

Goal: quantify loss of privacy based on mutual information I(X;R)– X is uniform in [5, 6], R1 = X + μ (mod 11), μ is uniform in {-1, 0, 1}

X R1 p(X,R1) h(X,R1) i(X;R1)

5 4 0.17

5 5 0.17

5 6 0.17

6 5 0.17

6 6 0.17

6 7 0.17

X p(X) h(X)

5 0.5

6 0.5

R1 p(R1) h(R1)

4 0.17

5 0.34

6 0.34

7 0.17

33Information Theory for Data Management - Divesh & Suresh

Page 34: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian 1.

Quantify Loss of Privacy [AA01]

Goal: quantify loss of privacy based on mutual information I(X;R)– X is uniform in [5, 6], R1 = X + μ (mod 11), μ is uniform in {-1, 0, 1}

X R1 p(X,R1) h(X,R1) i(X;R1)

5 4 0.17 2.58

5 5 0.17 2.58

5 6 0.17 2.58

6 5 0.17 2.58

6 6 0.17 2.58

6 7 0.17 2.58

X p(X) h(X)

5 0.5 1.0

6 0.5 1.0

R1 p(R1) h(R1)

4 0.17 2.58

5 0.34 1.58

6 0.34 1.58

7 0.17 2.58

34Information Theory for Data Management - Divesh & Suresh

Page 35: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian 1.

Quantify Loss of Privacy [AA01]

Goal: quantify loss of privacy based on mutual information I(X;R)– X is uniform in [5, 6], R1 = X + μ (mod 11), μ is uniform in {-1, 0, 1}– I(X;R) = 0.33

X R1 p(X,R1) h(X,R1) i(X;R1)

5 4 0.17 2.58 1.0

5 5 0.17 2.58 0.0

5 6 0.17 2.58 0.0

6 5 0.17 2.58 0.0

6 6 0.17 2.58 0.0

6 7 0.17 2.58 1.0

X p(X) h(X)

5 0.5 1.0

6 0.5 1.0

R1 p(R1) h(R1)

4 0.17 2.58

5 0.34 1.58

6 0.34 1.58

7 0.17 2.58

35Information Theory for Data Management - Divesh & Suresh

Page 36: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian 1.

Quantify Loss of Privacy [AA01]

Goal: quantify loss of privacy based on mutual information I(X;R)– X is uniform in [5, 6], R2 = X + μ (mod 11), μ is uniform in {0, 1}– I(X;R1) = 0.33, I(X;R2) = 0.5 R2 is a bigger privacy risk than R1

X R2 p(X,R2) h(X,R2) i(X;R2)

5 5 0.25 2.0 1.0

5 6 0.25 2.0 0.0

6 6 0.25 2.0 0.0

6 7 0.25 2.0 1.0

X p(X) h(X)

5 0.5 1.0

6 0.5 1.0

R2 p(R2) h(R2)

5 0.25 2.0

6 0.5 1.0

7 0.25 2.0

36Information Theory for Data Management - Divesh & Suresh

Page 37: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian 1.

Quantify Loss of Privacy [AA01]

Equivalent goal: quantify loss of privacy based on H(X|R)– X is uniform in [5, 6], R2 = X + μ (mod 11), μ is uniform in {0, 1}– Intuition: we know more about X given R2, than about X given R1– H(X|R1) = 0.67, H(X|R2) = 0.5 R2 is a bigger privacy risk than R1

X R2 p(X,R2) p(X|R2) h(X|R2)

5 5 0.25 1.0 0.0

5 6 0.25 0.5 1.0

6 6 0.25 0.5 1.0

6 7 0.25 1.0 0.0

X R1 p(X,R1) p(X|R1) h(X|R1)

5 4 0.17 1.0 0.0

5 5 0.17 0.5 1.0

5 6 0.17 0.5 1.0

6 5 0.17 0.5 1.0

6 6 0.17 0.5 1.0

6 7 0.17 1.0 0.0

37Information Theory for Data Management - Divesh & Suresh

Page 38: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian 1.

Quantify Loss of Privacy

Example: X is uniform in [0, 1] – R3 = e (p = 0.9999), R3 = X (p = 0.0001)– R4 = X (p = 0.6), R4 = 1 – X (p = 0.4)

Is R3 or R4 a bigger privacy risk?

38Information Theory for Data Management - Divesh & Suresh

Page 39: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian 1.

Worst Case Loss of Privacy [EGS03]

Example: X is uniform in [0, 1] – R3 = e (p = 0.9999), R3 = X (p = 0.0001)– R4 = X (p = 0.6), R4 = 1 – X (p = 0.4)

I(X;R3) = 0.0001 << I(X;R4) = 0.028

X R3 p(X,R3) h(X,R3) i(X;R3)

0 e 0.49995 1.0 0.0

0 0 0.00005 14.29 1.0

1 e 0.49995 1.0 0.0

1 1 0.00005 14.29 1.0

X R4 p(X,R4) h(X,R4) i(X;R4)

0 0 0.3 1.74 0.26

0 1 0.2 2.32 -0.32

1 0 0.2 2.32 -0.32

1 1 0.3 1.74 0.26

39Information Theory for Data Management - Divesh & Suresh

Page 40: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian 1.

Worst Case Loss of Privacy [EGS03]

Example: X is uniform in [0, 1] – R3 = e (p = 0.9999), R3 = X (p = 0.0001)– R4 = X (p = 0.6), R4 = 1 – X (p = 0.4)

I(X;R3) = 0.0001 << I(X;R4) = 0.028– But R3 has a larger worst case risk

X R3 p(X,R3) h(X,R3) i(X;R3)

0 e 0.49995 1.0 0.0

0 0 0.00005 14.29 1.0

1 e 0.49995 1.0 0.0

1 1 0.00005 14.29 1.0

X R4 p(X,R4) h(X,R4) i(X;R4)

0 0 0.3 1.74 0.26

0 1 0.2 2.32 -0.32

1 0 0.2 2.32 -0.32

1 1 0.3 1.74 0.26

40Information Theory for Data Management - Divesh & Suresh

Page 41: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian 1.

Worst Case Loss of Privacy [EGS03]

Goal: quantify worst case loss of privacy in X by knowledge of R– Use max KL divergence, instead of mutual information

Mutual information can be formulated as expected KL divergence– I(X;R) = ∑x ∑r p(x,r)*log2(p(x,r)/p(x)*p(r)) = KL(p(X,R) || p(X)*p(R))

– I(X;R) = ∑r p(r) ∑x p(x|r)*log2(p(x|r)/p(x)) = ER [KL(p(X|r) || p(X))]– [AA01] measure quantifies expected loss of privacy over R

[EGS03] propose a measure based on worst case loss of privacy– IW(X;R) = MAXR [KL(p(X|r) || p(X))]

41Information Theory for Data Management - Divesh & Suresh

Page 42: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian 1.

Worst Case Loss of Privacy [EGS03]

Example: X is uniform in [0, 1]– R3 = e (p = 0.9999), R3 = X (p = 0.0001)– R4 = X (p = 0.6), R4 = 1 – X (p = 0.4)

IW(X;R3) = max{0.0, 1.0, 1.0} > IW(X;R4) = max{0.028, 0.028}

X R3 p(X,R3) p(X|R3) i(X;R3)

0 e 0.49995 0.5 0.0

0 0 0.00005 1.0 1.0

1 e 0.49995 0.5 0.0

1 1 0.00005 1.0 1.0

X R4 p(X,R4) p(X|R4) i(X;R4)

0 0 0.3 0.6 0.26

0 1 0.2 0.4 -0.32

1 0 0.2 0.4 -0.32

1 1 0.3 0.6 0.26

42Information Theory for Data Management - Divesh & Suresh

Page 43: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian 1.

