Influence of Vanadium and Tungsten on the Bainite start ...631537/FULLTEXT01.pdf · transformation...

25
Influence of Vanadium and Tungsten on the Bainite start temperature Author: Andreas Malmberg Mentors: Mats Hillert and Lars Höglund 2013-05-08

Transcript of Influence of Vanadium and Tungsten on the Bainite start ...631537/FULLTEXT01.pdf · transformation...

Page 1: Influence of Vanadium and Tungsten on the Bainite start ...631537/FULLTEXT01.pdf · transformation barrier (B) for bainite transformation and try to differentiate the influence of

Influence of Vanadium and Tungsten on the Bainite start

temperature Author: Andreas Malmberg

Mentors: Mats Hillert and Lars Höglund

2013-05-08

Page 2: Influence of Vanadium and Tungsten on the Bainite start ...631537/FULLTEXT01.pdf · transformation barrier (B) for bainite transformation and try to differentiate the influence of

1

Abstract This paper tries to display the influence of the alloying elements, Vanadium and Tungsten, on the

bainite transformation start temperature (Bs). The purpose of this work was to establish data of

interaction parameters to be part of newly created computer software called Bs-program which will

be used to calculate the banite start temperature in steel alloys. This will be achieved by extensive

literature studies and analysis of the data gathered. The data will then be used to calculate the

transformation barrier (B) for bainite transformation and try to differentiate the influence of

Vanadium and Tungsten on this Barrier. These calculations gave quite clear results for the Vanadium

steels and interaction parameters could be isolated. As for the Tungsten steels it proved hard to find

the Tungsten influence as Vanadium was present in the majority of those steels.

Key words: Bainite start temperature, Transformation Barrier, Influence, Vanadium, Tungsten

Page 3: Influence of Vanadium and Tungsten on the Bainite start ...631537/FULLTEXT01.pdf · transformation barrier (B) for bainite transformation and try to differentiate the influence of

2

Table of content

Introduction .......................................................................................................................................... 3

Method .................................................................................................................................................. 4

How does one acquire Bs-temperatures? .......................................................................................... 4

Gathering of values ............................................................................................................................. 4

Calculations ......................................................................................................................................... 4

-Calculation of ∆G in the Bs-program .............................................................................................. 4

-Models created in Matlab .............................................................................................................. 7

Result ...................................................................................................................................................... 8

Methods to determine Bs-temperature ............................................................................................ 8

-Metallographic observation ........................................................................................................... 8

-Dilatometry .................................................................................................................................... 8

-C content calculated from lattice parameter of austenite measured by X-ray diffraction ........... 9

List of Vanadium and Tungsten Steels ............................................................................................... 9

Influence calculations ....................................................................................................................... 11

-Vanadium ..................................................................................................................................... 11

-Tungsten ....................................................................................................................................... 13

Discussion ............................................................................................................................................ 15

Conclusion ........................................................................................................................................... 16

Acknowledgement ............................................................................................................................. 16

References ........................................................................................................................................... 17

Appendix .............................................................................................................................................. 18

Page 4: Influence of Vanadium and Tungsten on the Bainite start ...631537/FULLTEXT01.pdf · transformation barrier (B) for bainite transformation and try to differentiate the influence of

3

Introduction For the last decades the industrial production and engineering of steel have gone through a huge

transformation as a result of the exponential growth of the computer industry. The increased

capacity of computers and understanding of software programing have enabled an integration of

engineering problems with computer simulations, resulting in software like Thermo-Calc and Dictra.

These softwares can be used in the processing industries to calculate complex multicomponent

systems more effectively. Companies discovered that a great deal of money could be saved and

production capacity could be increased by integrating these kinds of softwares.

This project is a subproject of a bigger project within the Hero-m initiative. The project objective is to

create computer software with the ability to make a good estimation of the bainite start

temperature (Bs) for steel alloys called the Bs-program1. In order to achieve this, an understanding of

the different influences of alloying elements on the Bs-temperature is vital. The general perception

of bainite transformation is that formation of Widmanstätten ferrite is the start of bainite

transformation and that perception will be used in this report as well.

This report concerns the influence of the elements Vanadium and Tungsten with the objective to

establish a model of the influence by creating plots and, if the result is satisfying, interaction

parameters will be calculated and be part of the software. This will be achieved by a literature study

of steel alloys containing various amounts of vanadium and tungsten, searching for TTT-diagrams and

tables. CCT diagrams will not be a source to values in this report as the error margin of the start

transformation temperature is too big when dealing with continuous cooling. It’s also important to

understand how these literature values have been acquired so a brief investigation regarding the

most common methods of determine the Bs-temperature will be presented. Because of a very

limited number of steels containing only Fe-C-Cr-Mo-V and Fe-C-Cr-Mo-W, other elements are

allowed but preferably small amounts as these elements will be neglected when calculating the

influence of V and W. All element contents presented in this report will be given in weight % if not

specified as something else.

1 Bs-program is used internally at the institution of material science and engineering, KTH, and is under development.

Page 5: Influence of Vanadium and Tungsten on the Bainite start ...631537/FULLTEXT01.pdf · transformation barrier (B) for bainite transformation and try to differentiate the influence of

4

Method

How does one acquire Bs-temperatures? First stage in the project was to understand different measuring methods to acquire Bs-temperature

values. This was done by reading reports concerning determination of transformation temperature

and characteristics for example a report by Peter Kolmskog, 2013[1] and report by R.C Cochrane and

W.B Morrison [2]. The methods found during the gathering of Vanadium and Tungsten steels were

then further investigated and summarized with pros and cons.

Gathering of values The second step was to gather values from the literature concerning Bs, composition, austenite

conditions and method of achieving the values. Values of Bs from TTT diagrams were interpreted and

then included in excel with the composition of the steel, the austenitization conditions and source.

83 different steels were interpreted and registered in excel, not all with austenitization condition

though. To further investigate these steels and their structure before the banite transformation, an

equilibrium calculation was made in Thermo-Calc [3] and the database TCFE7 [4] was used. This was

only done with the steels in which an austenitization temperature could be found in the literature.

The reason for the equilibrium investigation was a suspicion of carbides in the austenite as some of

the steels found had the same compositions but a different austenitization temperature, giving a

wide variety in the Bs-temperature.

Calculations From the equilibrium calculations, phases, their composition and volume percentage of the different

phases could be gathered and put into an excel table. The calculated phases were then compared

with the literature value to see if the composition of the austenite had been altered remarkably by

the austenitization treatment. If that would be the case, it should be decided how well one could

trust the literature information that had not been tested by equilibrium calculations.

Calculation of ∆G in the Bs-program

The values gathered were then used to calculate the energy barrier for bainite transformation. This

was done in the Bs-program [5] that has been developed by Lars Höglund. The thermodynamic

theory behind the calculation of transformation barrier was explained by Mats Hillert [6] in an

interview and also in a report by C. Garcia-Mateo’s [7]. The theory can be summarized that there has

to be a critical driving force to start nucleation or growth of bainite. The simple equilibrium between

γ and α is pictured in figure 2 and the black dot displays the T0 in figure 3. The bainite structure is far

from equilibrium, though. According to basic thermodynamics the lowest free energy would occur if

transformation to grain boundary ferrite took place instead of bainitic ferrite. The reason for bainite

forming instead of grain boundary ferrite is the influence of kinetics as Widmanstätten ferrite (W-α)

can grow much faster, because of the lower surface energy in the flat surfaces of the plates and

shorter distance for carbon atoms to diffuse at the edge than in the case of grain boundary ferrite

growth, illustrated in figure 1.

