information-theoretic semantics - rensselaerfaculty.evansville.edu/tb2/PDFs/RPI Presentation...

46
(How) Can Seman-c Informa-on Be Reduced to Informa-on Theory? Implica-ons for an Informa-onTheore-c Philosophy of Mind Anthony Beavers, Ph.D. Director of Cogni7ve Science Cogni&ve Science Lecture Series Rensselaer Polytechnic Ins&tute – April 4 th , 2012

Transcript of information-theoretic semantics - rensselaerfaculty.evansville.edu/tb2/PDFs/RPI Presentation...

(How)  Can  Seman-c  Informa-on  Be  Reduced  to  Informa-on  Theory?  

 Implica-ons  for  an  Informa-on-­‐Theore-c  Philosophy  of  Mind  

Anthony  Beavers,  Ph.D. Director  of  Cogni7ve  Science

Cogni&ve  Science  Lecture  Series  Rensselaer  Polytechnic  Ins&tute  –  April  4th,  2012  

(How)  Can  Seman-c  Informa-on  Be  Reduced  to  Informa-on  Theory?  

 Implica-ons  for  an  Informa-on-­‐Theore-c  Philosophy  of  Mind  

Anthony  Beavers,  Ph.D. Director  of  Cogni7ve  Science

What  brings  happiness?    

Photo  Courtesy  of  the  Consor&um  for  Cogni&ve  Science  Instruc&on  (CCSI)  hGp://www.mind.ilstu.edu/curriculum/searle_chinese_room/searle_chinese_room.php  

(How)  Can  Seman-c  Informa-on  Be  Reduced    to  Informa-on  Theory?  

 Presenta7on  Outline  

Anthony  Beavers,  Ph.D. Director  of  Cogni7ve  Science

•  A  Brief  Introduc7on  to  Informa7on-­‐Theore7c  Teleodynamics  •  The  Hypothesis  and  the  Method  •  Dynamic  Associa7ve  Networks  (DANs):  Circuits  Not  SoJware  

•  A  DAN  Example  of  Object  Iden7fica7on  Sensi7ve  to  Context  •  A  DAN  Example  of  Natural  Language  Processing  without  a  Parser  

•  Toward  an  Informa7on-­‐Theore7c  Philosophy  of  Mind  •  The  Chinese  Room  Argument  •  The  Symbol  Grounding  Problem  •  The  China  Room  Argument  

•  Tenta7ve  Conclusions  and  Next  Steps  •  Past  Work  Related  to  this  Presenta7on  and  Acknowledgements  

Anthony  Beavers,  Ph.D. Director  of  Cogni7ve  Science

Thermodynamics,  Morphodynamics  and  Teleodynamics  

Edited  by  Philip  Clayton  &  Paul  Davies,  Oxford  2006.  

Terrence  W.    Deacon,  “Emergence:  The  Hole  at  the  Wheel’s  Hub,”  111-­‐150.  

•   Thermodynamics  (first  order  emergence)  •   Morphodynamics  (second  order  emergence)  •   Teleodynamics  (third  order  emergence)  

These  are  NOT  mere  philosophical  dis7nc7ons!  Deacon  is  an  anthropologist  at  Berkeley  with  specializa7ons  in  biological  anthropology  and  neuroscience.  

Anthony  Beavers,  Ph.D. Director  of  Cogni7ve  Science

Thermodynamic  Systems  

T.  Deacon,  “Emergence:  The  Hole  at  the  Wheel’s  Hub.”  

Thermodynamics  (first  order  emergence)  

•   No  top-­‐down  effects  •   Fully  reduc7ve  –  can  be  fully  explained  solely        in  reference  to  parts  •   Causally  transparent  •   S7ll  admits  of  property  asymmetry  between        parts  and  wholes  •   Example:  Liquidity  

Anthony  Beavers,  Ph.D. Director  of  Cogni7ve  Science

Morphodynamic  Systems  

T.  Deacon,  “Emergence:  The  Hole  at  the  Wheel’s  Hub.”  

Morphodynamics  (second  order  emergence)  

•   Emerges  from  thermodynamic  systems  •   Exhibits  “simple  recurrence”  that  enables  self-­‐        organiza7on  •   Results  from  the  instability  of  thermodynamic        possibili7es  and  environmental  feedback  that        amplifies  a  stable  pacern  –  past  ac7on        restrains  the  space  of  future  possibili7es  •   Examples:  Bénard  cells,  snowflakes    

Anthony  Beavers,  Ph.D. Director  of  Cogni7ve  Science

Teleodynamic  Systems  

T.  Deacon,  “Emergence:  The  Hole  at  the  Wheel’s  Hub.”  

Teleodynamics  (third  order  emergence)  