Worst Case Loss of Privacy [EGS03]

Example: X is uniform in [5, 6]– R1 = X + μ (mod 11), μ is uniform in {-1, 0, 1}– R2 = X + μ (mod 11), μ is uniform in {0, 1}

IW(X;R1) = max{1.0, 0.0, 0.0, 1.0} = IW(X;R2) = {1.0, 0.0, 1.0}– Unable to capture that R2 is a bigger privacy risk than R1

X R1 p(X,R1) p(X|R1) i(X;R1)

5 4 0.17 1.0 1.0

5 5 0.17 0.5 0.0

5 6 0.17 0.5 0.0

6 5 0.17 0.5 0.0

6 6 0.17 0.5 0.0

6 7 0.17 1.0 1.0

X R2 p(X,R2) p(X|R2) i(X;R2)

5 5 0.25 1.0 1.0

5 6 0.25 0.5 0.0

6 6 0.25 0.5 0.0

6 7 0.25 1.0 1.0

43Information Theory for Data Management - Divesh & Suresh

Page 44: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian 1.

Data Anonymization: Summary

Randomization techniques useful for microdata anonymization– Randomization techniques differ in their loss of privacy

Information theoretic measures useful to capture loss of privacy– Expected KL divergence captures expected privacy loss [AA01]– Maximum KL divergence captures worst case privacy loss [EGS03]– Both are useful in practice

44Information Theory for Data Management - Divesh & Suresh

Page 45: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian 1.

Outline

Part 1 Introduction to Information Theory Application: Data Anonymization Application: Database Design

Part 2 Review of Information Theory Basics Application: Data Integration Computing Information Theoretic Primitives Open Problems

45Information Theory for Data Management - Divesh & Suresh

Page 46: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian 1.

Information Dependencies [DR00]

Goal: use information theory to examine and reason about information content of the attributes in a relation instance

Key ideas: – Novel InD measure between attribute sets X, Y based on H(Y|X)– Identify numeric inequalities between InD measures

Results:– InD measures are a broader class than FDs and MVDs– Armstrong axioms for FDs derivable from InD inequalities– MVD inference rules derivable from InD inequalities

46Information Theory for Data Management - Divesh & Suresh

Page 47: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian 1.

Information Dependencies [DR00]

Functional dependency: X → Y– FD X → Y holds iff t1, t2 ((t1[X] = t2[X]) (t1[Y] = t2[Y]))

X Y Z

x1 y1 z1

x1 y2 z2

x1 y1 z2

x1 y2 z1

x2 y3 z3

x2 y3 z4

x3 y3 z5

x4 y3 z6

47Information Theory for Data Management - Divesh & Suresh

Page 48: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian 1.

Information Dependencies [DR00]

Functional dependency: X → Y– FD X → Y holds iff t1, t2 ((t1[X] = t2[X]) (t1[Y] = t2[Y]))

X Y Z

x1 y1 z1

x1 y2 z2

x1 y1 z2

x1 y2 z1

x2 y3 z3

x2 y3 z4

x3 y3 z5

x4 y3 z6

48Information Theory for Data Management - Divesh & Suresh

Page 49: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian 1.

Information Dependencies [DR00]

Result: FD X → Y holds iff H(Y|X) = 0– Intuition: once X is known, no remaining uncertainty in Y

H(Y|X) = 0.5

X Y p(X,Y) p(Y|X) h(Y|X)

x1 y1 0.25 0.5 1.0

x1 y2 0.25 0.5 1.0

x2 y3 0.25 1.0 0.0

x3 y3 0.125 1.0 0.0

x4 y3 0.125 1.0 0.0

X p(X)

x1 0.5

x2 0.25

x3 0.125

x4 0.125

Y p(Y)

y1 0.25

y2 0.25

y3 0.5

49Information Theory for Data Management - Divesh & Suresh

Page 50: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian 1.

Information Dependencies [DR00]

Multi-valued dependency: X →→ Y– MVD X →→ Y holds iff R(X,Y,Z) = R(X,Y) R(X,Z)

X Y Z

x1 y1 z1

x1 y2 z2

x1 y1 z2

x1 y2 z1

x2 y3 z3

x2 y3 z4

x3 y3 z5

x4 y3 z6

50Information Theory for Data Management - Divesh & Suresh

Page 51: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian 1.

Information Dependencies [DR00]

Multi-valued dependency: X →→ Y– MVD X →→ Y holds iff R(X,Y,Z) = R(X,Y) R(X,Z)

X Y Z

x1 y1 z1

x1 y2 z2

x1 y1 z2

x1 y2 z1

x2 y3 z3

x2 y3 z4

x3 y3 z5

x4 y3 z6

X Y

x1 y1

x1 y2

x2 y3

x3 y3

x4 y3

X Z

x1 z1

x1 z2

x2 z3

x2 z4

x3 z5

x4 z6

=

51Information Theory for Data Management - Divesh & Suresh

Page 52: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian 1.

Information Dependencies [DR00]

Multi-valued dependency: X →→ Y– MVD X →→ Y holds iff R(X,Y,Z) = R(X,Y) R(X,Z)

X Y Z

x1 y1 z1

x1 y2 z2

x1 y1 z2

x1 y2 z1

x2 y3 z3

x2 y3 z4

x3 y3 z5

x4 y3 z6

X Y

x1 y1

x1 y2

x2 y3

x3 y3

x4 y3

X Z

x1 z1

x1 z2

x2 z3

x2 z4

x3 z5

x4 z6

=

52Information Theory for Data Management - Divesh & Suresh

Page 53: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian 1.

Information Dependencies [DR00]

Result: MVD X →→ Y holds iff H(Y,Z|X) = H(Y|X) + H(Z|X)– Intuition: once X known, uncertainties in Y and Z are independent

H(Y|X) = 0.5, H(Z|X) = 0.75, H(Y,Z|X) = 1.25

=

X Y h(Y|X)

x1 y1 1.0

x1 y2 1.0

x2 y3 0.0

x3 y3 0.0

x4 y3 0.0

X Z h(Z|X)

x1 z1 1.0

x1 z2 1.0

x2 z3 1.0

x2 z4 1.0

x3 z5 0.0

x4 z6 0.0

X Y Z h(Y,Z|X)

x1 y1 z1 2.0

x1 y2 z2 2.0

x1 y1 z2 2.0

x1 y2 z1 2.0

x2 y3 z3 1.0

x2 y3 z4 1.0

x3 y3 z5 0.0

x4 y3 z6 0.0

53Information Theory for Data Management - Divesh & Suresh

Page 54: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian 1.

Information Dependencies [DR00]

Result: Armstrong axioms for FDs derivable from InD inequalities

Reflexivity: If Y X, then X → Y– H(Y|X) = 0 for Y X

Augmentation: X → Y X,Z → Y,Z– 0 ≤ H(Y,Z|X,Z) = H(Y|X,Z) ≤ H(Y|X) = 0

Transitivity: X → Y & Y → Z X → Z– 0 ≥ H(Y|X) + H(Z|Y) ≥ H(Z|X) ≥ 0

54Information Theory for Data Management - Divesh & Suresh

Page 55: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian 1.

Database Normal Forms

Goal: eliminate update anomalies by good database design– Need to know the integrity constraints on all database instances

Boyce-Codd normal form:– Input: a set ∑ of functional dependencies– For every (non-trivial) FD R.X → R.Y ∑+, R.X is a key of R

4NF:– Input: a set ∑ of functional and multi-valued dependencies– For every (non-trivial) MVD R.X →→ R.Y ∑+, R.X is a key of R

55Information Theory for Data Management - Divesh & Suresh

Page 56: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian 1.

Database Normal Forms

Functional dependency: X → Y– Which design is better?

