Infiltration, Seepage, Fate, and Transport Modeling Report

254
Infiltration, Seepage, Fate and Transport Modeling Report Rosemont Copper Project February 2010

Transcript of Infiltration, Seepage, Fate, and Transport Modeling Report

Page 1: Infiltration, Seepage, Fate, and Transport Modeling Report

Infiltration, Seepage, Fate and Transport Modeling Report

Rosemont Copper Project

February 2010

Page 2: Infiltration, Seepage, Fate, and Transport Modeling Report

2_12_1

Memorandum

To: Beverly Everson

Cc: Tom Furgason

From: Kathy Arnold

Doc #: 006/10 — 15.3.2

Subject: Transmittal of lnflitration , Seepage, Fate and Transport Modeling Report and Rosemont Traffic Study — Additional Scenarios

Date: March 1, 2010

Rosemont Copper is pleased to transmit the following two documents. The first dociment is the Infiltration, Seepage, Fate, and Transport Modeling Report, Tetra Tech dated February 2010. The second is a Technical Memorandum that addresses Rosemont Traffic Study — Additional Scenarios, Tetra Tech dated February 23, 2010. We are transmitting three hard copies and two CDs of the report directly to

the Forest Service. We are also transmitting two hard copies of the report and one a CD to SWCA.

Page 3: Infiltration, Seepage, Fate, and Transport Modeling Report

Infiltration, Seepage, Fate and Transport Modeling Report Rosemont Copper Project

Prepared for:

4500 Cherry Creek South Drive, Suite #1040 Denver, Colorado 80246 (303) 300-0138 Fax (303) 300-0135

Prepared by:

3031 West Ina Road Tucson, AZ 85741 (520) 297-7723 Fax (520) 297-7724

Tetra Tech Project No. 114-320794

February 2010

Page 4: Infiltration, Seepage, Fate, and Transport Modeling Report

Infiltration, Seepage, Fate and Transport Modeling Rosemont Copper Company

TABLE OF CONTENTS

EXECUTIVE SUMMARY ..............................................................................................................1 1.0 INTRODUCTION............................................................................................................... 4

1.1 Report Organization .............................................................................................. 4 2.0 SCOPE OF WORK ........................................................................................................... 6 3.0 PROJECT DESCRIPTION................................................................................................ 7 4.0 REGIONAL SETTING....................................................................................................... 8

4.1 Climate .................................................................................................................. 8 4.1.1 Weather Stations ................................................................................................... 8 4.1.2 Precipitation ........................................................................................................... 8 4.1.3 Temperature........................................................................................................... 9 4.1.4 Pan Evaporation................................................................................................... 10

4.2 Physiographic Setting and General Geology....................................................... 11 5.0 INFILTRATION AND SEEPAGE MODELING................................................................ 13

5.1 Conceptual Flow Model ....................................................................................... 13 5.2 Water Balance..................................................................................................... 15 5.3 Unsaturated Flow Physics................................................................................... 16 5.4 Modeling Technique ............................................................................................ 18 5.5 Input Parameters................................................................................................. 18

5.5.1 Site Climate Data ................................................................................................. 18 5.5.2 Waste Rock Storage Area ................................................................................... 19 5.5.3 Heap Leach Facility ............................................................................................. 20 5.5.4 Dry Stack Tailings Facility.................................................................................... 20 5.5.5 Waste Rock Storage Area and the Heap Leach Facility Material Properties ...... 20 5.5.6 Dry Stack Tailings Facility Material Properties .................................................... 21

5.6 Model Construction ............................................................................................. 22 5.6.1 Waste Rock Storage Area Model......................................................................... 22 5.6.2 Heap Leach Facility Model................................................................................... 24 5.6.3 Dry Stack Tailings Facility Model ......................................................................... 25

5.7 Steady State Modeling ........................................................................................ 26 5.8 Transient Modeling.............................................................................................. 26

5.8.1 Surface Layer....................................................................................................... 26 5.8.2 Transient Flow within the Facilities ...................................................................... 27

5.9 Model Results...................................................................................................... 27 5.9.1 Waste Rock Storage Area ................................................................................... 28 5.9.2 Heap Leach Facility Model Results...................................................................... 37 5.9.3 Dry Stack Tailing Facility...................................................................................... 43

6.0 FATE AND TRANSPORT MODELING .......................................................................... 49 6.1 Conceptual Fate and Transport Model ................................................................ 49 6.2 Fate and Transport Modeling Technique ............................................................ 51

Tetra Tech February 2010 i

Page 5: Infiltration, Seepage, Fate, and Transport Modeling Report

Infiltration, Seepage, Fate and Transport Modeling Rosemont Copper Company

6.2.1 Particle Tracking .................................................................................................. 51 6.2.2 Geochemical Modeling ........................................................................................ 51

6.3 Model Construction ............................................................................................. 51 6.3.1 Waste Rock Storage Area ................................................................................... 51 6.3.2 Heap Leach Facility ............................................................................................. 54 6.3.3 Dry Stack Tailings Facility.................................................................................... 56

6.4 Model Results...................................................................................................... 58 6.4.1 Waste Rock Storage Area ................................................................................... 58 6.4.2 Heap Leach Facility ............................................................................................. 60 6.4.3 Dry Stack Tailings Facility.................................................................................... 63

7.0 CONCLUSIONS.............................................................................................................. 65 7.1 Infiltration and Seepage Modeling Conclusions .................................................. 65 7.2 Fate and Transport Modeling Conclusions.......................................................... 65 7.3 Recommendations .............................................................................................. 66

8.0 REFERENCES................................................................................................................ 67