•   Emerges  from  morphodynamic  systems  •   Exhibits  goal-­‐oriented  ac7vity  thanks  to        memory  and  informa7on  •   Results  from  the  sampling  of  influences        that  select  for  “self-­‐similarity  maintenance”  •   Uses  a  circular  architecture  of  causal  self-­‐        reference  analogous  to  “acractors”  •   Examples:  Memory,  evolu7on    

Anthony  Beavers,  Ph.D. Director  of  Cogni7ve  Science

Teleodynamic  Systems  

T.  Deacon,  “Emergence:  The  Hole  at  the  Wheel’s  Hub.”  

Teleodynamics  (third  order  emergence)  

“Third-­‐order  emergent  dynamics  are  …  intrinsically  organized  around  specific  absences.  This  physical  disposi7on  to  develop  toward  some  target  state  of  order  merely  by  persis7ng  and  replica7ng  becer  than  neighboring  alterna7ves  is  what  jus7fies  calling  this  class  of  physical  processes  teleodynamic,  even  if  it  is  not  directly  and  literally  a  ‘pull’  from  the  future.”  (143)  

Anthony  Beavers,  Ph.D. Director  of  Cogni7ve  Science

A  Working  Defini7on  of  ITT  (Not  Deacon’s)  

Informa7on-­‐Theore7c  Teleodynamics  is  an  approach  to  intelligence  in  both  natural  and  ar7ficial  systems  that  uses  the  quan7ty  and  distribu7on  of  informa7on  to  drive  goal-­‐oriented  behavior  without  recourse  to  seman7c  content.  (Beavers  &  Harrison  2012)    Related  to  Deacon,  as  we  will  see,  the  way  in  which  network  ac7va7on  pushes  its  way  through  a  trajectory  that  simultaneously  opens  before  it  is  par7cularly  interes7ng,  since  the  trajectory  dynamically  modifies  itself  in  step  with  changing  network  ac7va7on  and  thereby  con7nually  sets  up  possibili7es  that  the  network  WILL  actualize  given  further  s7mulus.    These  possibili7es  allow  us  to  conceive  of  the  system  as  teleodynamic  and  not  merely  teleonomic.    

Anthony  Beavers,  Ph.D. Director  of  Cogni7ve  Science

 

A  Working  Hypothesis    It  is  possible  to  reduce  seman7c  informa7on  to  the  quan7fica7on  of  informa7on  flow  provided  that  other  condi&ons  respec&ng  the  internal  structure  of  an  agent  and  its  rela&ons  to  its  environment  are  met.      

 Image  from  hGp://explodingdog.com/feb26/thisjob.html  

<<<  Not  this!  

Anthony  Beavers,  Ph.D. Director  of  Cogni7ve  Science

Answers  to  one  of  Floridi’s  Open  Problems  in  the  Philosophy  of  Informa&on:      “Do  informa7on  or  algorithmic  theories  …  provide  the  necessary  condi7ons  for  any  theory  of  seman7c  informa7on?”  (p.  31).  

Oxford  2011  

“It  is  …  quite  difficult  to  think  about  the  code  en7rely  in  abstracto  without  any  kind  of  circuit.”    

Alan  Turing  1947  Lecture  to  the  London  Mathema7cal  Society  

Anthony  Beavers,  Ph.D. Director  of  Cogni7ve  Science

The  Method  

Computa-onal  Philosophy  (CP):  The  use  of  computa7onal  techniques  to  aid  in  the  discovery  of  philosophical  insights  that  might  not  be  easily  discovered  otherwise.    Cogni-ve  Modeling  (CM):  The  use  of  computer  models  to  illuminate  epistemic  and  informa7onal  processes  that  govern  behavior  and  decision  making.    

 (CP  and  CM,  taken  together,  hope  to  resituate  the  interroga7ve  terrain  of  epistemology  to  make  headway  on  issues  of  current  concern  in  both  philosophy  and  cogni7ve  science.)  

   

Anthony  Beavers,  Ph.D. Director  of  Cogni7ve  Science

Dynamic  Associa7ve  Networks:  Circuits  Not  SoJware  

4.  Shape  recogni7on  on  a  grid  5.  Associa7on  across  simulated  sense            modali7es    6.  Primary  sequen7al  memory  

•   DANs  vs  ANNs  •   Hebbian  Learning  with  Circuits    1.  Object  iden-fica-on  with  context            sensi-vity  2.  Comparison  of  similarity  and            difference  3.  Automa7c  document  classifica7on  

7.  Network  branching  across  subnets  8.  Eight-­‐bit  register  control  9.  Rudimentary  natural  S&R  language            processing  