X Y Z

x1 y1 z1

x1 y1 z2

x2 y2 z3

x2 y2 z4

x3 y3 z5

x4 y4 z6

X Y

x1 y1

x2 y2

x3 y3

x4 y4

X Z

x1 z1

x1 z2

x2 z3

x2 z4

x3 z5

x4 z6

=

56Information Theory for Data Management - Divesh & Suresh

Page 57: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian 1.

Database Normal Forms

Functional dependency: X → Y– Which design is better?

Decomposition is in BCNF

X Y Z

x1 y1 z1

x1 y1 z2

x2 y2 z3

x2 y2 z4

x3 y3 z5

x4 y4 z6

X Y

x1 y1

x2 y2

x3 y3

x4 y4

X Z

x1 z1

x1 z2

x2 z3

x2 z4

x3 z5

x4 z6

=

57Information Theory for Data Management - Divesh & Suresh

Page 58: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian 1.

Database Normal Forms

Multi-valued dependency: X →→ Y– Which design is better?

X Y Z

x1 y1 z1

x1 y2 z2

x1 y1 z2

x1 y2 z1

x2 y3 z3

x2 y3 z4

x3 y3 z5

x4 y3 z6

X Y

x1 y1

x1 y2

x2 y3

x3 y3

x4 y3

X Z

x1 z1

x1 z2

x2 z3

x2 z4

x3 z5

x4 z6

=

58Information Theory for Data Management - Divesh & Suresh

Page 59: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian 1.

Database Normal Forms

Multi-valued dependency: X →→ Y– Which design is better?

Decomposition is in 4NF

X Y Z

x1 y1 z1

x1 y2 z2

x1 y1 z2

x1 y2 z1

x2 y3 z3

x2 y3 z4

x3 y3 z5

x4 y3 z6

X Y

x1 y1

x1 y2

x2 y3

x3 y3

x4 y3

X Z

x1 z1

x1 z2

x2 z3

x2 z4

x3 z5

x4 z6

=

59Information Theory for Data Management - Divesh & Suresh

Page 60: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian 1.

Well-Designed Databases [AL03]

Goal: use information theory to characterize “goodness” of a database design and reason about normalization algorithms

Key idea: – Information content measure of cell in a DB instance w.r.t. ICs– Redundancy reduces information content measure of cells

Results:– Well-designed DB each cell has information content > 0– Normalization algorithms never decrease information content

60Information Theory for Data Management - Divesh & Suresh

Page 61: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian 1.

Well-Designed Databases [AL03]

Information content of cell c in database D satisfying FD X → Y– Uniform distribution p(V) on values for c consistent with D\c and FD– Information content of cell c is entropy H(V)

H(V62) = 2.0

X Y Z

x1 y1 z1

x1 y1 z2

x2 y2 z3

x2 y2 z4

x3 y3 z5

x4 y4 z6

V62 p(V62) h(V62)

y1 0.25 2.0

y2 0.25 2.0

y3 0.25 2.0

y4 0.25 2.0

61Information Theory for Data Management - Divesh & Suresh

Page 62: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian 1.

Well-Designed Databases [AL03]

Information content of cell c in database D satisfying FD X → Y– Uniform distribution p(V) on values for c consistent with D\c and FD– Information content of cell c is entropy H(V)

H(V22) = 0.0

X Y Z

x1 y1 z1

x1 y1 z2

x2 y2 z3

x2 y2 z4

x3 y3 z5

x4 y4 z6

V22 p(V22) h(V22)

y1 1.0 0.0

y2 0.0

y3 0.0

y4 0.0

62Information Theory for Data Management - Divesh & Suresh

Page 63: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian 1.

Well-Designed Databases [AL03]

Information content of cell c in database D satisfying FD X → Y– Information content of cell c is entropy H(V)

Schema S is in BCNF iff D S, H(V) > 0, for all cells c in D– Technicalities w.r.t. size of active domain

X Y Z

x1 y1 z1

x1 y1 z2

x2 y2 z3

x2 y2 z4

x3 y3 z5

x4 y4 z6

c H(V)

c12 0.0

c22 0.0

c32 0.0

c42 0.0

c52 2.0

c62 2.0

63Information Theory for Data Management - Divesh & Suresh

Page 64: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian 1.

Well-Designed Databases [AL03]

Information content of cell c in database D satisfying FD X → Y– Information content of cell c is entropy H(V)

H(V12) = 2.0, H(V42) = 2.0

V42 p(V42) h(V42)

y1 0.25 2.0

y2 0.25 2.0

y3 0.25 2.0

y4 0.25 2.0

X Y

x1 y1

x2 y2

x3 y3

x4 y4

X Z

x1 z1

x1 z2

x2 z3

x2 z4

x3 z5

x4 z6

V12 p(V12) h(V12)

y1 0.25 2.0

y2 0.25 2.0

y3 0.25 2.0

y4 0.25 2.0

64Information Theory for Data Management - Divesh & Suresh

Page 65: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian 1.

Well-Designed Databases [AL03]

Information content of cell c in database D satisfying FD X → Y– Information content of cell c is entropy H(V)

Schema S is in BCNF iff D S, H(V) > 0, for all cells c in D

X Y

x1 y1

x2 y2

x3 y3

x4 y4

X Z

x1 z1

x1 z2

x2 z3

x2 z4

x3 z5

x4 z6

c H(V)

c12 2.0

c22 2.0

c32 2.0

c42 2.0

65Information Theory for Data Management - Divesh & Suresh

Page 66: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian 1.

Well-Designed Databases [AL03]

Information content of cell c in DB D satisfying MVD X →→ Y– Information content of cell c is entropy H(V)

H(V52) = 0.0, H(V53) = 2.32

X Y Z

x1 y1 z1

x1 y2 z2

x1 y1 z2

x1 y2 z1

x2 y3 z3

x2 y3 z4

x3 y3 z5

x4 y3 z6

V52 p(V52) h(V52)

y3 1.0 0.0

V53 p(V53) h(V53)

z1 0.2 2.32

z2 0.2 2.32

z3 0.2 2.32

z4 0.0

z5 0.2 2.32

z6 0.2 2.32

66Information Theory for Data Management - Divesh & Suresh

Page 67: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian 1.

Well-Designed Databases [AL03]

Information content of cell c in DB D satisfying MVD X →→ Y– Information content of cell c is entropy H(V)

Schema S is in 4NF iff D S, H(V) > 0, for all cells c in D

X Y Z

x1 y1 z1

x1 y2 z2

x1 y1 z2

x1 y2 z1

x2 y3 z3

x2 y3 z4

x3 y3 z5

x4 y3 z6

c H(V)

c12 0.0

c22 0.0

c32 0.0

c42 0.0

c52 0.0

c62 0.0

c72 1.58

c82 1.58

c H(V)

c13 0.0

c23 0.0

c33 0.0

c43 0.0

c53 2.32

c63 2.32

c73 2.58

c83 2.58

67Information Theory for Data Management - Divesh & Suresh

Page 68: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian 1.

Well-Designed Databases [AL03]

Information content of cell c in DB D satisfying MVD X →→ Y– Information content of cell c is entropy H(V)

H(V32) = 1.58, H(V34) = 2.32

V34 p(V34) h(V34)

z1 0.2 2.32

z2 0.2 2.32

z3 0.2 2.32

z4 0.0

z5 0.2 2.32

z6 0.2 2.32

X Y

x1 y1

x1 y2

x2 y3

x3 y3

x4 y3

X Z

x1 z1

x1 z2

x2 z3

x2 z4

x3 z5

x4 z6

V32 p(V32) h(V32)

y1 0.33 1.58

y2 0.33 1.58

y3 0.33 1.58

68Information Theory for Data Management - Divesh & Suresh

Page 69: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian 1.

