Influence of Bacillus Subtillis for Bioethanol Production From Agro Bio Waste

download Influence of Bacillus Subtillis for Bioethanol Production From Agro Bio Waste

of 7

Transcript of Influence of Bacillus Subtillis for Bioethanol Production From Agro Bio Waste

  • 8/13/2019 Influence of Bacillus Subtillis for Bioethanol Production From Agro Bio Waste

    1/7

    Influence of Bacillus subtillis for Bioethanol production from

    Agricultural waste

    1*Karthikeyan, R.,

    2Sivasubramanian, C.,

    1Research scholar, Department of Environmental and Herbal science, Tamil university, Thanjavur, Tamil Nadu, India.

    2Assistant professor, Department of Environmental and Herbal science, Tamil university, Thanjavur, Tamil Nadu, India.

    Agricultural wastes, including wood, herbaceous plants,

    crops and forest residues, as well as animal wastes are

    potentially huge source of energy. A worldwide interest

    in the utilization of bioethanol as an energy source has

    stimulated studies on the cost and efficiency of

    industrial processes for ethanol production (Tanaka,

    2006). The practice is usually to burn them or leave

    them to decompose. However, studies have shown that

    these residues could be processed into liquid fuel such

    as biogas and bioethanol, or combusted to produce

    electricity and heat (Soltes, 2000). Paddy husk were

    used to produce ethanol through acid hydrolysis,and

    SSF with B.subtilis. In SSF, the microorganisms

    behaved differently, according to their nutrient

    requirements, but synergistically in the degradation of

    organic substrate. The results revealed that ethanol

    could be produced from agricultural residues, such as

    paddy husk, using B.subtilis fermenting organisms The

    higher ethanol yield from fresh fruit was due to higher

    presence of fructose and glucose in fresh fruits, (Hanh

    Thi My Tran, Benjamas Cheirsilpa, 2010). The

    maximum volume of bioethanol (16.22 g/l) produced

    from paddy husk in this study is in agreement with that

    (16.22 g/l).

    Key words: Bioethanol, paddy husk,B.subtilis

    *Corresponding author: Karthikeyan,R, Research

    Scholar, Department of Environmental and Herbal

    Science ,Tamil University,Thanjavur-4.

    Email: [email protected]

    Introduction:

    Bioethanol is a renewable energy source produced

    mainly by the sugar fermentation process; although it

    can also be synthesized by chemical processes such as

    reacting ethylene with steam (Anujetal., 2007). Ethanol

    based fuel blend are broadly sold in the United States of

    America. The majority frequent blending is 10% ethanol

    and 90% petrol (E10). Motor vehicle engines need no

    alteration to run on E10 and vehicle warranties are not

    affected. Only flexible fuel vehicles can run on up to

    85% ethanol and 15% Petrol blends (E85) (Tanaka,

    2006). The usual energy resources like fossil fuel

    gasoline and coal are being utilized at a rapid rate and

    these resources have been estimated to last only a few

    J. Biochem. 2013;148(6):332338 doi:10.1091/jb/mvq112

    Received September 21, 2013; accepted October 31, 2013; published online December 17, 2013

    332The Authors 2013. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved

  • 8/13/2019 Influence of Bacillus Subtillis for Bioethanol Production From Agro Bio Waste

    2/7

    years. Therefore, alternative energy sources such as

    ethanol, methane and hydrogen are being considered.

    Some biological processes have rendered possible routes

    for producing ethanol and methane in large quantities. A

    worldwide interest in the utilization of bioethanol as an

    energy source has stimulated studies on the cost and

    efficiency of industrial processes for ethanol production

    (Tanaka, 2006). Human activities generate large

    amounts of waste such as crop residues, solid waste

    from mines and municipal Waste. They may become a

    nuisance and sources of pollution. It is therefore

    important to handle them Sensibly to avoid health

    problems, since these wastes may harmful pathogenic

    microorganisms (Ledward etal., 2003). Agricultural

    wastes, including wood, herbaceous plants, crops and

    forest residues, as well as animal wastes are potentially

    huge source of energy. In Nigeria, large quantities of

    these wastes are generated annually and are vastly

    underutilized. The practice is usually to burn them or

    leave them to decompose. However, studies have shown

    that these residues could be processed into liquid fuel

    such as biogas and bioethanol, or combusted to produce

    electricity and heat (Soltes, 2000). Ethanol production

    processes only use energy from renewable sources and

    there is no net CO2 emission to the atmosphere, thus

    making ethanol an environmentally beneficial energy

    source. In addition, ethanol derived from biomass is the

    only liquid transportation fuel that does not contribute to

    the greenhouse gas effect. This reduction of greenhouse

    gas emission is the main advantage of utilizing biomass

    conversion into ethanol (Anuj et al., 2007).