Anthony  Beavers,  Ph.D. Director  of  Cogni7ve  Science

Machias  Scheutz’s  Equivalence  Proof  

Anthony  Beavers,  Ph.D. Director  of  Cogni7ve  Science

Machias  Scheutz’s  Equivalence  Proof  

Anthony  Beavers,  Ph.D. Director  of  Cogni7ve  Science

Informa7on  Entropy  and  Teleodynamics  

Hopfield  Acractor  from  Scholarpedia  

Shannon  Informa7on  Entropy  (1948)  

The  more  random  a  piece  of  informa7on  the  more  it  may  decrease  our  ignorance.          Hence,  on  a  seman7c  reading,  as  entropy  rises  so  does  the  informa7veness  of  a  piece  of  informa7on.  In  what  follows,  we  use  the  concept  and  not  the  formula  for  informa7on  entropy.      Shannon,  B.  (1948)  A  Mathema7cal  Theory  of  Communica7on.  Bell  System  Technical  Journal  27:379-­‐423,  623-­‐656.    

 

Anthony  Beavers,  Ph.D. Director  of  Cogni7ve  Science

The  Inverse  Rela7onship  Principle  (IRP)  Barwise,  J.,  and  Seligman,  J.  (1997)  Informa7on  Flow:  The  Logic  of  Distributed  Systems.  Cambridge,  UK:  Cambridge  University  Press.  

 Though  Shannon  famously  claimed  that  his  acempts  to  quan7fy  informa7on  in  engineering  had  licle  to  do  with  seman7c  content  ,  his  word  was  not  the  last  on  the  subject,  and  the  issue  has  been  a  macer  of  some  debate.  Barwise  and  Seligman  noted  seman7c  corollaries  to  Shannon  in  what  has  been  iden7fied  as  the  Inverse  Rela7onship  Principle.      IRP  says  that  the  more  rare  a  piece  of  informa7on  is,  the  more  informa7ve  it  is,  and  vice  versa.      We  can  represent  this  with  the  simple  formula  of  1/n  or  1/n2,  where  n  re-­‐presents  the  number  of  connec7ons  that  feed  into  a  given  node  in  the  DANs.  

Anthony  Beavers,  Ph.D. Director  of  Cogni7ve  Science

Sample  DAN  Recurrent  Wiring  Schema7c  

Etc.   Etc.  

.11  

.06  .06  

t  =  .11  .25  

.25  

t  =  1.00  

.17  

.06  

.17  

.06  

.11  

1  

1

1.50  

.50  

Etc.  

Proper7es   Proper7es  Objects  

Property  Set:  small,  furry,  meows,  barks,  winged,  flies,  swims,  finned,  crawls,  many-­‐legged  (more  than  four),  two-­‐legged,  warm-­‐blooded,  live  off-­‐  spring,  walks,  four-­‐legged,  farm  animal,  oinks,  moos,  ridable,  big,  crows,  woodland,  hops,  hoofed,  curly,  hisses,  cold-­‐blooded,  scaled,  quacks,  coos,  seafaring,  spawns,  large-­‐mouthed,  web-­‐making,  whiskered  and  feathered.      Object  Set:  dog,  cat,  bird,  duck,  fish,  caterpillar,  human,  pig,  cow,  horse,  rooster,  rabbit,  deer,  retriever,  poodle,  mouse,  snake,  crocodile,  lizard,  turtle,  dolphin,  whale,  ostrich,  pigeon,  shark,  salmon,  bass,  house  fly,  cricket,  spider,  cauish  and  seal.  

Anthony  Beavers,  Ph.D. Director  of  Cogni7ve  Science

The  Wiring  Schema7c  for  Ac7va7on  on  Winged  

Anthony  Beavers,  Ph.D. Director  of  Cogni7ve  Science

Sample  Results  using  1/n2  

Winged          

2-­‐legged  

Bird   Small  

Duck   Winged  

Human   Flies  

Rooster   Swims  

Ostrich   2-­‐legged  

Pigeon   Warm-­‐blooded  

House  Fly  Farm  Animal  

Cricket   Walks  

Big  

Crows  

Woodland  

Quacks  

Coos  

Feathered  

Note  that  flies  has  yet  to  be  pulled  into  the  list,  since  ostriches  and  roosters  do  not  fly.  However,  on  the  next  recursion,  rooster  and  ostrich  are  slightly  demoted  (but  only  slightly),  lewng  the  generic  bird  with  the  duck  and  pigeon  count  for  more  (and  allowing  the  human,  house  fly  and  cricket  to  pass  the  threshold  at  a  very  low  level).      Typicality  wins  out  on  the  recursion  cycle  over  uniqueness,  as  flies  is  elevated  over  the  threshold,  further  demo7ng  the  rooster  and  the  ostrich.  Many-­‐legged,  live  offspring  and  cold-­‐blooded  are  pulled  into  the  property  set,  but  they  do  not  cross  the  threshold.    Further  recursion  aJer  the  third  cycle  produces  no  further  re-­‐evalua7on  of  nodes,  unlike  in  other  networks  that  can  take  several  hundred  itera7ons  to  secle.  