Well-Designed Databases [AL03]

Information content of cell c in DB D satisfying MVD X →→ Y– Information content of cell c is entropy H(V)

Schema S is in 4NF iff D S, H(V) > 0, for all cells c in D

X Y

x1 y1

x1 y2

x2 y3

x3 y3

x4 y3

X Z

x1 z1

x1 z2

x2 z3

x2 z4

x3 z5

x4 z6

c H(V)

c12 1.0

c22 1.0

c32 1.58

c42 1.58

c52 1.58

c H(V)

c14 2.32

c24 2.32

c34 2.32

c44 2.32

c54 2.58

c64 2.58

69Information Theory for Data Management - Divesh & Suresh

Page 70: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian 1.

Well-Designed Databases [AL03]

Normalization algorithms never decrease information content– Information content of cell c is entropy H(V)

X Y Z

x1 y1 z1

x1 y2 z2

x1 y1 z2

x1 y2 z1

x2 y3 z3

x2 y3 z4

x3 y3 z5

x4 y3 z6

c H(V)

c13 0.0

c23 0.0

c33 0.0

c43 0.0

c53 2.32

c63 2.32

c73 2.58

c83 2.58

70Information Theory for Data Management - Divesh & Suresh

Page 71: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian 1.

Well-Designed Databases [AL03]

Normalization algorithms never decrease information content– Information content of cell c is entropy H(V)

c H(V)

c14 2.32

c24 2.32

c34 2.32

c44 2.32

c54 2.58

c64 2.58

X Y Z

x1 y1 z1

x1 y2 z2

x1 y1 z2

x1 y2 z1

x2 y3 z3

x2 y3 z4

x3 y3 z5

x4 y3 z6

X Y

x1 y1

x1 y2

x2 y3

x3 y3

x4 y3

X Z

x1 z1

x1 z2

x2 z3

x2 z4

x3 z5

x4 z6

=

c H(V)

c13 0.0

c23 0.0

c33 0.0

c43 0.0

c53 2.32

c63 2.32

c73 2.58

c83 2.58

71Information Theory for Data Management - Divesh & Suresh

Page 72: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian 1.

Well-Designed Databases [AL03]

Normalization algorithms never decrease information content– Information content of cell c is entropy H(V)

c H(V)

c14 2.32

c24 2.32

c34 2.32

c44 2.32

c54 2.58

c64 2.58

X Y Z

x1 y1 z1

x1 y2 z2

x1 y1 z2

x1 y2 z1

x2 y3 z3

x2 y3 z4

x3 y3 z5

x4 y3 z6

X Y

x1 y1

x1 y2

x2 y3

x3 y3

x4 y3

X Z

x1 z1

x1 z2

x2 z3

x2 z4

x3 z5

x4 z6

=

c H(V)

c13 0.0

c23 0.0

c33 0.0

c43 0.0

c53 2.32

c63 2.32

c73 2.58

c83 2.58

72Information Theory for Data Management - Divesh & Suresh

Page 73: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian 1.

Database Design: Summary

Good database design essential for preserving data integrity

Information theoretic measures useful for integrity constraints– FD X → Y holds iff InD measure H(Y|X) = 0– MVD X →→ Y holds iff H(Y,Z|X) = H(Y|X) + H(Z|X)– Information theory to model correlations in specific database

Information theoretic measures useful for normal forms– Schema S is in BCNF/4NF iff D S, H(V) > 0, for all cells c in D– Information theory to model distributions over possible databases

73Information Theory for Data Management - Divesh & Suresh

Page 74: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian 1.

Outline

Part 1 Introduction to Information Theory Application: Data Anonymization Application: Database Design

Part 2 Review of Information Theory Basics Application: Data Integration Computing Information Theoretic Primitives Open Problems

74Information Theory for Data Management - Divesh & Suresh

Page 75: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian 1.

Review of Information Theory Basics

Discrete distribution: probability p(X)

p(X,Y) = ∑z p(X,Y,Z=z)

X Y Z p(X,Y,Z)

x1 y1 z1 0.125

x1 y2 z2 0.125

x1 y1 z2 0.125

x1 y2 z1 0.125

x2 y3 z3 0.125

x2 y3 z4 0.125

x3 y3 z5 0.125

x4 y3 z6 0.125

X p(X)

x1 0.5

x2 0.25

x3 0.125

x4 0.125

Y p(Y)

y1 0.25

y2 0.25

y3 0.5

X Y p(X,Y)

x1 y1 0.25

x1 y2 0.25

x2 y3 0.25

x3 y3 0.125

x4 y3 0.125

75Information Theory for Data Management - Divesh & Suresh

Page 76: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian 1.

Review of Information Theory Basics

Discrete distribution: probability p(X)

p(Y) = ∑x p(X=x,Y) = ∑x ∑z p(X=x,Y,Z=z)

X Y Z p(X,Y,Z)

x1 y1 z1 0.125

x1 y2 z2 0.125

x1 y1 z2 0.125

x1 y2 z1 0.125

x2 y3 z3 0.125

x2 y3 z4 0.125

x3 y3 z5 0.125

x4 y3 z6 0.125

X p(X)

x1 0.5

x2 0.25

x3 0.125

x4 0.125

Y p(Y)

y1 0.25

y2 0.25

y3 0.5

X Y p(X,Y)

x1 y1 0.25

x1 y2 0.25

x2 y3 0.25

x3 y3 0.125

x4 y3 0.125

76Information Theory for Data Management - Divesh & Suresh

Page 77: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian 1.

Review of Information Theory Basics

Discrete distribution: conditional probability p(X|Y)

p(X,Y) = p(X|Y)*p(Y) = p(Y|X)*p(X)

X Y p(X,Y) p(X|Y) p(Y|X)

x1 y1 0.25 1.0 0.5

x1 y2 0.25 1.0 0.5

x2 y3 0.25 0.5 1.0

x3 y3 0.125 0.25 1.0

x4 y3 0.125 0.25 1.0

X p(X)

x1 0.5

x2 0.25

x3 0.125

x4 0.125

Y p(Y)

y1 0.25

y2 0.25

y3 0.5

77Information Theory for Data Management - Divesh & Suresh

Page 78: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian 1.

Review of Information Theory Basics

Discrete distribution: entropy H(X)

h(x) = log2(1/p(x))– H(X) = ∑X=x p(x)*h(x) = 1.75

– H(Y) = ∑Y=y p(y)*h(y) = 1.5 (≤ log2(|Y|) = 1.58)

– H(X,Y) = ∑X=x ∑Y=y p(x,y)*h(x,y) = 2.25 (≤ log2(|X,Y|) = 2.32)

X Y p(X,Y) h(X,Y)

x1 y1 0.25 2.0

x1 y2 0.25 2.0

x2 y3 0.25 2.0

x3 y3 0.125 3.0

x4 y3 0.125 3.0

X p(X) h(X)

x1 0.5 1.0

x2 0.25 2.0

x3 0.125 3.0

x4 0.125 3.0

Y p(Y) h(Y)

y1 0.25 2.0

y2 0.25 2.0

y3 0.5 1.0

78Information Theory for Data Management - Divesh & Suresh

Page 79: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian 1.

Review of Information Theory Basics

Discrete distribution: conditional entropy H(X|Y)

h(x|y) = log2(1/p(x|y))– H(X|Y) = ∑X=x ∑Y=y p(x,y)*h(x|y) = 0.75– H(X|Y) = H(X,Y) – H(Y) = 2.25 – 1.5

X Y p(X,Y) p(X|Y) h(X|Y)

x1 y1 0.25 1.0 0.0

x1 y2 0.25 1.0 0.0

x2 y3 0.25 0.5 1.0

x3 y3 0.125 0.25 2.0

x4 y3 0.125 0.25 2.0

X p(X) h(X)

x1 0.5 1.0

x2 0.25 2.0

x3 0.125 3.0

x4 0.125 3.0

Y p(Y) h(Y)

y1 0.25 2.0

y2 0.25 2.0

y3 0.5 1.0

79Information Theory for Data Management - Divesh & Suresh

Page 80: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian 1.