Page 6: Influence of Vanadium and Tungsten on the Bainite start ...631537/FULLTEXT01.pdf · transformation barrier (B) for bainite transformation and try to differentiate the influence of

5

Figure 1, Simple illustration of the difference in growth of Widmanstätten ferrite and grain boundary ferrite. The red arrows indicates the growth direction and the blue arrows the diffusion of carbon atoms. The figure was made in word.

Figure 2, General Gibbs energy curve to illustrate thermodynamic equilibrium between two phases α and γ at temperature T1. Gibbs molar energy on the y-axis and mol% of B increasing on the x-axis.

W-α

γ

γ – grain α

α α + γ

γ

A B

α

γ

µB

µA

Gm

T=T1

Page 7: Influence of Vanadium and Tungsten on the Bainite start ...631537/FULLTEXT01.pdf · transformation barrier (B) for bainite transformation and try to differentiate the influence of

6

Figure 3, a general example of a phase diagram and the difference between the standard equilibrium and the metastable equilibrium at WBs.

The existence of a barrier implies that an excess energy is present that makes it possible for bainite

to form. It can be described as a metastable equilibrium where austenite (γ) is in equilibrium with

Widmanstätten ferrite (W-α). Imagine that Bs occurs at a temperature and composition displayed by

the red dot in figure 2. A new tangent is drawn to illustrate the metastable equilibrium with W-α,

displayed in figure 3.

Figure 4, Illustrates the change of the Gibbs curve when metastable equilibrium occurs with W-α instead of grain boundary α and the Barrier (∆G) that the transformation has to overcome.

T

WBs

T0

uB

α α + γ

γ

∆G

A B

α

γ

µB

µA

T1

Page 8: Influence of Vanadium and Tungsten on the Bainite start ...631537/FULLTEXT01.pdf · transformation barrier (B) for bainite transformation and try to differentiate the influence of

7

It becomes apparent that the Gibbs energy curve for α has to be moved up in order to be in a state of

equilibrium. So there has to be a driving force of ∆G where,

∆G has to overcome the barrier (B) that is represented by large influence on either growth or

nucleation to induce the transformation. This ∆G will be calculated in the Bs-program for the

gathered values and put into a table for comparison. The influence on this Barrier from the alloying

elements can be described as,

where ui is the amount of element i and fi(T) is the parameter for interaction which is a function of

temperature. is the temperature dependent barrier of the binary system Fe-C which is well

defined in the Bs-program. This will be the fundamental approach for calculating the influence of

Vanadium and Tungsten. The barrier as a function of the elements with known effects, C, Mo and Cr

and the temperature will first be calculated. Then the barrier as a function of bainite start

temperature (Bs) will be calculated and the difference between these will give the influence on the

barrier from the element with unknown effect in this case Vanadium.

Models created in Matlab

With values of barrier influence and composition of the different steels the software Matlab was

used to create models and curves of the influence of V and W contents on the ∆G barrier. Vectors of

the Bs-temperature values, %V and were imported to Matlab. The majority of Tungsten steels

found in the literature contained Vanadium as well as Tungsten so correction terms from the

Vanadium steel calculations will be isolated before calculations with the Tungsten steels.

Plots of the barrier as a function of content of Vanadium will be created to see if a general tendency

could be observed. Then a function will be fitted to the points to illustrate the correction terms for

Vanadium. B will be normalised with Vanadium content and made as a function of transformation

temperature.

A spline function for will be fitted to the normalised values and plotted. This will give the

correction terms for the same kind of calculations with the Tungsten steels. The code for calculation

of the spline functions was supplied by Lars Höglund [8].

Page 9: Influence of Vanadium and Tungsten on the Bainite start ...631537/FULLTEXT01.pdf · transformation barrier (B) for bainite transformation and try to differentiate the influence of

8

Result

Methods to determine Bs-temperature During the gathering of values of Bs for different alloys three different methods to determine

transformation start temperature were discovered. In “Atlas zur wärmebehandlung der stähle” [9]

the TTT-diagrams were created with metallographic observation and Dilatometry which were found

commonly mentioned in other reports as well. Another method mentioned is “C content calculated

in retained austenite from lattice parameter measured by X-ray diffraction”.

Metallographic observation

When determining the Bs in a TTT-diagram with Metallographic observation you treat the steel

isothermally and look at the transformation that has occurred. This can be done with optical

microscope, scanning electron microscope or transmission electron microscope for example.

This makes for a margin of error in the values brought forth with this method as it’s sometimes very

hard to distinguish the start of the Bainitic transformation with an optical microscope as pearlite can

influence the Bainite transformation as described in Peter Kolmskog’s report [1]. The perception of

the viewer will be an aspect that can contribute to error.

Dilatometry

As explained in a report by Ahmed Ismail Zaky Farahat [10], during a phase transformation a small

change in the volume of the sample will change, this change can be measured by a dilatometer.

This makes it possible to determine with quite good accuracy when a phase transition occurs. During

the phase transformation the computer linked to the dilatometer will produce a graph giving you the

Dilation as a function of time. Making it possible to determine the start temperatures for different

phase transformations with rather ease.

Figure 5, Illustrates the data output from a Dilatometry test, this figure was published by Ahmed Ismail Zaky Farahat[10]

Page 10: Influence of Vanadium and Tungsten on the Bainite start ...631537/FULLTEXT01.pdf · transformation barrier (B) for bainite transformation and try to differentiate the influence of

9

A negative aspect of Dilatometry is the need to compliment with microscopy to understand what

phases are actually forming at the different temperatures. When making TTT diagrams you use a

quenching type of dilatometer, to get an isothermal treatment of the steel.

Figure 6, displays the isothermal heat treatment when using quenching type of dilatometer, Ahmed Ismail Zaky Farahat published this graph in journal, [10]

C content calculated from lattice parameter of austenite measured by X-ray diffraction

The third method discovered is based on the fact that C content in the lattice makes the lattice

expand as the C atoms dissolve interstitially resulting in an increase in the lattice parameter which is

explained by M.Onink, 1993 [11]. This expansion of the lattice can be measured by X-ray or neutron

diffraction. So when a sample of steel is heat-treated and carbon enrichment of austenite starts, an

increase in lattice size this can be seen which is an indication that ferrite is forming. If that ferrite is

Widmanstätten ferrite the perception that W-α transformation is a part of the bainite transformation

gives a Bs-temperature.

List of Vanadium and Tungsten Steels After gathering values from different steels containing vanadium and tungsten from the literature, a

table was created displaying the different steels and it can be seen in table 1(appendix). Along with

the values of Bs-temp, austinitization temperature, composition and source you can also see the

method used to create the TTT-diagrams or tables.