Anthony  Beavers,  Ph.D. Director  of  Cogni7ve  Science

Natural  Language  Processing  (NLP)  without  a  Parser  Elementary  natural  languages  require  that  four  pieces  of  informa7on  be  tracked:  (1)  the  agent  (2)  at  a  par7cular  loca&on  (3)  doing  a  par7cular  what  (4)  at  a  par7cular  &me.  (Scheutz  and  Schermerhorn,  2008)    Scheutz  and  Schermerhorn  go  on  to  argue  that  language  based  on  these  four  elements  require    “representa7onal  devices  [that],  in  turn,  require  a  systema7c  encoding  (i.e.,  representa7ons  with  formal  rules  defining  well-­‐formed  expressions)  and  mechanisms  that  can  encode  and  decode  informa7on  (i.e.,  parsers).”    Scheutz,  M.,  and  Schermerhorn,  P.  (2008)  The  limited  u7lity  of  communica7on  in  simple  organisms.  In  Bullock,  S.,  Noble,  J.,  Watson,  R.  &  Bedau,  M.,  (Eds.),    Ar7ficial  Life  XI:  Proceedings  of  the  Eleventh  Interna7onal  Conference  on  the  Simula7on  and  Synthesis  of  Living  Systems  (pp.  521-­‐528).  

 

Anthony  Beavers,  Ph.D. Director  of  Cogni7ve  Science

Natural  Language  Processing  (NLP)  without  a  Parser  Elementary  natural  languages  require  that  four  pieces  of  informa7on  be  tracked:  (1)  the  agent  (2)  at  a  par7cular  loca&on  (3)  doing  a  par7cular  what  (4)  at  a  par7cular  &me.  (Scheutz  and  Schermerhorn,  2008)    Scheutz  and  Schermerhorn  go  on  to  argue  that  language  based  on  these  four  elements  requires  “representa7onal  devices  [that],  in  turn,  require  a  systema7c  encoding  (i.e.,  representa7ons  with  formal  rules  defining  well-­‐formed  expressions)  and  mechanisms  that  can  encode  and  decode  informa7on  (i.e.,  parsers).”    Scheutz,  M.,  and  Schermerhorn,  P.  (2008)  The  limited  u7lity  of  communica7on  in  simple  organisms.  In  Bullock,  S.,  Noble,  J.,  Watson,  R.  &  Bedau,  M.,  (Eds.),    Ar7ficial  Life  XI:  Proceedings  of  the  Eleventh  Interna7onal  Conference  on  the  Simula7on  and  Synthesis  of  Living  Systems  (pp.  521-­‐528).  

 DAN-­‐based  NLP  suggests  otherwise  …  at  least  for  primi7ve  agents  and,  per-­‐haps,  ul7mately,  for  more  complex  agents  as  well.  

Anthony  Beavers,  Ph.D. Director  of  Cogni7ve  Science

The  Complete  Vocabulary  Set  –  75  Tokens  1596   1685   Berkeley   F3   F14   France   Principia  

1632   1687   born   F4   F15   Hume   Spinoza  

1633   1690   Descartes   F5   F16   Ireland   Sweden  

1637   1704   died   F6   F17   Leibniz   TheoPolTre  

1642   1710   Edinburgh   F7   F18   Leipzig   what  

1646   1711   England   F8   F19   LeMonde   when  

1650   1716   Enquiry   F9   F20   Locke   where  

1656   1727   Essay   F10   F21   Medita7ons   who  

1663   1753   excommunicated   F11   F22   Newton   wrote  

1670   1776   F1   F12   F23   ordained  

1677   Amsterdam   F2   F13   facts   PrinCarPhil  

Anthony  Beavers,  Ph.D. Director  of  Cogni7ve  Science

The  Vocabulary  as  DAN  Clustered  –  Slide  1  

@  Who  Descartes  @  Who  Spinoza  @  Who  Leibniz  @  Who  Newton  @  Who  Locke  @  Who  Berkeley  @  Who  Hume  @        @  What  LeMonde  @  What  Medita7ons  @  What  PrinCarPhil  @  What  TheoPolTre  @  What  Essay  @  What  priest  @  What  Enquiry  @  What  Principia  @        @  When  1596  @  When  1650  @  When  1633  @  When  1637  @  When  1632  @  When  1677  @  When  1656  @  When  1663  @  When  1670  @  When  1646  @  When  1716  @  When  1642  @  When  1727  @  When  1704  @  When  1690  @  When  1685  @  When  1753  @  When  1710  @  When  1711  @  When  1776  @  When  1687  @        @  Where  France  @  Where  Sweden  @  Where  Amsterdam  @  Where  Leipzig  @  Where  England  @  Where  Ireland  @  Where  Edinburgh  @    