    Traditionally, ethanol has been produced in

    batch fermentation with fungal strains such as, Scizo

    saccharomyces pombe and Saccharomyces cerevisiae,

    which cant tolerate high concentrations of ethanol.

    Therefore, improvement programmes are required in

    order to obtain alcohol-tolerant strains for fermentation

    (Hanh Thi My Tran, Benjamas Cheirsilpa, 2010).

    Bacillus subtillis, a Gram-positive bacterium, is

    considered an alternative organism in large scale ethanol

    production. Its advantages over yeasts include higher

    sugar uptake and ethanol yield, lower biomass

    production and higher ethanol tolerance glucose,

    fructose and sucrose. This organism can be isolated

    from palm wine or rotten oranges (Hanh Thi My Tran,

    Benjamas Cheirsilpa, 2010). Several agricultural wastes

    have been tested for their bioethanol-producing

    potential. In the present study, the utilization of some

    Industrial bio-waste (paddy husk) for the production of

    bioethanol was evaluated. The objectives of the study

    were to produce bioethanol from paddy husk residues

    through fermentation usingB.subtilis.

    MATERIALS AND METHODSCollection and processing of samplesPaddy husk were collected from Thanjavur Local Rice

    mill industries. The samples were dried and ground to a

    powder form using a Waring blender (OSAKA

    CHEMICAL).

    333

  • 8/13/2019 Influence of Bacillus Subtillis for Bioethanol Production From Agro Bio Waste

    3/7

    Isolation and characterization of

    microorganismsB.subtilis was isolated from sugar cane molasses that

    obtained from the Arignar Anna sugar industry,

    kurunkulam, Thanjavur and identified in the

    environmental and herbal science laboratory of the

    Tamil University Thanjavur, Tamilnadu, India

    following standard procedures described by Sterlini

    & Mandelstam (1969), but without the excess Mg2+

    added. When the L-glutamate in this medium was

    replaced by L-lactate (0.2 %) or supplemented with

    either L-lactate or D-glucose (0.2 %) the media are

    referred to as lactate minimal, lactate-glutamate minimal

    and glucose-glutamate minimal respectively. These

    media were used as such or were solidified with 1 %

    agar (Davis Gelatine Ltd, Warwick, Warwickshire).

    The microorganisms were grown with shaking at 37C

    in a medium containing hydrolysed casein and inorganic

    ions (Sterlini & Mandelstam, 1969). When the cells

    were growing exponentially and the bacterial

    concentration had reached 0.25 mg dry wt/ml, the

    Oligosporogenous mutants of Bacillus subtilis3 culture

    was centrifuged and the cells transferred at the same

    density to a re suspension medium containing L-

    glutamate and inorganic ions with 0.04 M-Mg2+

    (Sterlini

    & Mandel- stam, 1969). Cells shaking in this medium a

    T37C gave a yield in the wild-type of about 80

    retractile spores in 7 to 8 h.

    Bioethanol productionMethods used for production of bioethanol include

    hydrolysis, fermentation and fractional distillation.

    Hydrolysis

    One hundred grams (100 g) of paddy husk was weighed

    into eight conical flasks, and 1 l of 2 MH2SO4 was

    added to each conical flask. The flasks were covered

    with cotton wool, wrapped in aluminum foil, heated for

    2 h in a water bath and then autoclaved for 30 min at

    121C. The Flasks were allowed to cool, filtered

    through No. 1 What man filter paper and the pH was

    adjusted to 4.5 with 0.4 M NaOH.

    FermentationThe fermentation was carried out along with

    saccharification and fermentation [SSF), as described by

    Kroumov et al. (2006) and Oghgren et al. (2006). The

    flasks containing the hydrolyzed samples were

    covered with cotton wool, wrapped in Aluminum foil,

    autoclaved for 15 min at 121 C, and allowed to cool

    at room temperature. B.subtilis were aseptically

    inoculated into each flask and incubated at 30C.