The equilibrium calculations in Thermo-Calc made it evident that there are carbides and phases other

than austenite present in most of the steels when quenched. The new composition of the austenite

and amount of different phases is displayed in table 2(appendix). Due to the fact that the difference

in Vanadium and Tungsten content between the literature values and equilibrium calculations was

quite extensive, only the equilibrium values will be used for further investigation. They are displayed

in table 3 and table 4 for Vanadium steels and Tungsten steels, some of the steels containing very

low contents of V and W have also been disregarded in further calculations.

Page 11: Influence of Vanadium and Tungsten on the Bainite start ...631537/FULLTEXT01.pdf · transformation barrier (B) for bainite transformation and try to differentiate the influence of

10

Vanadium steels Steel nr. Bs [⁰C] %C %Cr %Mo %V

4 594,00 0,430 0,320 0,030 0,100

5 539,00 0,440 1,701 0,080 0,090

6 544,00 0,550 1,020 0 0,110

7 555,00 0,470 1,200 0,050 0,120

8 567,00 0,470 1,200 0 0,110

11 350,00 0,377 5,530 0,864 0,425

12 372,00 0,390 5,531 0,870 0,480

13 489,00 0,430 1,310 0,720 0,230

14 500,00 0,430 1,310 0,720 0,230

15 500,00 0,380 1,540 0,630 0,269

17 461,00 0,520 1,090 0,430 0,140

20 528,00 1,150 1,056 0 0,106

22 566,00 0,565 1,265 0,019 0,049

23 511,00 0,580 1,270 0,020 0,110

29 661,00 0,145 1,201 0 0,288 Table 3, list of the Vanadium steels that have been analysed and determined good enough for further calculations

Tungsten Steels Steel nr. Bs [⁰C] %C %Cr %Mo %V %W

21 522,00 0,786 0,778 0,016 0 0,306

26 417,00 0,460 1,530 0,070 0 0,590

27 350,00 0,625 4,119 2,301 1,111 2,692

28 344,00 0,724 4,077 2,409 1,557 2,907

30 340,00 0,53 4,66 0,39 1,02 6,62

31 360,00 0,58 4,17 0,46 1,48 5,30

33 480,00 0,28 2,35 0,06 0,53 4,10

34 473,00 0,23 2,59 0,02 0,30 6,56

35 500,00 0,44 1,28 0,04 0,05 0,83

36 500,00 0,35 1,45 0,46 0,52 0,53

37 347,00 0,57 3,94 0,21 0,70 7,14

38 347,00 0,59 4,28 2,57 1,32 2,62 Table 4, list of Tungsten steels that have been analysed and determined good enough for further calculations

Page 12: Influence of Vanadium and Tungsten on the Bainite start ...631537/FULLTEXT01.pdf · transformation barrier (B) for bainite transformation and try to differentiate the influence of

11

Influence calculations

Vanadium

The results from the calculation of the transformation barrier of bainite in the Bs-program with

regard to the Vanadium steels are displayed in table 5. The Barrier values in the second column

represent tabulated values of what the barrier should be with regard to the temperature conditions

and Fe-C-Cr-Mo alloy content. In the third column the calculated value of the Barrier is represented

and the difference between these columns gives the influence of Vanadium on the barrier.

It’s important to point out that the barrier values calculated is influenced by temperature, C content,

Cr content, Mo content as well as the aimed V content. Steel nr 20 proved to have a negative barrier

influence and will be neglected in further calculations as it contained rather high carbon content in

comparison to Vanadium content.

Vanadium Steel nr. Barrier, B(u,T) Barrier, B(Bs) Vanadium influence

4 605,4 792,5 187,1

5 986,7 1064 77,3

6 903,9 1019 115,1

7 867 975,7 108,7

8 800,5 899,8 99,3

11 2030 2262 232

12 1932 2100 168

13 1222 1442 220

14 1172 1367 195

15 1185 1376 191

17 1338 1605 267

20 987,6 848 -139,6

22 812,9 859,4 46,5

23 1090 1213 123

29 365 534,7 169,7 Table 5, the result of the barrier influence of the Vanadium steels

Figure 7 shows the result of Matlab plot with the Vanadium steels. The calculation of correction

terms for Vanadium on the transformation barrier is illustrated in figure 8 and from this spline

function generated in the plot, can be isolated and put into vectors seen in table 4.

This correction term can then be put into the Bs-program script and new Influence parameters from

the Tungsten steels can be calculated.

Page 13: Influence of Vanadium and Tungsten on the Bainite start ...631537/FULLTEXT01.pdf · transformation barrier (B) for bainite transformation and try to differentiate the influence of

12

Figure 7, plot to see the general tendency of Vanadium’s (V) effect on the Barrier (B)

Figure 8, Illustrates the spline function that has been fitted to the Vanadium content normalised black crosses.

Interaction parameters of Vanadium

Temperature 300 370 550 650 760

Barrier influence 0 350 900 600 0 Table 6, the values used to create the spline curve in figure 8, these values will be put into the Bs-program script for

calculations with the Tungsten steels.

Page 14: Influence of Vanadium and Tungsten on the Bainite start ...631537/FULLTEXT01.pdf · transformation barrier (B) for bainite transformation and try to differentiate the influence of

13

Tungsten

In table 7 the barrier calculations with the Tungsten steels is presented although, almost all of the

Tungsten steels contained Vanadium so a correction of Vanadium is necessary. The interaction

parameters for Vanadium were incorporated in the Bs-program and a new influence calculation was

executed, the result can be seen in table 8. These values could then be imported to Matlab and the

resulting plot can be seen in figure 9.

Tungsten, without V correction

Steel nr. Barrier, B(u,T) Barrier, B(Bs) Tungsten influence

21 998,5 1065 66,5

26 1592 1904 312

27 2012 2321 309

28 2043 2371 328

30 2071 2345 274

31 1961 2254 293

33 1318 1505 187

34 1367 1528 161

35 1146 1333 187

36 1173 1407 234

37 2026 2282 256

38 2030 2368 338 Table 7, influence calculations of tungsten steels without taking Vanadium content into consideration

Tungsten, with V correction

Steel nr. Barrier, B(u,T) Barrier, B(Bs) Tungsten influence

21 998,5 1065 66,5

26 1592 1904 312

27 2290 2321 31

28 2387 2371 -16

30 2276 2345 69

31 2406 2254 -152

33 1750 1505 -245

34 1605 1528 -77

35 1190 1333 143

36 1622 1407 -215

37 2190 2282 92

38 2341 2368 27 Table 8, the influence calculations of the Tungsten steels when influence of Vanadium is taken into consideration and

removed.

Page 15: Influence of Vanadium and Tungsten on the Bainite start ...631537/FULLTEXT01.pdf · transformation barrier (B) for bainite transformation and try to differentiate the influence of

14

Figure 8, plot to see the general tendency of tungsten influence on the barrier, the line indicates zero influence on the barrier. The (V) in the top right corner indicates that not all steels contained V but the majority.