Anthony  Beavers,  Ph.D. Director  of  Cogni7ve  Science

The  Vocabulary  as  DAN  Clustered  –  Slide  2  @  Facts  F1  @  Facts  F2  @  Facts  F3  @  Facts  F4  @  Facts  F5  @  Facts  F6  @  Facts  F7  @  Facts  F8  @  Facts  F9  @  Facts  F10  @  Facts  F11  @  Facts  F12  @  Facts  F13  @  Facts  F14  @  Facts  F15  @  Facts  F16  @  Facts  F17  @  Facts  F18  @  Facts  F19  @  Facts  F20  @  Facts  F21  @  Facts  F22  @  Facts  F23  @        @  F1  Descartes  born  France  1596  @  F2  Descartes  died  Sweden  1650  @  F3  Descartes  wrote  LeMonde  1633  @    F4  Descartes  wrote  Medita7ons  1637  @  F5  Spinoza  born  Amsterdam  1632  @  F6  Spinoza  died  1677  @  F7  Spinoza  excommunicated  1656  @  F8  Spinoza  wrote  PrinCarPhil  1663  @  F9  Spinoza  wrote  TheoPolTre  1670  @  F10  Leibniz  born  Leipzig  1646  @  F11  Leibniz  died  1716  @  F12  Newton  born  England  1642  @  F13  Newton  died  1727  @  F14  Locke  born  England  1632  @  F15  Locke  died  England  1704  @  F16  Locke  wrote  Essay  1690  @  F17  Berkeley  born  Ireland  1685  @  F18  Berkeley  died  England  1753  @  F19  Berkeley  ordained  priest  1710  @  F20  Hume  born  1711  Edinburgh  @  F21  Hume  died  Edinburgh  1776  @  F22  Hume  wrote  Enquiry  @  F23  Newton  wrote  Principia  1687  @    

Anthony  Beavers,  Ph.D. Director  of  Cogni7ve  Science

DAN  NLP  Detail  (no  entropy)  

Anthony  Beavers,  Ph.D. Director  of  Cogni7ve  Science

The  Wiring  Schema7c  for  Ac7va7on  on  Descartes  

Anthony  Beavers,  Ph.D. Director  of  Cogni7ve  Science

Some  Queries  H:  Who  wrote  the  Medita7ons?  C:  Descartes    H:  When?  C:  1637    H:  Where  was  Spinoza  born?  C:  Amsterdam    H:  When?  C:    1632    H:  Who  was  excommunicated?  C:    Spinoza      

Anthony  Beavers,  Ph.D. Director  of  Cogni7ve  Science

Some  Queries  H:  Who  was  a  priest?  C:  Berkeley    H:  Where  was  Berkeley  born?  C:  England  and  Ireland  <-­‐  Error    H:  Facts  about  where  Berkeley  was  born?  C:  F17  England  Ireland    H:  F17  {on  the  computer’s  request}  C:    Ireland    H:  {clear}  Where  did  Berkeley  die(d)?  C:    England      

Anthony  Beavers,  Ph.D. Director  of  Cogni7ve  Science

Some  Queries  H:  {clear}  What  did  Spinoza  and  Descartes  wrote?  C:  LeMonde,  The  Medita7ons,  PrinCarPhil,  TheoPolTre    H:  Spinoza?  C:  PrinCarPhil  and  TheoPolTre    H:  When?  C:  1663  and  1670    H:  1670?  C:  TheoPolTre    H:  What  did  Descartes  and  Spinoza  wrote  and  when?  C:  LeMonde,  1633,  Medita7ons,  1673,  PrinCarPhil  ,  1633,  TheoPolTree,  1670    

Anthony  Beavers,  Ph.D. Director  of  Cogni7ve  Science

Some  Queries  H:  Spinoza?  C:  PrinCarPhil,  1633,  TheoPolTre.  1670    H:  What?  C:  PrinCarPhil  and  TheoPolTre    H:  When?  C:  1663  and  1670    H:  TheoPolTre?  C:  1670    H:  {clear}  Who  was  born  in  England?  C:  Locke,  Newton,  Berkeley    

Anthony  Beavers,  Ph.D. Director  of  Cogni7ve  Science

Some  Queries  H:  Facts  about  who  was  born  in  England?  C:  F12,F14,  Locke,  Newton,  Berkeley    H:  F12?  C:  Newton    H:  F14?  C:  Locke  

Note  that  the  mechanism  can  answer  ques7ons  correctly,  and  in  condi7ons  of  uncertainty,  it  can  provide  mul7ple  answers.  Furthermore,  when  the  system  recognizes  the  uncertainty  (perhaps  with  outside  influence),  it  can  correct  for  it.    