    Insignificant distillationThe fermented broth was dispensed into round-bottom

    flasks fixed to a distillation column enclosed in running

    tap water. A conical flask was fixed to the other end of

    the distillation column to collect the distillate. A

    heating mantle with the temperature adjusted to

    78C was used to heat the round-bottomed flask

    containing the fermented broth.

    334

  • 8/13/2019 Influence of Bacillus Subtillis for Bioethanol Production From Agro Bio Waste

    4/7

    Fortitude of quantity of ethanol producedThe distillate collected over a slow heat at 78C was

    measured using a measuring cylinder, and expressed as

    the quantity of ethanol produced in g/l by multiplying

    the volume of distillate collected at 78C by the density

    of ethanol (0.8033 g/l) is equivalent to the yield of 100 g

    of dried substrate (Humphrey and Okafoagu, 2007).

    Ethanol produced from paddy husk using B.

    subtillis

    Fortitude of percentage ethanol

    concentrationA standard ethanol density curve was prepared by taking

    series of percentage (v/v) ethanol solutions, which were

    prepared in volumetric flasks, and the weight was

    measured. The density for each of the prepared ethanol

    solutions was calculated and a standard curve of density

    against percentage ethanol was plotted. The percentage

    ethanol concentration of ethanol produced was obtained

    by comparing its density with the standard ethanol

    density curve.

    RESULTSCultural, morphological and biochemical

    characteristics of isolatesThe organisms used for fermentation were b.subtilis is

    a positive, rod-shaped and endospore-forming aerobic

    bacterium. It is found in soil and rotting plant material

    and is non-pathogenic. It is one of the most studied

    gram-positive bacteria. One feature that has attracted a

    lot of interest in b. subtillisis its ability to differentiate

    and formendospores. b. subtillisforms colonies that are

    dull and may be wrinkled, cream to brown in colour and

    when grown in broth have a coherent pellicle; usually

    with a single arrangement.

    Ethanol produced from paddy husk using B.

    subtillis

    Figure 1 shows the volume (g/l) of ethanol produced

    from paddy husk after acid hydrolysis with 2.5 MH2SO4

    and SSF with both Bacillus subtillis. The highest

    volume (16.22 g/l) was produced at 144h of

    fermentation, followed by 15.01 g/l at 96h. The lowest

    volume (2.01 g/l) was produced at 24h.

    DISCUSSIONPaddy husk were used to produce ethanol

    through acid hydrolysis, and SSF with B.subtilis. In

    SSF, the microorganisms behaved differently, according

    to their nutrient requirements, but synergistically in the

    degradation of organic substrate. B.subtiliswas capable

    of producing starch / carbohydrate hydrolases from

    scarified paddy husk. B.subtilis is able to produced

    335

  • 8/13/2019 Influence of Bacillus Subtillis for Bioethanol Production From Agro Bio Waste

    5/7

  • 8/13/2019 Influence of Bacillus Subtillis for Bioethanol Production From Agro Bio Waste

    6/7

    Bioconversion of agro-wastes into acetone

    butanol,Biotechnol. Lett.4 (1982), pp. 1922.

    [9]O. Fond, E. Petitdemange, H. Petitdemange and

    J.M. Engasser, Cellullose fermentation by a coculture of

    a mesophilic cellulolytic Clostridiumand Clostridium

    acetobutylicum 13 (1983), pp. 217224.

    [10]E.K.C. Yu, M.K.H. Chan and J.N. Saddler, Butanol

    production from cellulosic substrates by sequential co-

    culture of Clostridium thermocellumand C.

    acetobutylicum,Biotechnol. Lett.7 (1985), pp. 509

    514.

    [11]D. Stevens, S. Alam and R. Bajpai, Fermentation

    of cheese whey by a mixed cultureof Clostridium

    beijerinckiiandBacillus cereus,J. Ind.

    Microbiol.3 (1988), pp. 1519.

    [12]S. Chauvatcharin, C. Siripatana, T. Seki, M.

    Takagi and T. Yoshida, Metabolism analysis and on-line

    physiological state diagnosis of acetone

    butanolfermentation, Biotechnol. Bioeng. 58 (6) (1997),

    pp. 561571.