Page 16: Influence of Vanadium and Tungsten on the Bainite start ...631537/FULLTEXT01.pdf · transformation barrier (B) for bainite transformation and try to differentiate the influence of

15

Discussion The methods of determining Bs-temperature found during the research are used extensively and

have been proved as good methods. Metallographic observation and Dilatometry was the method

used in most of the TTT-diagrams found. These two methods complement each other well as the

difficulties of distinguishing the start transformation in a light transmission microscope can be

complemented with Dilatometry, which measures with quite good accuracy when transformation

takes place but not what phase that’s transforming. The information on the TTT-diagrams didn’t say

what kind of dilatometer or microscope that was used but as the date of publishing the data was

1956-58 one could make assumptions that the dilatometer was of an early design and not as

accurate as todays equipment. The microscope used was probably a light emission microscope (LEM)

if usage of electron transmission microscope of atom probe microscope would have been used

instead, more accurate data would have been gathered.

The method of calculating the C content by the lattice parameter measured with X-ray diffraction can

be improved by changing X-ray diffraction with neutron diffraction which will give a more accurate

result when dealing with high temperatures as neutrons penetrate and probe more of the material.

The Literature values gathered from TTT-diagrams and tables was proven when equilibrium

calculated to have quite different compositions of Vanadium and Tungsten in the austenite. This is

due to the strong tendency of V and W to form carbides and to make further calculations proper only

the equilibrium values was used. As a result of this the number of values was reduced drastically

from 57 to 15 Fe-C-Cr-Mo-V steels. Number of Fe-C-Cr-Mo-V-W steels was reduced from 27 to 12.

If this would have been discovered earlier, new literature studies could have been executed in order

to compensate for this loss of data.

A question mark has to be raised regarding the already integrated interaction parameters of

temperature, carbon, chromium and molybdenum. All new influence calculations with this method

are strongly dependent of these parameters so an error in these will quickly propagate through new

interaction parameters. But although it’s important to take this source of error into consideration the

method have proven to give a good approximation of the influence.

When plotting the influence of Vanadium a clear tendency could be seen although a rather rough

approximation of the influence correction was made because of the limited number of data points.

As for the Tungsten steels the results obtained from the influence calculations after removing the

evaluated effect of V were hard to interpret. Very low values and even negative values can be seen

with rather high %W. As for Tungsten content below 1 wt% a relative high barrier was calculated, so

these results should not be trusted. It should be noted that the content of V in the majority of the

Tungsten steels is much higher than in the Vanadium steels used to evaluate the effect of Vanadium

subtracted from the Tungsten steels.

It thus seems impossible to separate the effects of V and W with this method if the data of Vanadium

steels and Tungsten steels can’t be more coincident. An effort should be made to find data of steels

containing a higher V content without W and data concerning W without V.

Page 17: Influence of Vanadium and Tungsten on the Bainite start ...631537/FULLTEXT01.pdf · transformation barrier (B) for bainite transformation and try to differentiate the influence of

16

Conclusion The results from this work should then be treated as a guide line for further research on this subject.

More extensive literature study should be made and the analysis of the values gathered should be

done during this study. This will enable compensation for loss of data due to unreliable values from

old experiments. The Vanadium influence result shows a clear tendency but lacks values of higher

Vanadium content so it should only be trusted as an approximation for steels with low Vanadium

content.

When trying to separate Vanadium influence from Tungsten influence its necessary to first determine

the Influence of Vanadium with more certainty as most of the industrially produced steels with

Tungsten content generally seams to contain Vanadium as well.

Acknowledgement Thanks to Mats Hillert for pedagogic and interesting discussions and guidance, a lot of knowledge has

been embedded into a young man’s brain thanks to him. Lars Höglund’s great patience and expertise

when explaining computer programing and methodology have been crucial for keeping this work

within the timeframe.

Also thanks to Peter Kolmskog for helping with the literature study by sharing his own studies for his

doctoral thesis.

Page 18: Influence of Vanadium and Tungsten on the Bainite start ...631537/FULLTEXT01.pdf · transformation barrier (B) for bainite transformation and try to differentiate the influence of

17

References [1]. Thermodynamic analysis of the critical conditions for acicular ferrite

authors: Peter Kolmskog, Annika Borgenstam, Lars Höglund and Mats Hillert

[2]. Influence of vanadium on transformation characteristics of high-strength line-pipe steels,

Published in Metals technology in December, 1981

authors: R.C. Cochrane and W. B. Morrison

[3]. Thermo-Calc Software version 3.0, software package used for thermodynamic calculations of

multicomponent systems. Calculations are based on thermodynamic databases produced by expert

evaluation of experimental data using the CALPHAD method. www.thermocalc.com

[4]. Database TCFE7, version 7.0

Database containing information of steel and Fe alloy design and processing.

[5]. Bs-program, Software currently under development by Lars Höglund with team. It is used

internally at the institute of Material Science and Technology at KTH. The program uses Thermo-Calc

interface and database TCFE6.

[6]. Mats Hillert Ph.D at department of Material science and engineering.

[7]. New approach for the bainite start temperature calculation in steels]

Published in Materials Science and Technology, volume 21, Year: 2005

authors: C. Garcia-Mateo, T.Sourmail, F.G. Gaballero, C.Capdevila and C. García de Andrés

[8]. Lars Höglund, Ph.D at department of Material science and engineering.

[9]. Atlas zur wärmebehandlung der sthäle, 1954-58 ISBN: 3514001197

authors: Adolf Rose, Walter Peter, Werner Strassburg, Leo Rademacher

[10]. Dilatometry determination of phase transformation temperatures during heating of Nb bearing

low carbon steel, Published in Journal of materials processing technology 204, 2008

author: Ahmed Ismail Zaky Farahat

[11]. The lattice parameters of austenite and ferrite in Fe-C alloys as a function of carbon content and

temperature, Published in Scripta Metallurgica et Materialia vol.29, 1993

authors: M.Onink, C.M. Brakman, F.D. Tichelar, E.J. Mittemeijer, S.Van der Zwaag, J.H. Root,

N.B.Konyer

[12]. The temperature of Formation of Martensite and Bainite in Low-alloy Steels,

published in Journal of the Iron and steel institute in august, 1956

authors: W. Steven and A.G. Haynes

[13]. Atlas of time-temperature diagrams for irons and steels, ISBN: 0-87170-415-3

author: G.F. Vander Voort

Page 19: Influence of Vanadium and Tungsten on the Bainite start ...631537/FULLTEXT01.pdf · transformation barrier (B) for bainite transformation and try to differentiate the influence of

18

Appendix

Page 20: Influence of Vanadium and Tungsten on the Bainite start ...631537/FULLTEXT01.pdf · transformation barrier (B) for bainite transformation and try to differentiate the influence of

19

Page 21: Influence of Vanadium and Tungsten on the Bainite start ...631537/FULLTEXT01.pdf · transformation barrier (B) for bainite transformation and try to differentiate the influence of