Anthony  Beavers,  Ph.D. Director  of  Cogni7ve  Science

Limita7ons  of  This  Par7cular  NLP  Model  •  Does  not  yet  use  informa7on  entropy  in  its  design,  (though  I  could  and  need  to  

include  it)  •  Does  not  yet  accommodate  highly  structured  languages  •  Does  not  take  word  sequence  into  account,  (though  we  do  have  a  Primary  

Sequen7al  Memory  (PSM)  model  that  do  take  sequences  into  account  for  numbers  and  may  be  extendable  to  informal  languages)  

•  Our  DAN-­‐based  PSM  model  uses  c.  88  nodes  to  do  without  any  training  what  Allen  and  Lange’s  1996  connec7onist  model  takes  280  to  do.  

           Allan,  C.,  and  Lange,  T.  (1996)  Primary  Sequen7al  Memory:  An  Ac7va7on-­‐Based  Connec7onist  Model.  Neurocompu&ng                    2-­‐4:  227-­‐243.    

To  be  perfectly  clear,  this  model  is  not  offered  as  a  model  of  human  linguis7c  com-­‐petence,  though  it  may  be  befiwng  of  an  insect  …  and  perhaps  Nim  Chimsky,  who  learned  125  signs  and  some  basic  combinatorics  for  them.  It  is,  nonetheless,  a  start  toward  an  Informa7on-­‐Theore7c  Philosophy  of  Mind  just  the  same.  

Anthony  Beavers,  Ph.D. Director  of  Cogni7ve  Science

Toward  an  Informa7on-­‐Theore7c  Philosophy  of  Mind  

1:  Revise  Newell  and  Simon  (1976)  on  the  strong  form  of  the  Physical  Symbol  System  Hypothesis.    

From:  A  physical  symbol  system  (i.e.,  a  syntac7c  system  that  uses  rules  and  tokens)  has  the  necessary  and  sufficient  means  for  intelligent  ac7on.    To:  A  properly  wired  circuit  made  out  of  the  right  kind  of  components  has  the  necessary  and  sufficient  means  for  intelligent  ac7on.      

Newell,  A.,  and  Simon,  H.  (1976)  Computer  Science  as  Empirical  Inquiry:  Symbols  and  Search.  Communica&ons  of  the  ACM  19.3:  113-­‐126.  

Anthony  Beavers,  Ph.D. Director  of  Cogni7ve  Science

Toward  an  Informa7on-­‐Theore7c  Philosophy  of  Mind  

2:  Revise  Haugeland  (1985)  on  the  Formalist  Moco  that  governs  strong  ar7ficial  intelligence.    

From:  If  you  take  care  of  the  syntax,  the  seman7cs  will  take  care  of  itself.    To:  If  you  take  care  of  the  circuit,  the  syntax  (and  hence  the  seman7cs)  will  take  care  of  itself.    

Haugeland,  J.  (1985)  Ar7ficial  Intelligence:  The  Very  Idea.  Cambridge,  MA:  MIT  Press.  

3:  Escape  from  Searle’s  Chinese  Room  (1980).  

4:  Solve  or  eliminate  Harnad’s  Symbol  Grounding  Problem  (1990).  

Anthony  Beavers,  Ph.D. Director  of  Cogni7ve  Science

The  Chinese  Room  Argument  

Image  from  hcp://berto-­‐meister.blogspot.com/2011/12/chinese-­‐room-­‐thought-­‐experiment.html  

Searle,  J.  (1980)  Minds,  Brains  and  Programs.  Behavioral  and  Brain  Sciences  3:  417-­‐457.  

Anthony  Beavers,  Ph.D. Director  of  Cogni7ve  Science

The  Symbol  Grounding  Problem  (SGP)  Harnad,  S.  (1990)  The  Symbol  Grounding  Problem.  Physica  D:  335-­‐346.  

 “How  can  the  seman7c  interpreta7on  of  a  formal  system  be  made  intrinsic  to  the  system,  rather  than  just  parasi7c  on  the  meanings  in  our  heads?  How  can  the  meanings  of  the  meaningless  symbol  tokens,  manipulated  solely  on  the  basis  of  their  (arbitrary)  shapes,  be  grounded  in  anything  but  other  meaning-­‐less  symbols?”  (335)  

Requires  that  we  assume  that  the  Chinese  Room  is  an  apt  characteriza7on  of  human  intelligence.  Thus,  if  we  can  escape  from  the  Chinese  Room,  SGP  is  eliminated.  