    [13]J.R. Gapes, D. Nimcevic and A. Friedl, Long-term

    continuous cultivation of Clostridium beijerinckii in a

    two-stage chemostat with on-line product

    removal,Appl.Environ. microbiol.62 (1996) pp. 3210

    3219.

    [14]G.L. Miller, Use of dinitrosalicylic acid reagent for

    determination of reducing sugar,Anal. Chem.31 (1959),

    pp. 426429.

    [15]B.N. Okolo, L.I. Ezeogu and C.N. Mba, Production

    of raw starch digestive amylase byAspergillus

    nigergrown on native starch sources,J. Sci. Food

    Agric.69 (1995), pp. 109115.

    [16]M.S. Madihah, A.B. Ariff, K.M. Sahaid, A.A.

    Suraini and M.I.A. Karim, Direct fermentation of

    gelatinized sago starch to acetonebutanolethanol

    by Clostridium acetobutylicum, World J. Microbiol.

    Biotechnol.17 (2001), pp. 567576.

    [17]G. Coleman and W.H. Elliott, Studies on -

    amylase formation byBacillus subtilis,Biochem.

    J.83 (1962), pp. 256263.

    [18]M.M. Nakano and F.M. Hullet, Adaptation

    of Bacillus subtilis to oxygen

    limitation, FEMSMicrobiol. ett. 157 (1997),

    [19]L.D. Clements, B.S. Miller and U.N. Streips,

    Comparative growth analysis of the facultative

    anaerobes Bacillus subtilis,Bacillus licheniformis and

    Escheria coli,Syst. Appl. Microbiol. 25 (2002), pp.

    284286.

    [20] F. Mohammad, O. El-Tayeb and M. Aboulwafa,

    Optimization of the industrial production of bacterial

    amylase in Egypt. V. Analysis of kinetic data for

    enzyme Analysis of kinetic data for enzyme production

    by two strains ofBacillus amylolique

    faciens,AfricanJ.Biotechnol7 (24) (2007), pp. 4537

    4543.Biotechnol.7 (24) (2007), pp. 45374543.

    [21]C.N. Hipolito, E. Crabbe, C.M. Badillo, O.C.