Steel nr. Year Source Bs [⁰C] %C %Mn %Cr %Mo %V %W %Ni %Si %S %P %Cu %Al %N %Ti %Co Austinitization [⁰C] Method1 1956 [12] Tabel 1&6 ref 29 560,00 0,51 0,72 0,94 0,05 0,20 0,00 0,15 0,27 0,02 0,02 0,00 0,00 0,00 0,00 0,00 875,00 Dilatometry and metallographic observation2 1956 [12] Tabel 1&6 ref 53 450,00 0,40 0,52 1,25 1,00 0,15 0,00 1,83 0,23 0,00 0,01 0,00 0,00 0,00 0,00 0,00 860,00 Dilatometry and metallographic observation3 1956-58 [9] II-103D 589,00 0,43 1,67 0,32 0,03 0,10 0,00 0,11 0,28 0,01 0,02 0,06 0,00 0,00 0,00 0,00 870,00 Dilatometry and metallographic observation4 1956-58 [9] II-103D 594,00 0,43 1,67 0,32 0,03 0,10 0,00 0,11 0,28 0,01 0,02 0,06 0,00 0,00 0,00 0,00 1050,00 Dilatometry and metallographic observation5 1956-58 [9] II-112D 539,00 0,44 0,75 1,70 0,08 0,09 0,00 0,17 0,26 0,02 0,02 0,18 0,00 0,00 0,00 0,00 1050,00 Dilatometry and metallographic observation6 1956-58 [9] II-113D 544,00 0,55 0,98 1,02 0,00 0,11 0,00 0,01 0,22 0,01 0,02 0,07 0,00 0,00 0,00 0,00 1050,00 Dilatometry and metallographic observation7 1956-58 [9] II-113H 555,00 0,47 1,04 1,20 0,05 0,12 0,00 0,05 0,35 0,01 0,03 0,16 0,00 0,00 0,00 0,00 1050,00 Dilatometry and metallographic observation8 1956-58 [9] II-113H 567,00 0,47 0,82 1,20 0,00 0,11 0,00 0,04 0,35 0,02 0,04 0,14 0,00 0,00 0,00 0,00 1050,00 Dilatometry and metallographic observation9 1956-58 [9] II-121D 600,00 0,16 1,12 0,99 0,02 0,01 0,00 0,12 0,22 0,01 0,03 0,00 0,02 0,00 0,00 0,00 1050,00 Dilatometry and metallographic observation

10 1956-58 [9] II-123D 567,00 0,16 0,50 1,95 0,03 0,01 0,00 2,02 0,31 0,01 0,01 0,00 0,03 0,00 0,00 0,00 1050,00 Dilatometry and metallographic observation11 1956-58 [9] II-204D 350,00 0,39 0,48 5,53 0,87 0,48 0,00 0,04 0,94 0,01 0,01 0,30 0,00 0,00 0,00 0,00 1030,00 Dilatometry and metallographic observation12 1956-58 [9] II-204D 372,00 0,39 0,48 5,53 0,87 0,48 0,00 0,04 0,94 0,01 0,01 0,30 0,00 0,00 0,00 0,00 1100,00 Dilatometry and metallographic observation13 1956-58 [9] II-205D 489,00 0,43 0,75 1,31 0,72 0,23 0,00 0,11 0,27 0,01 0,01 0,00 0,00 0,00 0,00 0,00 970,00 Dilatometry and metallographic observation14 1956-58 [9] II-205D 500,00 0,43 0,75 1,31 0,72 0,23 0,00 0,11 0,27 0,01 0,01 0,00 0,00 0,00 0,00 0,00 1050,00 Dilatometry and metallographic observation15 1956-58 [9] II-205G 500,00 0,38 0,81 1,54 0,63 0,27 0,00 0,01 0,18 0,01 0,02 0,00 0,00 0,00 0,00 0,00 970,00 Dilatometry and metallographic observation16 1956-58 [9] II-206D 561,00 0,52 0,70 1,09 0,43 0,14 0,00 1,72 0,29 0,01 0,01 0,00 0,00 0,00 0,00 0,00 850,00 Dilatometry and metallographic observation17 1956-58 [9] II-206D 461,00 0,52 0,70 1,09 0,43 0,14 0,00 1,72 0,29 0,01 0,01 0,00 0,00 0,00 0,00 0,00 950,00 Dilatometry and metallographic observation18 1956-58 [9] II-222D 411,00 2,08 0,39 11,48 0,02 0,04 0,00 0,31 0,28 0,01 0,02 0,15 0,00 0,00 0,00 0,00 970,00 Dilatometry and metallographic observation19 1956-58 [9] II-222D 389,00 2,08 0,39 11,48 0,02 0,04 0,00 0,31 0,28 0,01 0,02 0,15 0,00 0,00 0,00 0,00 1050,00 Dilatometry and metallographic observation20 1956-58 [9] II-224D 528,00 1,42 0,61 1,37 0,00 0,18 0,00 0,00 0,37 0,02 0,02 0,04 0,00 0,00 0,00 0,00 950,00 Dilatometry and metallographic observation21 1956-58 [9] II-226D 522,00 1,03 0,97 1,05 0,03 0,00 1,15 0,13 0,28 0,02 0,02 0,25 0,00 0,00 0,00 0,00 815,00 Dilatometry and metallographic observation22 1956-58 [9] II-227D 566,00 0,58 0,81 1,27 0,02 0,11 0,00 0,06 0,89 0,01 0,01 0,14 0,00 0,00 0,00 0,00 870,00 Dilatometry and metallographic observation23 1956-58 [9] II-227D 511,00 0,58 0,81 1,27 0,02 0,11 0,00 0,06 0,89 0,01 0,01 0,14 0,00 0,00 0,00 0,00 950,00 Dilatometry and metallographic observation24 1956-58 [9] II-229D 466,00 0,40 0,35 1,27 0,24 0,04 0,00 4,03 0,20 0,02 0,01 0,16 0,00 0,00 0,00 0,00 860,00 Dilatometry and metallographic observation25 1956-58 [9] II-229D 450,00 0,40 0,35 1,27 0,24 0,04 0,00 4,03 0,20 0,02 0,01 0,16 0,00 0,00 0,00 0,00 950,00 Dilatometry and metallographic observation26 1956-58 [9] II-229G 417,00 0,46 0,50 1,53 0,07 0,00 0,59 3,96 0,24 0,01 0,01 0,20 0,00 0,00 0,00 0,00 860,00 Dilatometry and metallographic observation27 1956-58 [9] II-261D 350,00 0,97 0,18 4,11 2,61 2,51 3,23 0,25 0,31 0,01 0,04 0,00 0,00 0,00 0,00 0,00 1180,00 Dilatometry and metallographic observation28 1956-58 [9] II-261D 344,00 0,97 0,18 4,11 2,61 2,51 3,23 0,25 0,31 0,01 0,04 0,00 0,00 0,00 0,00 0,00 1240,00 Dilatometry and metallographic observation29 1956-58 [9] II-321D 661,00 0,15 0,67 1,20 0,00 0,31 0,00 0,25 0,48 0,02 0,04 0,18 0,00 0,00 0,00 0,00 920,00 Dilatometry and metallographic observation30 1954 [13] sida 161 nedre 340,00 0,80 0,30 4,34 0,78 1,52 17,89 0,30 0,23 0,01 0,02 0,00 0,00 0,00 0,00 4,52 1250,0031 1954 [13] sida: 160 nedre 360,00 0,87 0,32 3,99 0,80 2,52 11,91 0,11 0,27 0,01 0,02 0,00 0,00 0,00 0,00 0,00 1210,0032 1954 [13] sida:154 övre 560,00 0,52 0,70 1,09 0,43 0,14 0,00 1,72 0,29 0,01 0,01 0,00 0,00 0,00 0,00 0,00 850,0033 1954 [13] sida:155 480,00 0,28 0,39 2,35 0,06 0,53 4,10 0,06 0,16 0,01 0,02 0,00 0,00 0,00 0,00 0,00 1090,0034 1954 [13] sida:156 473,00 0,28 0,36 2,57 0,03 0,35 8,88 0,04 0,11 0,00 0,01 0,00 0,00 0,00 0,00 0,00 1120,0035 1954 [13] sida:158 500,00 0,55 0,34 1,27 0,05 0,18 2,10 0,12 0,94 0,01 0,02 0,00 0,00 0,00 0,00 0,00 950,0036 1954 [13] sida:159 500,00 0,39 0,45 1,45 0,47 0,70 0,55 0,13 0,58 0,00 0,02 0,00 0,00 0,00 0,00 0,00 1050,0037 1954 [13] sida:160 347,00 0,81 0,33 3,77 0,44 1,07 18,25 0,12 0,15 0,00 0,02 0,00 0,00 0,00 0,00 0,00 1230,0038 1954 [13] sida:161 347,00 0,85 0,31 4,15 4,79 2,01 6,34 0,18 0,30 0,01 0,02 0,00 0,00 0,00 0,00 0,00 1190,0039 1989 [13] sida:528 450,00 0,30 0,30 1,63 0,49 0,08 0,00 3,64 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 840,0040 2002 [1] Hackenberg 600,00 0,30 0,00 0,00 0,00 0,00 6,30 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 _41 1956 [1] US Steel p. 344 325,00 0,40 0,00 5,25 0,00 0,00 4,25 0,00 1,15 0,00 0,00 0,00 0,00 0,00 0,00 0,00 _42 1947 [1] Hultgren 480,00 0,59 0,00 0,00 0,00 0,00 3,62 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 _ Metallographic observation43 1977 [1] ASM p. 315 600,00 0,55 0,55 0,00 0,00 0,00 1,96 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 _ Dilatometry44 1947 [1] Hultgren 590,00 0,55 0,00 0,00 0,00 0,00 1,96 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 _ Metallographic observation45 1956 [12] Tabel 1&6 ref 26 420,00 0,32 0,47 1,21 0,30 0,01 0,00 4,13 0,29 0,02 0,02 0,00 0,00 0,00 0,00 0,00 _ Dilatometry and metallographic observation46 1956 [1] US Steel p.336 430,00 0,32 0,47 1,21 0,30 0,01 0,11 4,13 0,29 0,00 0,00 0,51 0,00 0,00 0,00 0,00 _47 1977 [1] ASM p. 172 420,00 0,32 0,47 1,21 0,30 0,01 0,11 4,13 0,29 0,00 0,00 0,00 0,00 0,00 0,00 0,00 _ Metallographic observation48 1956 [1] US Steel p. 329 520,00 0,32 0,61 0,63 0,22 0,03 0,16 3,22 0,28 0,00 0,00 0,12 0,00 0,00 0,00 0,00 _49 1977 [1] ASM p. 169 500,00 0,32 0,61 0,63 0,22 0,03 0,16 3,22 0,28 0,00 0,00 0,00 0,00 0,00 0,00 0,00 _ Metallographic observation50 1956 [12] Tabel 1&6 ref 15 520,00 0,32 0,61 0,63 0,22 0,03 0,00 3,22 0,28 0,03 0,02 0,00 0,00 0,00 0,00 0,00 _ Dilatometry and metallographic observation51 1954 [13]. sida: 148 463,00 0,40 0,35 1,27 0,24 0,04 0,00 4,03 0,20 0,02 0,01 0,16 0,00 0,00 0,00 0,00 _52 1992 [1] Rees 346,00 0,44 0,67 0,39 0,83 0,09 0,00 1,85 1,74 0,00 0,00 0,00 0,00 0,00 0,00 0,00 _53 2004 [1] Peet 200,00 0,75 1,95 1,48 0,28 0,10 0,00 0,00 1,63 0,00 0,00 0,00 0,00 0,00 0,00 0,00 _ C content calculated from lattice parameter…54 1977 [1] ASM p. 236 538,00 0,27 0,84 0,73 0,90 0,11 0,00 0,60 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 _ Metallographic observation55 1956 [1] US Steel p. 254 495,00 0,59 0,96 1,06 0,54 0,12 0,00 0,00 0,28 0,00 0,00 0,00 0,00 0,00 0,00 0,00 _56 1956 [12] Tabel 1&6 ref 63 500,00 0,36 0,56 1,22 0,31 0,13 0,00 1,46 0,16 0,03 0,01 0,00 0,00 0,00 0,00 0,00 _ Dilatometry and metallographic observation