Review of Information Theory Basics

Discrete distribution: mutual information I(X;Y)

i(x;y) = log2(p(x,y)/p(x)*p(y))– I(X;Y) = ∑X=x ∑Y=y p(x,y)*i(x;y) = 1.0– I(X;Y) = H(X) + H(Y) – H(X,Y) = 1.75 + 1.5 – 2.25

X Y p(X,Y) h(X,Y) i(X;Y)

x1 y1 0.25 2.0 1.0

x1 y2 0.25 2.0 1.0

x2 y3 0.25 2.0 1.0

x3 y3 0.125 3.0 1.0

x4 y3 0.125 3.0 1.0

X p(X) h(X)

x1 0.5 1.0

x2 0.25 2.0

x3 0.125 3.0

x4 0.125 3.0

Y p(Y) h(Y)

y1 0.25 2.0

y2 0.25 2.0

y3 0.5 1.0

80Information Theory for Data Management - Divesh & Suresh

Page 81: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian 1.

Outline

Part 1 Introduction to Information Theory Application: Data Anonymization Application: Database Design

Part 2 Review of Information Theory Basics Application: Data Integration Computing Information Theoretic Primitives Open Problems

81Information Theory for Data Management - Divesh & Suresh

Page 82: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian 1.

Schema Matching

Goal: align columns across database tables to be integrated– Fundamental problem in database integration

Early useful approach: textual similarity of column names– False positives: Address ≠ IP_Address– False negatives: Customer_Id = Client_Number

Early useful approach: overlap of values in columns, e.g., Jaccard– False positives: Emp_Id ≠ Project_Id– False negatives: Emp_Id = Personnel_Number

82Information Theory for Data Management - Divesh & Suresh

Page 83: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian 1.

Opaque Schema Matching [KN03]

Goal: align columns when column names, data values are opaque– Databases belong to different government bureaucracies – Treat column names and data values as uninterpreted (generic)

Example: EMP_PROJ(Emp_Id, Proj_Id, Task_Id, Status_Id)– Likely that all Id fields are from the same domain– Different databases may have different column names

W X Y Z

w2 x1 y1 z2

w4 x2 y3 z3

w3 x3 y3 z1

w1 x2 y1 z2

A B C D

a1 b2 c1 d1

a3 b4 c2 d2

a1 b1 c1 d2

a4 b3 c2 d3

83Information Theory for Data Management - Divesh & Suresh

Page 84: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian 1.

Opaque Schema Matching [KN03]

Approach: build complete, labeled graph GD for each database D– Nodes are columns, label(node(X)) = H(X), label(edge(X, Y)) = I(X;Y)– Perform graph matching between GD1 and GD2, minimizing distance

Intuition:– Entropy H(X) captures distribution of values in database column X– Mutual information I(X;Y) captures correlations between X, Y– Efficiency: graph matching between schema-sized graphs

84Information Theory for Data Management - Divesh & Suresh

Page 85: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian 1.

Opaque Schema Matching [KN03]

Approach: build complete, labeled graph GD for each database D– Nodes are columns, label(node(X)) = H(X), label(edge(X, Y)) = I(X;Y)

A B C D

a1 b2 c1 d1

a3 b4 c2 d2

a1 b1 c1 d2

a4 b3 c2 d3

A p(A)

a1 0.5

a3 0.25

a4 0.25

B p(B)

b1 0.25

b2 0.25

b3 0.25

b4 0.25

C p(C)

c1 0.5

c2 0.5

D p(D)

d1 0.25

d2 0.5

d3 0.25

85Information Theory for Data Management - Divesh & Suresh

Page 86: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian 1.

Opaque Schema Matching [KN03]

Approach: build complete, labeled graph GD for each database D– Nodes are columns, label(node(X)) = H(X), label(edge(X, Y)) = I(X;Y)

H(A) = 1.5, H(B) = 2.0, H(C) = 1.0, H(D) = 1.5

A B C D

a1 b2 c1 d1

a3 b4 c2 d2

a1 b1 c1 d2

a4 b3 c2 d3

A h(A)

a1 1.0

a3 2.0

a4 2.0

B h(B)

b1 2.0

b2 2.0

b3 2.0

b4 2.0

C h(C)

c1 1.0

c2 1.0

D h(D)

d1 2.0

d2 1.0

d3 2.0

86Information Theory for Data Management - Divesh & Suresh

Page 87: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian 1.

Opaque Schema Matching [KN03]

Approach: build complete, labeled graph GD for each database D– Nodes are columns, label(node(X)) = H(X), label(edge(X, Y)) = I(X;Y)

H(A) = 1.5, H(B) = 2.0, H(C) = 1.0, H(D) = 1.5, I(A;B) = 1.5

A B C D

a1 b2 c1 d1

a3 b4 c2 d2

a1 b1 c1 d2

a4 b3 c2 d3

A h(A)

a1 1.0

a3 2.0

a4 2.0

B h(B)

b1 2.0

b2 2.0

b3 2.0

b4 2.0

A B h(A,B) i(A;B)

a1 b2 2.0 1.0

a3 b4 2.0 2.0

a1 b1 2.0 1.0

a4 b3 2.0 2.0

87Information Theory for Data Management - Divesh & Suresh

Page 88: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian 1.

Opaque Schema Matching [KN03]

Approach: build complete, labeled graph GD for each database D– Nodes are columns, label(node(X)) = H(X), label(edge(X, Y)) = I(X;Y)

A B C D

a1 b2 c1 d1

a3 b4 c2 d2

a1 b1 c1 d2

a4 b3 c2 d3

A B

DC

1.5

1.0

2.0

1.5

1.0

1.5

0.5

1.5

1.0

1.0

88Information Theory for Data Management - Divesh & Suresh

Page 89: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian 1.

Opaque Schema Matching [KN03]

Approach: build complete, labeled graph GD for each database D– Nodes are columns, label(node(X)) = H(X), label(edge(X, Y)) = I(X;Y)– Perform graph matching between GD1 and GD2, minimizing distance

[KN03] uses euclidean and normal distance metrics

W X

ZY

2.0

1.0

1.5

1.5

1.0

1.5

1.0

1.0

1.5

0.5

A B

DC

1.5

1.0

2.0

1.5

1.0

1.5

0.5

1.5

1.0

1.0

89Information Theory for Data Management - Divesh & Suresh

Page 90: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian 1.

Opaque Schema Matching [KN03]

Approach: build complete, labeled graph GD for each database D– Nodes are columns, label(node(X)) = H(X), label(edge(X, Y)) = I(X;Y)– Perform graph matching between GD1 and GD2, minimizing distance

W X

ZY

2.0

1.0

1.5

1.5

1.0

1.5

1.0

1.0

1.5

0.5

A B

DC

1.5

1.0

2.0

1.5

1.0

1.5

0.5

1.5

1.0

1.0

90Information Theory for Data Management - Divesh & Suresh

Page 91: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian 1.

Opaque Schema Matching [KN03]

Approach: build complete, labeled graph GD for each database D– Nodes are columns, label(node(X)) = H(X), label(edge(X, Y)) = I(X;Y)– Perform graph matching between GD1 and GD2, minimizing distance

W X

ZY

2.0

1.0

1.5

1.5

1.0

1.5

1.0

1.0

1.5

0.5

A B

DC

1.5

1.0

2.0

1.5

1.0

1.5

0.5

1.5

1.0

1.0

91Information Theory for Data Management - Divesh & Suresh

Page 92: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian 1.

Heterogeneity Identification [DKOSV06] Goal: identify columns with semantically heterogeneous values

– Can arise due to opaque schema matching [KN03]

Key ideas: – Heterogeneity based on distribution, distinguishability of values– Use Information Theory to quantify heterogeneity

Issues:– Which information theoretic measure characterizes heterogeneity?– How do we actually cluster the data ?