    Zarrabal, M.A.M. Mora, G.P. Flores, M.A.H. Cortazar

    and A. Ishizaki, Bioconversion of industrial wastewater

    from palm oil processing to butanol by Clostridium

    337

    http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V5N-4XMD5RV-4&_user=10&_coverDate=01%2F15%2F2010&_rdoc=1&_fmt=high&_orig=search&_origin=search&_sort=d&_docanchor=&view=c&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=2af27a90d07c2784512ef75f33105db4&searchtype=ahttp://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V5N-4XMD5RV-4&_user=10&_coverDate=01%2F15%2F2010&_rdoc=1&_fmt=high&_orig=search&_origin=search&_sort=d&_docanchor=&view=c&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=2af27a90d07c2784512ef75f33105db4&searchtype=ahttp://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V5N-4XMD5RV-4&_user=10&_coverDate=01%2F15%2F2010&_rdoc=1&_fmt=high&_orig=search&_origin=search&_sort=d&_docanchor=&view=c&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=2af27a90d07c2784512ef75f33105db4&searchtype=ahttp://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V5N-4XMD5RV-4&_user=10&_coverDate=01%2F15%2F2010&_rdoc=1&_fmt=high&_orig=search&_origin=search&_sort=d&_docanchor=&view=c&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=2af27a90d07c2784512ef75f33105db4&searchtype=ahttp://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V5N-4XMD5RV-4&_user=10&_coverDate=01%2F15%2F2010&_rdoc=1&_fmt=high&_orig=search&_origin=search&_sort=d&_docanchor=&view=c&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=2af27a90d07c2784512ef75f33105db4&searchtype=ahttp://www.google.co.in/url?sa=t&rct=j&q=clostridium%20beijerinckii&source=web&cd=1&cad=rja&ved=0CC8QFjAA&url=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FClostridium_beijerinckii&ei=tkBtUYOeHNHjrAfsuIHABA&usg=AFQjCNHh5LrlsiVq_EQDm2uQw4C9AHDgnA&bvm=bv.45175338,d.bmkhttp://www.google.co.in/url?sa=t&rct=j&q=clostridium%20beijerinckii&source=web&cd=1&cad=rja&ved=0CC8QFjAA&url=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FClostridium_beijerinckii&ei=tkBtUYOeHNHjrAfsuIHABA&usg=AFQjCNHh5LrlsiVq_EQDm2uQw4C9AHDgnA&bvm=bv.45175338,d.bmkhttp://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V5N-4XMD5RV-4&_user=10&_coverDate=01%2F15%2F2010&_rdoc=1&_fmt=high&_orig=search&_origin=search&_sort=d&_docanchor=&view=c&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=2af27a90d07c2784512ef75f33105db4&searchtype=ahttp://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V5N-4XMD5RV-4&_user=10&_coverDate=01%2F15%2F2010&_rdoc=1&_fmt=high&_orig=search&_origin=search&_sort=d&_docanchor=&view=c&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=2af27a90d07c2784512ef75f33105db4&searchtype=ahttp://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V5N-4XMD5RV-4&_user=10&_coverDate=01%2F15%2F2010&_rdoc=1&_fmt=high&_orig=search&_origin=search&_sort=d&_docanchor=&view=c&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=2af27a90d07c2784512ef75f33105db4&searchtype=ahttp://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V5N-4XMD5RV-4&_user=10&_coverDate=01%2F15%2F2010&_rdoc=1&_fmt=high&_orig=search&_origin=search&_sort=d&_docanchor=&view=c&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=2af27a90d07c2784512ef75f33105db4&searchtype=ahttp://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V5N-4XMD5RV-4&_user=10&_coverDate=01%2F15%2F2010&_rdoc=1&_fmt=high&_orig=search&_origin=search&_sort=d&_docanchor=&view=c&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=2af27a90d07c2784512ef75f33105db4&searchtype=ahttp://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V5N-4XMD5RV-4&_user=10&_coverDate=01%2F15%2F2010&_rdoc=1&_fmt=high&_orig=search&_origin=search&_sort=d&_docanchor=&view=c&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=2af27a90d07c2784512ef75f33105db4&searchtype=ahttp://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V5N-4XMD5RV-4&_user=10&_coverDate=01%2F15%2F2010&_rdoc=1&_fmt=high&_orig=search&_origin=search&_sort=d&_docanchor=&view=c&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=2af27a90d07c2784512ef75f33105db4&searchtype=ahttp://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V5N-4XMD5RV-4&_user=10&_coverDate=01%2F15%2F2010&_rdoc=1&_fmt=high&_orig=search&_origin=search&_sort=d&_docanchor=&view=c&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=2af27a90d07c2784512ef75f33105db4&searchtype=ahttp://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V5N-4XMD5RV-4&_user=10&_coverDate=01%2F15%2F2010&_rdoc=1&_fmt=high&_orig=search&_origin=search&_sort=d&_docanchor=&view=c&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=2af27a90d07c2784512ef75f33105db4&searchtype=ahttp://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V5N-4XMD5RV-4&_user=10&_coverDate=01%2F15%2F2010&_rdoc=1&_fmt=high&_orig=search&_origin=search&_sort=d&_docanchor=&view=c&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=2af27a90d07c2784512ef75f33105db4&searchtype=ahttp://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V5N-4XMD5RV-4&_user=10&_coverDate=01%2F15%2F2010&_rdoc=1&_fmt=high&_orig=search&_origin=search&_sort=d&_docanchor=&view=c&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=2af27a90d07c2784512ef75f33105db4&searchtype=ahttp://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V5N-4XMD5RV-4&_user=10&_coverDate=01%2F15%2F2010&_rdoc=1&_fmt=high&_orig=search&_origin=search&_sort=d&_docanchor=&view=c&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=2af27a90d07c2784512ef75f33105db4&searchtype=ahttp://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V5N-4XMD5RV-4&_user=10&_coverDate=01%2F15%2F2010&_rdoc=1&_fmt=high&_orig=search&_origin=search&_sort=d&_docanchor=&view=c&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=2af27a90d07c2784512ef75f33105db4&searchtype=ahttp://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V5N-4XMD5RV-4&_user=10&_coverDate=01%2F15%2F2010&_rdoc=1&_fmt=high&_orig=search&_origin=search&_sort=d&_docanchor=&view=c&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=2af27a90d07c2784512ef75f33105db4&searchtype=ahttp://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V5N-4XMD5RV-4&_user=10&_coverDate=01%2F15%2F2010&_rdoc=1&_fmt=high&_orig=search&_origin=search&_sort=d&_docanchor=&view=c&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=2af27a90d07c2784512ef75f33105db4&searchtype=ahttp://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V5N-4XMD5RV-4&_user=10&_coverDate=01%2F15%2F2010&_rdoc=1&_fmt=high&_orig=search&_origin=search&_sort=d&_docanchor=&view=c&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=2af27a90d07c2784512ef75f33105db4&searchtype=ahttp://www.google.co.in/url?sa=t&rct=j&q=clostridium%20beijerinckii&source=web&cd=1&cad=rja&ved=0CC8QFjAA&url=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FClostridium_beijerinckii&ei=tkBtUYOeHNHjrAfsuIHABA&usg=AFQjCNHh5LrlsiVq_EQDm2uQw4C9AHDgnA&bvm=bv.45175338,d.bmkhttp://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V5N-4XMD5RV-4&_user=10&_coverDate=01%2F15%2F2010&_rdoc=1&_fmt=high&_orig=search&_origin=search&_sort=d&_docanchor=&view=c&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=2af27a90d07c2784512ef75f33105db4&searchtype=ahttp://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V5N-4XMD5RV-4&_user=10&_coverDate=01%2F15%2F2010&_rdoc=1&_fmt=high&_orig=search&_origin=search&_sort=d&_docanchor=&view=c&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=2af27a90d07c2784512ef75f33105db4&searchtype=ahttp://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V5N-4XMD5RV-4&_user=10&_coverDate=01%2F15%2F2010&_rdoc=1&_fmt=high&_orig=search&_origin=search&_sort=d&_docanchor=&view=c&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=2af27a90d07c2784512ef75f33105db4&searchtype=ahttp://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V5N-4XMD5RV-4&_user=10&_coverDate=01%2F15%2F2010&_rdoc=1&_fmt=high&_orig=search&_origin=search&_sort=d&_docanchor=&view=c&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=2af27a90d07c2784512ef75f33105db4&searchtype=ahttp://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V5N-4XMD5RV-4&_user=10&_coverDate=01%2F15%2F2010&_rdoc=1&_fmt=high&_orig=search&_origin=search&_sort=d&_docanchor=&view=c&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=2af27a90d07c2784512ef75f33105db4&searchtype=a
  • 8/13/2019 Influence of Bacillus Subtillis for Bioethanol Production From Agro Bio Waste