Table 1. Literature values

Page 22: Influence of Vanadium and Tungsten on the Bainite start ...631537/FULLTEXT01.pdf · transformation barrier (B) for bainite transformation and try to differentiate the influence of

57 1977 [1] ASM p. 225 552,00 0,43 0,74 0,92 0,00 0,16 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 _58 1956 [1] US Steel p. 331 490,00 0,25 0,52 1,14 0,65 0,16 0,00 3,33 0,15 0,00 0,00 0,00 0,00 0,00 0,00 0,00 _59 1977 [1] ASM p. 235 450,00 0,25 0,52 1,14 0,65 0,16 0,00 3,33 0,15 0,00 0,00 0,00 0,00 0,00 0,00 0,00 _ Metallographic observation60 1956 [12] Tabel 1&6 ref 23 470,00 0,25 0,52 1,14 0,65 0,16 0,00 3,33 0,15 0,02 0,01 0,00 0,00 0,00 0,00 0,00 _ Dilatometry and metallographic observation61 1977 [1] ASM p. 226 552,00 0,53 0,67 0,93 0,00 0,18 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 _ Dilatometry62 1956 [12] Tabel 1&6 ref 22 440,00 0,32 0,51 1,37 0,48 0,18 0,00 3,02 0,19 0,01 0,01 0,00 0,00 0,00 0,00 0,00 _ Dilatometry and metallographic observation63 1956 [1] US Steel p. 328 440,00 0,32 0,51 1,37 0,48 0,18 0,00 3,02 0,19 0,00 0,00 0,00 0,00 0,00 0,00 0,00 _64 1977 [1] ASM p. 280 560,00 0,51 0,72 0,94 0,05 0,20 0,11 0,15 0,27 0,00 0,00 0,00 0,00 0,00 0,00 0,00 _65 1956 [1] US Steel p. 262 360,00 1,50 0,00 11,50 0,80 0,20 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 _66 1977 [1] ASM p. 311 538,00 0,45 0,70 1,00 0,00 0,20 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 _67 1956 [1] US Steel p. 263 350,00 2,25 0,00 11,50 0,80 0,20 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 _68 1956 [1] US Steel p. 351 510,00 0,40 1,34 0,53 0,22 0,21 0,00 1,03 0,21 0,00 0,00 0,08 0,00 0,00 0,00 0,00 _69 1977 [1] ASM p. 227 593,00 0,23 0,82 1,22 0,53 0,22 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 _70 1977 [1] ASM p. 229 538,00 0,40 0,78 1,25 0,53 0,22 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 _71 1977 [1] ASM p. 234 538,00 0,25 0,88 0,73 0,88 0,23 0,00 0,59 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 _ Metallographic observation72 1956 [1] US Steel p. 260 360,00 1,55 0,27 11,34 0,53 0,24 0,00 0,00 0,45 0,00 0,00 0,00 0,00 0,00 0,00 0,00 _73 1956 [1] US Steel p. 257 260,00 0,97 0,48 4,58 1,04 0,25 0,00 0,00 0,40 0,00 0,00 0,00 0,00 0,00 0,00 0,00 _74 1956 [1] US Steel p. 258 370,00 1,00 0,40 5,25 1,15 0,40 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 _75 1956 [1] US Steel p. 255 455,00 0,55 0,00 3,90 0,45 0,90 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 _76 1994 [1] Liu 525,00 0,42 0,00 0,00 0,00 1,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 _77 1956 [1] US Steel p. 366 365,00 0,73 0,21 4,39 0,18 1,09 17,80 0,00 0,33 0,00 0,00 0,00 0,00 0,00 0,00 0,00 _78 1956 [1] US Steel p. 347 385,00 0,40 0,00 5,00 1,35 1,10 0,00 0,00 1,05 0,00 0,00 0,00 0,00 0,00 0,00 0,00 _79 1956 [1] US Steel p. 270 345,00 0,72 0,27 4,09 0,00 1,25 18,59 0,00 0,39 0,00 0,00 0,00 0,00 0,00 0,00 0,00 _80 1956 [1] US Steel p. 363 370,00 0,81 0,24 4,10 4,69 1,64 5,95 0,00 0,26 0,00 0,00 0,00 0,00 0,00 0,00 0,00 _81 1956 [1] US Steel p. 360 360,00 0,80 0,23 4,07 6,09 1,65 5,70 0,00 0,27 0,00 0,00 0,00 0,00 0,00 0,00 0,00 _82 1956 [1] US Steel p. 256 355,00 0,85 0,00 4,00 8,00 1,90 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 _83 1956 [1] US Steel p. 268 365,00 0,73 0,00 4,00 0,00 2,00 14,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 _