Anthony  Beavers,  Ph.D. Director  of  Cogni7ve  Science

Answers  to  #3  and  #4  

Inten7onality  is  mere  associa7on  mys7fied  to  look  like  an  illusory  phenomenon  of  ‘aboutness’  (Beavers  2004).      If  we  wish  to  use  the  metaphor  of  a  Turing  Machine  to  characterize  the  human  mind,  we  need  to  extend  it  accordingly:  the  brain  is  comparable  to  the  read/write  head  (along  with  some  of  its  own  on-­‐board  memory)  and  the  external  world  is  the  tape.  (Internalist  concep7ons  are  remnants  of  a  closet  Cartesian-­‐ism  that  refuses  to  disappear;  they  must,  therefore,  figure  out  how  to  get  from  inside  the  head  out  into  the  world.  But  we  are  always  already  in  the  world.)    Note  that  this  is  prefatory  to  understanding  the  evolu&on  of  intelligence  as  a  species-­‐phenomenon  &ed  directly  to  the  development  of  informa&on  techno-­‐logies.  

Anthony  Beavers,  Ph.D. Director  of  Cogni7ve  Science

The  China  Room  Argument  

Image  from  the  White  House,  Washington,  D.C.,  USA  (2011)  

Anthony  Beavers,  Ph.D. Director  of  Cogni7ve  Science

Tenta7ve  Conclusion  and  Next  Steps  

Fully  working  out  the  preceding  should  show  how  it  is  possible  for  the  brain  to  be  conceived  of  as  a  thermodynamic  engine  that  fully  obeys  the  laws  of  physics  and  yet  gives  rise  to  seman7cally-­‐rich,  goal-­‐direc7ve  thought  and  ac7on.    The  result:  A  mechanical  and,  yet,  biologically-­‐based,  emergent  materialism  grounded  in  an  informa7on-­‐theore7c  approach  to  understanding  circuitry.  

Next  Steps:  Develop  entropy-­‐based  NLP  DANs  to  serve  as  the  “brains”  of  individual  agents  that  interact  in  an  ABM  to  extend  Patrick  Grim’s  model  of  emergent  communica7on  as  presented  in  his  2004  paper,  Making  Meaning  Happen.    Grim,  P.,  et.  al.,  (2004)  Making  Meaning  Happen.  The  Journal  of  Experimental  and  Theore7cal  Ar7ficial  Intelligence  16.4:  209-­‐243.  

(How)  Can  Seman-c  Informa-on  Be  Reduced  to  Informa-on  Theory?  

 Implica-ons  for  an  Informa-on-­‐Theore-c  Philosophy  of  Mind  

Anthony  Beavers,  Ph.D. Director  of  Cogni7ve  Science

What  brings  happiness?    

Photo  Courtesy  of  the  Consor&um  for  Cogni&ve  Science  Instruc&on  (CCSI)  hGp://www.mind.ilstu.edu/curriculum/searle_chinese_room/searle_chinese_room.php  

(How)  Can  Seman-c  Informa-on  Be  Reduced  to  Informa-on  Theory?  

 Implica-ons  for  an  Informa-on-­‐Theore-c  Philosophy  of  Mind  

Anthony  Beavers,  Ph.D. Director  of  Cogni7ve  Science

Be  the  stream  of  the  universe!  (whatever  that’s  supposed  to  mean)  

 Photo  Courtesy  of  the  Consor&um  for  Cogni&ve  Science  Instruc&on  (CCSI)  

hGp://www.mind.ilstu.edu/curriculum/searle_chinese_room/searle_chinese_room.php  

Anthony  Beavers,  Ph.D. Director  of  Cogni7ve  Science

Past  Work  Related  to  this  Presenta7on  Hybrid  Networks:  Transforming  Networks  for  Social  and  Textual  Analysis  into  Teleodynamic  and  Predic7ve  Mechanisms  (with  C.  Harrison).  Ins7tute  for  Advanced  Topics  in  the  Digital  Humani7es,  Networks  and  Network  Analysis  for  the  Humani7es,  sponsored  by  the  Na7onal  Endowment  for  the  Humani7es,  the  Na7onal  Science  Founda7on  and  the  Ins7tute  for  Pure  and  Applied  Mathema7cs  (IPAM),  University  of  California,  Los  Angeles,  October  22nd,  2011.  

A  Brief  Introduc7on  to  Informa7on-­‐Theore7c  Teleodynamics.  Info-­‐Metrics:  Informa7on  Processing  across  the  Sciences.  Info-­‐Metrics  Ins7tute  Workshop  on  the  Philosophy  of  Informa7on,  American  University,  Washington,  D.C.,  October  3rd,  2011.  