    7/7

    saccharoper butylacetonicumN1-4 (ATCC 13564),J.

    Cleaner Prod.16 (2008), pp. 632638.

    [22] F. Hillmann, R. Fischer, F. Saint-Prix, L. Girbal

    and H. Bahl, PerR acts as a switch for oxygen tolerance

    in the strict anaerobe Clostridium acetobutylicum,Mol.

    Microbiol.68 (4) (2008), pp. 848860.

    [23]S. Kato, S. Haruta, Z.J. Cui, M. Ishii and Y.

    Igarashi, Effective cellulose degradation by a mixed-

    culture system composed of a

    cellulolytic Clostridiumand aerobic non-cellulolytic

    bacteria,FEMS Microbiol. Ecol.51 (2004), pp. 133

    142.

    338

    http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V5N-4XMD5RV-4&_user=10&_coverDate=01%2F15%2F2010&_rdoc=1&_fmt=high&_orig=search&_origin=search&_sort=d&_docanchor=&view=c&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=2af27a90d07c2784512ef75f33105db4&searchtype=ahttp://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V5N-4XMD5RV-4&_user=10&_coverDate=01%2F15%2F2010&_rdoc=1&_fmt=high&_orig=search&_origin=search&_sort=d&_docanchor=&view=c&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=2af27a90d07c2784512ef75f33105db4&searchtype=ahttp://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V5N-4XMD5RV-4&_user=10&_coverDate=01%2F15%2F2010&_rdoc=1&_fmt=high&_orig=search&_origin=search&_sort=d&_docanchor=&view=c&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=2af27a90d07c2784512ef75f33105db4&searchtype=ahttp://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V5N-4XMD5RV-4&_user=10&_coverDate=01%2F15%2F2010&_rdoc=1&_fmt=high&_orig=search&_origin=search&_sort=d&_docanchor=&view=c&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=2af27a90d07c2784512ef75f33105db4&searchtype=a