Page 23: Influence of Vanadium and Tungsten on the Bainite start ...631537/FULLTEXT01.pdf · transformation barrier (B) for bainite transformation and try to differentiate the influence of

Steel nr Phases %Pase [VOL%] Bs [⁰C] %C %Mn %Cr %Mo %V %W %Ni %Si %S %P %Cu %Al1 FCC_A1#1 99,751% 560,00 0,481% 0,721% 0,935% 0,048% 0,076% 0,150% 0,270% 0,021%

FCC_A1#2 0,249% 16,615% 0,058% 3,932% 1,311% 68,468% 0,000% 0,000% 0,000%2 FCC_A1#1 99,709% 450,00 0,370% 0,514% 1,251% 0,911% 0,064% 1,834% 0,231% 0,000% 0,008%

FCC_A1#2 0,083% 14,887% 0,032% 2,284% 23,609% 54,467% 0,004% 0,000% 0,000% 0,000%MC_ETA#1 0,195% 14,242% 51,421% 34,338%MNS#1 0,014% 63,100% 36,856%

3 FCC_A1#1 99,928% 589,00 0,425% 1,657% 0,320% 0,030% 0,077% 0,110% 0,280% 0,000% 0,021% 0,060%FCC_A1#2 0,045% 16,753% 0,122% 1,193% 0,924% 72,355% 0,000% 0,000% 0,000% 0,000% 0,000%MNS#1 0,027% 63,130% 36,856% 0,000%

4 FCC_A1#1 99,973% 594,00 0,430% 1,657% 0,320% 0,030% 0,100% 0,110% 0,280% 0,000% 0,021% 0,060%MNS#1 0,027% 63,060% 36,855% 0,000%

5 FCC_A1#1 99,936% 539,00 0,440% 0,718% 1,701% 0,080% 0,090% 0,170% 0,260% 0,000% 0,016% 0,180%MNS#1 0,064% 62,949% 36,855% 0,000%

6 FCC_A1#1 99,956% 544,00 0,550% 0,958% 1,020% 0,110% 0,010% 0,220% 0,000% 0,017% 0,070%MNS#1 0,044% 62,997% 36,855% 0,000%

7 FCC_A1#1 99,960% 555,00 0,470% 1,020% 1,200% 0,050% 0,120% 0,050% 0,350% 0,000% 0,032% 0,160%MNS#1 0,040% 63,005% 36,855% 0,000%

8 FCC_A1#1 99,949% 567,00 0,470% 0,795% 1,200% 0,110% 0,040% 0,350% 0,000% 0,035% 0,140%MNS#1 0,051% 62,965% 36,855% 0,000%

9 FCC_A1#1 99,973% 600,00 0,160% 1,107% 0,990% 0,020% 0,010% 0,120% 0,220% 0,000% 0,030% 0,015%MNS#1 0,027% 63,024% 36,855%

10 FCC_A1#1 99,953% 567,00 0,160% 0,476% 1,951% 0,030% 0,010% 2,021% 0,310% 0,000% 0,013% 0,030%MNS#1 0,047% 62,839% 36,854%

11 FCC_A1#1 99,872% 350,00 0,377% 0,472% 5,530% 0,864% 0,425% 0,040% 0,941% 0,000% 0,013% 0,300%FCC_A1#2 0,111% 15,571% 0,023% 6,613% 8,438% 65,732% 0,000% 0,000% 0,000% 0,000% 0,000%MNS#1 0,017% 62,893% 36,854% 0,000%

12 FCC_A1#1 99,983% 372,00 0,390% 0,472% 5,531% 0,870% 0,480% 0,040% 0,940% 0,000% 0,013% 0,300%MNS#1 0,017% 62,693% 36,853% 0,000%

13 FCC_A1#1 99,963% 489,00 0,430% 0,731% 1,310% 0,720% 0,230% 0,110% 0,270% 0,000% 0,011%MNS#1 0,037% 63,053% 36,855%

14 FCC_A1#1 99,963% 500,00 0,430% 0,732% 1,310% 0,720% 0,230% 0,110% 0,270% 0,000% 0,011%MNS#1 0,037% 62,955% 36,855%

15 FCC_A1#1 99,971% 500,00 0,380% 0,797% 1,540% 0,630% 0,269% 0,010% 0,180% 0,000% 0,021%FCC_A1#2 0,001% 15,906% 0,047% 2,540% 8,833% 68,376% 0,000% 0,000% 0,000% 0,000%MNS#1 0,027% 63,063% 36,855%

16 FCC_A1#1 99,760% 561,00 0,496% 0,684% 1,086% 0,411% 0,048% 1,723% 0,291% 0,000% 0,010%FCC_A1#2 0,206% 15,753% 0,053% 4,000% 12,917% 59,004% 0,005% 0,000% 0,000% 0,000%MNS#1 0,034% 63,114% 36,856%

17 FCC_A1#1 99,966% 461,00 0,520% 0,683% 1,090% 0,430% 0,140% 1,720% 0,290% 0,000% 0,010%MNS#1 0,034% 63,055% 36,855%

Table 2. Equilibrium results

Page 24: Influence of Vanadium and Tungsten on the Bainite start ...631537/FULLTEXT01.pdf · transformation barrier (B) for bainite transformation and try to differentiate the influence of