92Information Theory for Data Management - Divesh & Suresh

Page 93: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian 1.

Heterogeneity Identification [DKOSV06] Example: semantically homogeneous, heterogeneous columns

Customer_Id

[email protected]

[email protected]

[email protected]

[email protected]

[email protected]

[email protected]

[email protected]

[email protected]

Customer_Id

[email protected]

[email protected]

[email protected]

[email protected]

(908)-555-1234

973-360-0000

360-0007

(877)-807-4596

93Information Theory for Data Management - Divesh & Suresh

Page 94: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian 1.

Heterogeneity Identification [DKOSV06] Example: semantically homogeneous, heterogeneous columns

Customer_Id

[email protected]

[email protected]

[email protected]

[email protected]

[email protected]

[email protected]

[email protected]

[email protected]

Customer_Id

[email protected]

[email protected]

[email protected]

[email protected]

(908)-555-1234

973-360-0000

360-0007

(877)-807-4596

94Information Theory for Data Management - Divesh & Suresh

Page 95: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian 1.

Heterogeneity Identification [DKOSV06] Example: semantically homogeneous, heterogeneous columns

More semantic types in column greater heterogeneity– Only email versus email + phone

Customer_Id

[email protected]

[email protected]

[email protected]

[email protected]

[email protected]

[email protected]

[email protected]

[email protected]

Customer_Id

[email protected]

[email protected]

[email protected]

[email protected]

(908)-555-1234

973-360-0000

360-0007

(877)-807-4596

95Information Theory for Data Management - Divesh & Suresh

Page 96: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian 1.

Heterogeneity Identification [DKOSV06] Example: semantically homogeneous, heterogeneous columns

Customer_Id

[email protected]

[email protected]

[email protected]

[email protected]

[email protected]

[email protected]

[email protected]

(877)-807-4596

Customer_Id

[email protected]

[email protected]

[email protected]

[email protected]

(908)-555-1234

973-360-0000

360-0007

(877)-807-4596

96Information Theory for Data Management - Divesh & Suresh

Page 97: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian 1.

Heterogeneity Identification [DKOSV06] Example: semantically homogeneous, heterogeneous columns

Relative distribution of semantic types impacts heterogeneity– Mainly email + few phone versus balanced email + phone

Customer_Id

[email protected]

[email protected]

[email protected]

[email protected]

[email protected]

[email protected]

[email protected]

(877)-807-4596

Customer_Id

[email protected]

[email protected]

[email protected]

[email protected]

(908)-555-1234

973-360-0000

360-0007

(877)-807-4596

97Information Theory for Data Management - Divesh & Suresh

Page 98: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian 1.

Heterogeneity Identification [DKOSV06] Example: semantically homogeneous, heterogeneous columns

Customer_Id

187-65-2468

987-64-6837

789-15-4321

987-65-4321

(908)-555-1234

973-360-0000

360-0007

(877)-807-4596

Customer_Id

[email protected]

[email protected]

[email protected]

[email protected]

(908)-555-1234

973-360-0000

360-0007

(877)-807-4596

98Information Theory for Data Management - Divesh & Suresh

Page 99: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian 1.

Heterogeneity Identification [DKOSV06] Example: semantically homogeneous, heterogeneous columns

Customer_Id

187-65-2468

987-64-6837

789-15-4321

987-65-4321

(908)-555-1234

973-360-0000

360-0007

(877)-807-4596

Customer_Id

[email protected]

[email protected]

[email protected]

[email protected]

(908)-555-1234

973-360-0000

360-0007

(877)-807-4596

99Information Theory for Data Management - Divesh & Suresh

Page 100: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian 1.

Heterogeneity Identification [DKOSV06] Example: semantically homogeneous, heterogeneous columns

More easily distinguished types greater heterogeneity– Phone + (possibly) SSN versus balanced email + phone

Customer_Id

187-65-2468

987-64-6837

789-15-4321

987-65-4321

(908)-555-1234

973-360-0000

360-0007

(877)-807-4596

Customer_Id

[email protected]

[email protected]

[email protected]

[email protected]

(908)-555-1234

973-360-0000

360-0007

(877)-807-4596

100Information Theory for Data Management - Divesh & Suresh

Page 101: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian 1.

Heterogeneity Identification [DKOSV06] Heterogeneity = complexity of describing the data

– More, balanced clusters greater heterogeneity– More distinguishable clusters greater heterogeneity

Use two views of mutual information1. It quantifies the complexity of describing the data (compression)2. It quantifies the quality of the compression

101Information Theory for Data Management - Divesh & Suresh

Page 102: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian 1.

Heterogeneity Identification [DKOSV06] Hard clustering

X = Customer_Id T = Cluster_Id

187-65-2468 t1

987-64-6837 t1

789-15-4321 t1

987-65-4321 t1

(908)-555-1234 t2

973-360-0000 t1

360-0007 t3

(877)-807-4596 t2

102Information Theory for Data Management - Divesh & Suresh

Page 103: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian 1.

Measuring complexity of clustering

Take 1: complexity of a clustering = #clusters– standard model of complexity.

Doesn’t capture the fact that clusters have different sizes.

103Information Theory for Data Management - Divesh & Suresh

Page 104: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian 1.

Measuring complexity of clustering

Take 2: Complexity of clustering = number of bits needed to describe it.

Writing down “k” needs log k bits. In general, let cluster t T have |t| elements.

– set p(t) = |t|/n– #bits to write down cluster sizes = H(T) = pt log 1/pt

H( ) < H( )104Information Theory for Data Management - Divesh & Suresh

Page 105: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian 1.

Heterogeneity Identification [DKOSV06] Soft clustering: cluster membership probabilities

How to compute a good soft clustering?

X = Customer_Id T = Cluster_Id p(T|X)

789-15-4321 t1 0.75

987-65-4321 t1 0.75

789-15-4321 t2 0.25

987-65-4321 t2 0.25

(908)-555-1234 t1 0.25

973-360-0000 t1 0.5

(908)-555-1234 t2 0.75

973-360-0000 t2 0.5

105Information Theory for Data Management - Divesh & Suresh

Page 106: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian 1.

Measuring complexity of clustering

Take 1:– p(t) = x p(x) p(t|x)– Compute H(T) as before.

Problem:

H(T1) = H(T2) !!

T1 t1 t2 T2 t1 t2

x1 0.5 0.5 x1 0.99 0.01

x2 0.5 0.5 x2 0.01 0.99

h(T) 0.5 0.5 h(T) 0.5 0.5

106Information Theory for Data Management - Divesh & Suresh

Page 107: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian 1.

Measuring complexity of clustering

By averaging the memberships, we’ve lost useful information. Take II: Compute I(T;X) !

Even better: If T is a hard clustering of X, then I(T;X) = H(T)

X T1 p(X,T) i(X;T)

x1 t1 0.25 0

x1 t2 0.25 0

x2 t1 0.25 0

x2 t2 0.25 0

I(T1;X) = 0

X T2 p(X,T) i(X;T)

x1 t1 0.495 0.99

x1 t2 0.005 -5.64

x2 t1 0.25 0

x2 t2 0.25 0

I(T2;X) = 0.46

107Information Theory for Data Management - Divesh & Suresh

Page 108: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian 1.

Measuring cost of a cluster

Given objects Xt = {X1, X2, …, Xm} in cluster t,

Cost(t) = sum of distances from Xi to cluster center

If we set distance to be KL-distance, then

Cost of a cluster = I(Xt,V)108Information Theory for Data Management - Divesh & Suresh

Page 109: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian 1.

Cost of a clustering

If we partition X into k clusters X1, ..., Xk

Cost(clustering) = i pi I(Xi, V) (pi = |Xi|/|X|)

Suppose we treat each cluster center itself as a point ?