Informa7on-­‐Theore7c  Teleodynamics  in  Natural  and  Ar7ficial  Systems  (with  C.  Harrison).  Forthcoming  in  A  Computable  Universe:  Understanding  Computa&on  and  Exploring  Nature  as  Computa&on,  H.  Zenil,  (Ed).  World  Scien&fic,  forthcoming  2012.  

Deriving  Seman7c  Meaning  by  Measuring  the  Quan7ty  of  Informa7on  Flow.  Fall  Faculty  Conference,  The  University  of  Evansville,  Evansville,  Indiana,  August  17th,  2011.  

Inside  the  Psychology  of  the  Agent:  Associa7on,  Acrac7on  and  Repulsion.  Ins7tute  for  Advanced  Topics  in  the  Digital  Humani7es,  sponsored  by  the  Na7onal  Endowment  for  the  Humani7es  and  the  Complex  Systems  Ins7tute,  University  of  North  Carolina,  Charloce,  June  10th,  2011.  

Anthony  Beavers,  Ph.D. Director  of  Cogni7ve  Science

Past  Work  Related  to  this  Presenta7on  Dynamic  Associa7ve  Network  Automa7c  Document  Classifica7on,  D.  Burrows,  2010-­‐2011.  Computer  Science  Senior  Project  for  Noesis  and  the  Indiana  Philosophy  Ontology  Project.  Funded  by  the  Na7onal  Endowment  for  the  Humani7es.  Winner  of  the  2011  University  of  Evansville  Senior  Project  in  Computer  Science  Award.  

Typicality  Effects  and  Resilience  in  Evolving  Dynamic  Networks.  In  FS-­‐10-­‐03,  AAAI  Press,  2010.  

More  Fun  with  Jets  and  Sharks:  Typicality  Effects  and  the  Search  for  the  Perfect  Acractors.  North  American  Mee7ng  of  the  Interna7onal  Associa7on  for  Compu7ng  and  Philosophy  (IACAP),  Simula7ons  and  Their  Philosophical  Implica7ons,  Carnegie  Mellon  University,  July  24th-­‐26th,  2010.  

Dynamic  Associa7ve  Networks  and  Automa7c  Document  Classifica7on,  G.  Wyant,  2009-­‐2010.  Computer  Science  Senior  Project  for  Noesis  and  the  Indiana  Philosophy  Ontology  Project.  Funded  by  the  Na7onal  Endowment  for  the  Humani7es.  Winner  of  the  2010  University  of  Evansville  Senior  Project  in  Computer  Science  Award.  

Mechanical  vs.  Symbolic  Computa7on:  Two  Contras7ng  Strategies  for  Informa7on  Processing.  Society  for  Machines  and  Mentality,  Eastern  Division  Mee7ng  of  the  American  Philosophical  Associa7on,  New  York  City,  December  27th-­‐30th,  2009.  

 

 

Anthony  Beavers,  Ph.D. Director  of  Cogni7ve  Science

Past  Work  Related  to  this  Presenta7on  Modeling  and  Visualizing  Dynamic  Associa7ve  Networks:  Towards  Developing  a  More  Robust  and  Biologically-­‐Plausible  Cogni7ve  Model,  M.  Zlatkovsky.  Winner  of  the  2009  University  of  Evansville  Senior  Project  in  Computer  Science  Award.  See  companion  website  for  details.  

Inten7onality  and  Associa7on.  The  3rd  Annual  Compu7ng  and  Philosophy  Conference,  Oregon  State  University,  August,  2003.  

Phenomenology  and  Ar7ficial  Intelligence.  In  CyberPhilosophy:  The  Intersec&on  of  Philosophy  and  Compu&ng,  edited  by  James  H.  Moor  and  Terrell  Ward  Bynum  (Oxford,  UK:  Blackwell,  2002),  66-­‐77.  Also  in  Metaphilosophy  33.1/2  (2002):  70-­‐82.  

 

 

Anthony  Beavers,  Ph.D. Director  of  Cogni7ve  Science

Acknowledgements  

Na7onal  Endowment  for  the  Humani7es   Na7onal  Science  Founda7on  

Also  the  Ins7tute  for  Pure  and  Applied  Mathema7cs,  University  of  California,  Los  Angeles;  the  Cogni7ve  Science  Program  and  the  Library  Science  Program,  Indiana  University;  and  the  University  of  Evansville.      For  their  cri7cal  comments  as  interlocutors  in  shaping  my  thoughts  for  this  presenta7on,  I  wish  to  thank  Colin  Allen,  Paul  Bello,  Aaron  Bramson,  Selmer  Bringsjord,  Luciano  Floridi,  Patrick  Grim,  Mirsad  Hadzikadic,  Christopher  Harrison,  Derek  Jones,  MaXhias  Scheutz,  Talitha  Washingon,  Guy  Wyant,  Hector  Zenil  and  Michael  Zlatkovsky.