18 FCC_A1#1 81,503% 411,00 0,683% 0,353% 4,052% 0,009% 0,003% 0,372% 0,339% 0,000% 0,021% 0,182%M7C3#1 18,457% 8,732% 0,448% 46,856% 0,070% 0,215% 0,018% 0,000%MNS#1 0,040% 62,946% 36,855% 0,000%

19 FCC_A1#1 83,484% 389,00 0,856% 0,360% 5,121% 0,012% 0,006% 0,363% 0,332% 0,000% 0,020% 0,178%M7C3#1 16,477% 8,727% 0,424% 46,014% 0,063% 0,226% 0,021% 0,000%MNS#1 0,040% 62,744% 36,853% 0,000%

20 CEMENTITE#1 4,997% 6,738% 0,921% 7,551% 1,631% 0,000%FCC_A1#1 94,952% 528,00 1,150% 0,567% 1,056% 0,106% 0,389% 0,000% 0,025% 0,042%MNS#1 0,050% 63,032% 36,855% 0,000%

21 CEMENTITE#1 3,443% 6,682% 1,766% 9,165% 0,073% 1,139% 0,015% 0,000%FCC_A1#1 96,051% 522,00 0,786% 0,920% 0,778% 0,016% 0,306% 0,135% 0,292% 0,000% 0,017% 0,261%MC_SHP#1 0,444% 6,209% 1,360% 92,432%MNS#1 0,062% 63,129% 36,856% 0,000%

22 FCC_A1#1 99,847% 566,00 0,565% 0,801% 1,265% 0,019% 0,049% 0,060% 0,891% 0,000% 0,013% 0,140%FCC_A1#2 0,132% 16,573% 0,068% 6,906% 0,562% 63,916% 0,000% 0,000% 0,000% 0,000% 0,000%MNS#1 0,020% 63,110% 36,856% 0,000%

23 FCC_A1#1 99,980% 511,00 0,580% 0,800% 1,270% 0,020% 0,110% 0,060% 0,890% 0,000% 0,013% 0,140%MNS#1 0,020% 63,065% 36,855% 0,000%

24 FCC_A1#1 99,949% 466,00 0,400% 0,324% 1,271% 0,240% 0,040% 4,032% 0,200% 0,000% 0,010% 0,160%MNS#1 0,051% 63,064% 36,855% 0,000%

25 FCC_A1#1 99,949% 450,00 0,400% 0,325% 1,271% 0,240% 0,040% 4,032% 0,200% 0,000% 0,010% 0,160%MNS#1 0,051% 62,940% 36,855% 0,000%

26 FCC_A1#1 99,976% 417,00 0,460% 0,488% 1,530% 0,070% 0,590% 3,961% 0,240% 0,000% 0,012% 0,200%MNS#1 0,024% 63,091% 36,855% 0,000%

27 FCC_A1#1 96,605% 350,00 0,625% 0,176% 4,119% 2,301% 1,111% 2,692% 0,258% 0,320% 0,001% 0,036%FCC_A1#2 3,195% 12,832% 0,010% 3,916% 11,629% 50,954% 18,668% 0,001% 0,000% 0,000% 0,000%M6C#1 0,182% 2,209% 2,978% 21,800% 3,810% 39,835% 0,007% 0,097%MNS#1 0,018% 61,180% 36,844%

28 LIQUID#1 2,143% 2,532% 0,243% 5,996% 5,283% 5,311% 6,425% 0,181% 0,213% 0,255% 0,109%FCC_A1#1 95,892% 344,00 0,724% 0,182% 4,077% 2,409% 1,557% 2,907% 0,256% 0,318% 0,001% 0,034%FCC_A1#2 1,966% 12,982% 0,010% 3,717% 10,735% 53,072% 17,615% 0,002% 0,000% 0,000% 0,000%

29 FCC_A1#1 99,878% 661,00 0,145% 0,630% 1,201% 0,288% 0,250% 0,480% 0,000% 0,044% 0,180%FCC_A1#2 0,040% 16,517% 0,022% 1,357% 78,277% 0,000% 0,000% 0,000% 0,000% 0,000%MNS#1 0,082% 63,079% 36,855% 0,000%

30 FCC_A1#1 86,48% 340,00 0,53% 0,37% 4,66% 0,39% 1,02% 6,62% 0,37% 0,28%M6C#1 13,52% 1,90% 3,05% 2,39% 3,59% 64,06% 0,03% 0,01%

31 FCC_A1#1 91,24% 360,00 0,58% 0,36% 4,17% 0,46% 1,48% 5,30% 0,12% 0,31%FCC_A1#2 1,36% 12,07% 0,02% 2,95% 1,89% 50,64% 30,93% 0,00% 0,00%M6C#1 7,40% 1,93% 0,00% 2,63% 3,35% 5,61% 62,47% 0,01% 0,01%

32 FCC_A1#1 99,79% 560,00 0,50% 0,70% 1,09% 0,41% 0,05% 1,72% 0,29%FCC_A1#2 0,21% 15,76% 0,05% 3,99% 12,86% 59,07% 0,00% 0,00%

33 FCC_A1#1 100,00% 480,00 0,28% 0,39% 2,35% 0,06% 0,53% 4,10% 0,06% 0,16%34 FCC_A1#1 97,84% 473,00 0,23% 0,37% 2,59% 0,02% 0,30% 6,56% 0,04% 0,11%

Page 25: Influence of Vanadium and Tungsten on the Bainite start ...631537/FULLTEXT01.pdf · transformation barrier (B) for bainite transformation and try to differentiate the influence of

M6C#1 2,16% 1,78% 0,00% 1,90% 0,19% 1,77% 70,28% 0,00% 0,00%35 FCC_A1#1 99,06% 500,00 0,44% 0,35% 1,28% 0,04% 0,05% 0,83% 0,12% 0,95%

FCC_A1#2 0,30% 12,78% 0,02% 3,52% 0,76% 46,14% 31,74% 0,00% 0,00%MC_SHP#1 0,65% 6,19% 0,95% 92,86%

36 FCC_A1#1 99,66% 500,00 0,35% 0,45% 1,45% 0,46% 0,52% 0,53% 0,13% 0,58%FCC_A1#2 0,34% 15,26% 0,02% 1,61% 4,15% 68,78% 7,31% 0,00% 0,00%

37 FCC_A1#1 87,43% 347,00 0,57% 0,41% 3,94% 0,21% 0,70% 7,14% 0,14% 0,18%M6C#1 12,57% 1,85% 0,00% 3,03% 1,44% 2,66% 66,70% 0,01% 0,00%

38 FCC_A1#1 91,20% 347,00 0,59% 0,35% 4,28% 2,57% 1,32% 2,62% 0,20% 0,32%FCC_A1#2 0,89% 13,00% 0,02% 3,73% 11,78% 53,04% 16,54% 0,00% 0,00%M6C#1 7,91% 2,24% 0,00% 3,03% 23,33% 4,29% 37,57% 0,00% 0,11%

39 FCC_A1#1 99,98% 450,00 0,30% 0,30% 1,63% 0,49% 0,07% 3,64%FCC_A1#2 0,02% 15,82% 0,02% 4,44% 10,94% 62,07% 0,01%