109Information Theory for Data Management - Divesh & Suresh

Page 110: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian 1.

Cost of a clustering

We can write down the “cost” of this “cluster”– Cost(T) = I(T;V)

Key result [BMDG05] : Cost(clustering) = I(X, V) – I(T, V)

Minimizing cost(clustering) => maximizing I(T, V)

110Information Theory for Data Management - Divesh & Suresh

Page 111: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian 1.

Heterogeneity Identification [DKOSV06] Represent strings as q-gram distributions

X = Customer_Id V = 4-grams p(X,V)

987-65-4321 987- 0.10

987-65-4321 87-6 0.13

987-65-4321 7-65 0.12

987-65-4321 -65- 0.15

987-65-4321 65-4 0.05

987-65-4321 5-43 0.20

987-65-4321 -432 0.15

987-65-4321 4321 0.10

Customer_Id

187-65-2468

987-64-6837

789-15-4321

987-65-4321

(908)-555-1234

973-360-0000

360-0007

(877)-807-4596

111Information Theory for Data Management - Divesh & Suresh

Page 112: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian 1.

Heterogeneity Identification [DKOSV06] iIB: find soft clustering T of X that minimizes I(T;X) – β*I(T;V)

Allow iIB to use arbitrarily many clusters, use β* = H(X)/I(X;V)– Closest to point with minimum space and maximum quality

X = Customer_Id V = 4-grams p(X,V)

987-65-4321 987- 0.10

987-65-4321 87-6 0.13

987-65-4321 7-65 0.12

987-65-4321 -65- 0.15

987-65-4321 65-4 0.05

987-65-4321 5-43 0.20

987-65-4321 -432 0.15

987-65-4321 4321 0.10

Customer_Id

187-65-2468

987-64-6837

789-15-4321

987-65-4321

(908)-555-1234

973-360-0000

360-0007

(877)-807-4596

112Information Theory for Data Management - Divesh & Suresh

Page 113: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian 1.

Heterogeneity Identification [DKOSV06] Rate distortion curve: I(T;V)/I(X;V) vs I(T;X)/H(X)

β*

113Information Theory for Data Management - Divesh & Suresh

Page 114: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian 1.

Heterogeneity Identification [DKOSV06] Heterogeneity = mutual information I(T;X) of iIB clustering T at β*

0 ≤I(T;X) (= 0.126) ≤ H(X) (= 2.0), H(T) (= 1.0)– Ideally use iIB with an arbitrarily large number of clusters in T

X = Customer_Id T = Cluster_Id p(T|X) i(T;X)

789-15-4321 t1 0.75 0.41

987-65-4321 t1 0.75 0.41

789-15-4321 t2 0.25 -0.81

987-65-4321 t2 0.25 -0.81

(908)-555-1234 t1 0.25 -1.17

973-360-0000 t1 0.5 -0.17

(908)-555-1234 t2 0.75 0.77

973-360-0000 t2 0.5 0.19

114Information Theory for Data Management - Divesh & Suresh

Page 115: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian 1.

Heterogeneity Identification [DKOSV06] Heterogeneity = mutual information I(T;X) of iIB clustering T at β*

115Information Theory for Data Management - Divesh & Suresh

Page 116: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian 1.

Data Integration: Summary

Analyzing database instance critical for effective data integration– Matching and quality assessments are key components

Information theoretic measures useful for schema matching– Align columns when column names, data values are opaque– Mutual information I(X;V) captures correlations between X, V

Information theoretic measures useful for heterogeneity testing– Identify columns with semantically heterogeneous values– I(T;X) of iIB clustering T at β* captures column heterogeneity

116Information Theory for Data Management - Divesh & Suresh

Page 117: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian 1.

Outline

Part 1 Introduction to Information Theory Application: Data Anonymization Application: Database Design

Part 2 Review of Information Theory Basics Application: Data Integration Computing Information Theoretic Primitives Open Problems

Information Theory for Data Management - Divesh & Suresh 117

Page 118: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian 1.

Domain size matters

For random variable X, domain size = supp(X) = {xi | p(X = xi) > 0}

Different solutions exist depending on whether domain size is “small” or “large”

Probability vectors usually very sparse

118Information Theory for Data Management - Divesh & Suresh

Page 119: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian 1.

Entropy: Case I - Small domain size

Suppose the #unique values for a random variable X is small (i.e fits in memory)

Maximum likelihood estimator: – p(x) = #times x is encountered/total number of items in set.

1

21

4

2

51

1 2 3 4 5

119Information Theory for Data Management - Divesh & Suresh

Page 120: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian 1.

Entropy: Case I - Small domain size

HMLE = x p(x) log 1/p(x) This is a biased estimate:

– E[HMLE] < H

Miller-Madow correction:– H’ = HMLE + (m’ – 1)/2n

m’ is an estimate of number of non-empty bins n = number of samples

Bad news: ALL estimators for H are biased. Good news: we can quantify bias and variance of MLE:

– Bias <= log(1 + m/N)– Var(HMLE) <= (log n)2/N

120Information Theory for Data Management - Divesh & Suresh

Page 121: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian 1.

Entropy: Case II - Large domain size

|X| is too large to fit in main memory, so we can’t maintain explicit counts.

Streaming algorithms for H(X):– Long history of work on this problem– Bottomline:

(1+)-relative-approximation for H(X) that allows for updates to frequencies, and requires “almost constant”, and optimal space [HNO08].

121Information Theory for Data Management - Divesh & Suresh

Page 122: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian 1.

Streaming Entropy [CCM07]

High level idea: sample randomly from the stream, and track counts of elements picked [AMS]

PROBLEM: skewed distribution prevents us from sampling lower-frequency elements (and entropy is small)

Idea: estimate largest frequency, and distribution of what’s left (higher entropy)

122Information Theory for Data Management - Divesh & Suresh

Page 123: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian 1.

Streaming Entropy [CCM07]

Maintain set of samples from original distribution and distribution without most frequent element.

In parallel, maintain estimator for frequency of most frequent element– normally this is hard– but if frequency is very large, then simple estimator exists

[MG81] (Google interview puzzle!)

At the end, compute function of these two estimates Memory usage: roughly 1/2 log(1/) ( is the error)

123Information Theory for Data Management - Divesh & Suresh

Page 124: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian 1.

Entropy and MI are related

I(X;Y) = H(X,Y) – H(X) – H(Y) Suppose we can c-approximate H(X) for any c > 0:

Find H’(X) s.t |H(X) – H’(X)| <= c Then we can 3c-approximate I(X;Y):

– I(X;Y) = H(X,Y) – H(X) – H(Y) <= H’(X,Y)+c – (H’(X)-c) – (H’(Y)-c) <= H’(X,Y) – H’(X) – H’(Y) + 3c

<= I’(X,Y) + 3c Similarly, we can 2c-approximate H(Y|X) = H(X,Y) – H(X) Estimating entropy allows us to estimate I(X;Y) and H(Y|X)

124Information Theory for Data Management - Divesh & Suresh

Page 125: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian 1.

Computing KL-divergence: Small Domains

“easy algorithm”: maintain counts for each of p and q, normalize, and compute KL-divergence.

PROBLEM ! Suppose qi = 0:– pi log pi/qi is undefined !

General problem with ML estimators: all events not seen have probability zero !!– Laplace correction: add one to counts for each seen element– Slightly better: add 0.5 to counts for each seen element [KT81]– Even better, more involved: use Good-Turing estimator [GT53]

YIeld non-zero probability for “things not seen”.

125Information Theory for Data Management - Divesh & Suresh

Page 126: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian 1.

Computing KL-divergence: Large Domains

Bad news: No good relative-approximations exist in small space.

(Partial) good news: additive approximations in small space under certain technical conditions (no pi is too small).

(Partial) good news: additive approximations for symmetric variant of KL-divergence, via sampling.

For details, see [GMV08,GIM08]

126Information Theory for Data Management - Divesh & Suresh

Page 127: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian 1.

Information-theoretic Clustering

Given a collection of random variables X, each “explained” by a random variable Y, we wish to find a (hard or soft) clustering T such that

I(T,X) – I(T, Y)is minimized.

Features of solutions thus far:– heuristic (general problem is NP-hard)– address both small-domain and large-domain scenarios.

127Information Theory for Data Management - Divesh & Suresh

Page 128: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian 1.

Agglomerative Clustering (aIB) [ST00] Fix number of clusters k1. While number of clusters < k

1. Determine two clusters whose merge loses the least information

2. Combine these two clusters

2. Output clustering Merge Criterion:

– merge the two clusters so that change in I(T;V) is minimized Note: no consideration of (number of clusters is fixed)

128Information Theory for Data Management - Divesh & Suresh

Page 129: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian 1.

Agglomerative Clustering (aIB) [S]

Elegant way of finding the two clusters to be merged:

Let dJS(p,q) = (1/2)(dKL(p,m) + dKL(q,m)), m = (p+q)/2

dJS(p,q) is a symmetric distance between p, q (Jensen-Shannon distance)

We merge clusters that have smallest dJS(p,q), (weighted by cluster mass)

p qm

129Information Theory for Data Management - Divesh & Suresh

Page 130: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian 1.

Iterative Information Bottleneck (iIB) [S] aIB yields a hard clustering with k clusters. If you want a soft clustering, use iIB (variant of EM)

– Step 1: p(t|x) ← exp(-dKL(p(V|x),p(V|t)) assign elements to clusters in proportion (exponentially) to

distance from cluster center !– Step 2: Compute new cluster centers by computing weighted

centroids: p(t) = x p(t|x) p(x) p(V|t) = x p(V|t) p(t|x) p(x)/p(t)

– Choose according to [DKOSV06]

130Information Theory for Data Management - Divesh & Suresh

Page 131: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian 1.

Dealing with massive data sets

Clustering on massive data sets is a problem Two main heuristics:

– Sampling [DKOSV06]: pick a small sample of the data, cluster it, and (if necessary)

assign remaining points to clusters using soft assignment. How many points to sample to get good bounds ?

– Streaming: Scan the data in one pass, performing clustering on the fly How much memory needed to get reasonable quality

solution ?

131Information Theory for Data Management - Divesh & Suresh

Page 132: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian 1.

LIMBO (for aIB) [ATMS04]

BIRCH-like idea:– Maintain (sparse) summary for each cluster (p(t), p(V|t))– As data streams in, build clusters on groups of objects– Build next-level clusters on cluster summaries from lower level

132Information Theory for Data Management - Divesh & Suresh

Page 133: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian 1.

Outline

Part 1 Introduction to Information Theory Application: Data Anonymization Application: Database Design

Part 2 Review of Information Theory Basics Application: Data Integration Computing Information Theoretic Primitives Open Problems

Information Theory for Data Management - Divesh & Suresh 133

Page 134: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian 1.

Open Problems

Data exploration and mining – information theory as first-pass filter

Relation to nonparametric generative models in machine learning (LDA, PPCA, ...)

Engineering and stability: finding right knobs to make systems reliable and scalable

Other information-theoretic concepts ? (rate distortion, higher-order entropy, ...)

THANK YOU !134Information Theory for Data Management - Divesh & Suresh

Page 135: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian 1.

References: Information Theory

[CT] Tom Cover and Joy Thomas: Information Theory.

[BMDG05] Arindam Banerjee, Srujana Merugu, Inderjit Dhillon, Joydeep Ghosh. Learning with Bregman Divergences, JMLR 2005.

[TPB98] Naftali Tishby, Fernando Pereira, William Bialek. The Information Bottleneck Method. Proc. 37th Annual Allerton Conference, 1998.

135Information Theory for Data Management - Divesh & Suresh

Page 136: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian 1.

References: Data Anonymization

[AA01] Dakshi Agrawal, Charu C. Aggarwal: On the design and quantification of privacy preserving data mining algorithms. PODS 2001.

[AS00] Rakesh Agrawal, Ramakrishnan Srikant: Privacy preserving data mining. SIGMOD 2000.

[EGS03] Alexandre Evfimievski, Johannes Gehrke, Ramakrishnan Srikant: Limiting privacy breaches in privacy preserving data mining. PODS 2003.

Information Theory for Data Management - Divesh & Suresh 136

Page 137: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian 1.

References: Database Design

[AL03] Marcelo Arenas, Leonid Libkin: An information theoretic approach to normal forms for relational and XML data. PODS 2003.

[AL05] Marcelo Arenas, Leonid Libkin: An information theoretic approach to normal forms for relational and XML data. JACM 52(2), 246-283, 2005.

[DR00] Mehmet M. Dalkilic, Edward L. Robertson: Information dependencies. PODS 2000.

[KL06] Solmaz Kolahi, Leonid Libkin: On redundancy vs dependency preservation in normalization: an information-theoretic study of XML. PODS 2006.

137Information Theory for Data Management - Divesh & Suresh

Page 138: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian 1.

References: Data Integration

[AMT04] Periklis Andritsos, Renee J. Miller, Panayiotis Tsaparas: Information-theoretic tools for mining database structure from large data sets. SIGMOD 2004.

[DKOSV06] Bing Tian Dai, Nick Koudas, Beng Chin Ooi, Divesh Srivastava, Suresh Venkatasubramanian: Rapid identification of column heterogeneity. ICDM 2006.

[DKSTV08] Bing Tian Dai, Nick Koudas, Divesh Srivastava, Anthony K. H. Tung, Suresh Venkatasubramanian: Validating multi-column schema matchings by type. ICDE 2008.

[KN03] Jaewoo Kang, Jeffrey F. Naughton: On schema matching with opaque column names and data values. SIGMOD 2003.

[PPH05] Patrick Pantel, Andrew Philpot, Eduard Hovy: An information theoretic model for database alignment. SSDBM 2005.

138Information Theory for Data Management - Divesh & Suresh

Page 139: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian 1.

References: Computing IT quantities

[P03] Liam Panninski. Estimation of entropy and mutual information. Neural Computation 15: 1191-1254.

[GT53] I. J. Good. Turing’s anticipation of Empirical Bayes in connection with the cryptanalysis of the Naval Enigma. Journal of Statistical Computation and Simulation, 66(2), 2000.

[KT81] R. E. Krichevsky and V. K. Trofimov. The performance of universal encoding. IEEE Trans. Inform. Th. 27 (1981), 199--207.

[CCM07] Amit Chakrabarti, Graham Cormode and Andrew McGregor. A near-optimal algorithm for computing the entropy of a stream. Proc. SODA 2007.

Information Theory for Data Management - Divesh & Suresh 139

Page 140: Information Theory For Data Management Divesh Srivastava Suresh Venkatasubramanian 1.

References: Computing IT quantities

[HNO] Nich Harvey, Jelani Nelson, Krzysztof Onak. Sketching and Streaming Entropy via Approximation Theory. FOCS 2008.

[ATMS04] Periklis Andritsos, Panayiotis Tsaparas, Renée J. Miller and Kenneth C. Sevcik. LIMBO: Scalable Clustering of Categorical Data. EDBT 2004.

[S] Noam Slonim. The Information Bottleneck: theory and applications. Ph.D Thesis. Hebrew University, 2000.

[GMV08] Sudipto Guha, Andrew McGregor, Suresh Venkatasubramanian. Streaming and sublinear approximations for information distances. ACM Trans Alg. 2008.

[GIM08] Sudipto Guha, Piotr Indyk, Andrew McGregor. Sketching Information Distances. JMLR, 2008.

Information Theory for Data Management - Divesh & Suresh 140