LIST OF TABLES

Table 3.1 Weather Stations within an Approximate 30 Mile Radius...................................... 8 Table 3.2 Average Monthly Precipitation Summary (inches)................................................. 9 Table 3.3 Average Monthly Minimum and Maximum Temperatures (˚F) ............................ 10 Table 3.4 Average Monthly Pan Evaporation Summary (inches)........................................ 10 Table 5.1 Waste Rock Storage Area Model Summary – Average Climate Conditions ....... 34 Table 5.2 Waste Rock Storage Area Model Summary – 100-Year, 24-Hour Storm ........... 35 Table 5.3 Waste Rock Storage Area Model Summary – Multi-Day Storm Event................ 35 Table 5.4 Comparison of Modeled Storms to Average Climate Conditions ........................ 43 Table 6.1 Model Starting Solutions for the Waste Rock Storage Area Modeling ................ 53 Table 6.2 Model Mixing Portions for Waste Rock Storage Area Modeling.......................... 54 Table 6.3 Model Starting Solutions for the Heap Leach Facility Modeling .......................... 55 Table 6.4 Model Mixing Portions for the Heap Leach Facility Modeling.............................. 56 Table 6.5 Model Starting Solutions for the for the Dry Stack Tailings Facility ..................... 57 Table 6.6 Waste Rock Storage Area Seepage.................................................................... 59 Table 6.7 Heap Leach Facility Geochemical Model Results ............................................... 62 Table 6.8 Dry Stack Tailings Facility Seepage.................................................................... 64

Tetra Tech February 2010 ii

Page 6: Infiltration, Seepage, Fate, and Transport Modeling Report

Infiltration, Seepage, Fate and Transport Modeling Rosemont Copper Company

LIST OF ILLUSTRATIONS

Illustration 5.1 Conceptual Flow Model – Waste Rock Storage Area.............................. 13 Illustration 5.2 Conceptual Flow Model – Heap Leach Facility........................................ 14 Illustration 5.3 Conceptual Flow Model – Dry Stack Tailings Facility .............................. 15 Illustration 5.4 Example of Matric Pressure..................................................................... 17 Illustration 5.5 Hydraulic Conductivity versus Moisture Content ..................................... 17 Illustration 5.6 Waste Rock Storage Area Model Grids [Four (4) Grids] ......................... 22 Illustration 5.7 Heap Leach Facility Model Grids [Two (2) Grids] .................................... 24 Illustration 5.8 Dry Stack Tailings Facility Model Grid (taken from AMEC, 2009) ........... 26 Illustration 5.9 Water Balance for the Waste Rock Storage Area – Average

Climate Conditions................................................................................... 28 Illustration 5.10 Moisture Content within the Waste Rock Storage Area – Average

Climate Conditions................................................................................... 29 Illustration 5.11 Water Balance for Un-Vegetated Reclaimed Waste Rock Storage

Area – Average Climate Conditions [Three (3) Graphs] .......................... 30 Illustration 5.12 Moisture Content within the Waste Rock Storage Area with Soil

Layer – Average Climate Conditions ....................................................... 32 Illustration 5.13 Moisture Content within the Waste Rock Storage Area with Soil

and Gravel – Average Climate Conditions............................................... 32 Illustration 5.14 Water Balances for Vegetated Reclaimed Waste Rock Storage

Area– Average Climate Conditions [Three (3) Graphs] ........................... 33 Illustration 5.15 Moisture Content within the Waste Rock Storage Area – 100-year,

24-hour storm – with Ponding.................................................................. 36 Illustration 5.16 Moisture Content within the Waste Rock Storage Area – Multi-day

Storm Event – with Ponding .................................................................... 36 Illustration 5.17 Drain-Down Curve for the Spent Ore Pile................................................ 37 Illustration 5.18 Water Flux – Waste Rock Only Over Spent Ore ..................................... 38 Illustration 5.19 Moisture Content – Waste Rock Only Over Spent Ore ........................... 39 Illustration 5.20 Water Flux – Waste Rock/Soil Layer Over Spent Ore............................. 39 Illustration 5.21 Moisture Content – Waste Rock/Soil Layer Over Spent Ore................... 40 Illustration 5.22 Volumetric Moisture Content Distribution within the Closed Heap

Leach Facility........................................................................................... 41 Illustration 5.23 Closed Heap Leach Facility Water Balance ............................................ 42 Illustration 5.24 Production Seepage Rates (Figure taken from AMEC, 2009)................. 45 Illustration 5.25 Closure Seepage Rates (Figure taken from AMEC, 2009)...................... 46 Illustration 5.26 Moisture Content with Depth over Time (Figure taken from AMEC,

2009) ....................................................................................................... 47 Illustration 5.27 Moisture Content Distribution (Figure taken from AMEC, 2009) ............. 48 Illustration 6.1 Conceptual Fate and Transport Model – Waste Rock Storage

Area ......................................................................................................... 49 Illustration 6.2 Conceptual Fate and Transport Model – Heap Leach Facility................. 50 Illustration 6.3 Conceptual Fate and Transport Model – Dry Stack Tailings Facility ....... 50 Illustration 6.4 Results of the Waste Rock Storage Area Particle Tracking Model

– without Ponding .................................................................................... 58 Illustration 6.5 Closed Heap Leach Facility Particle Tracking Model Setup .................... 60 Illustration 6.6 Closed Heap Leach Facility Particle Tracking Results ............................ 60 Illustration 6.7 Results of Dry Stack Tailings Facility Particle Tracking Model ................ 63

Tetra Tech February 2010 iii

Page 7: Infiltration, Seepage, Fate, and Transport Modeling Report

Infiltration, Seepage, Fate and Transport Modeling Rosemont Copper Company

APPENDICES

Appendix A Dry Stack Tailings Storage Facility Final Design Report, Section 6.0 (AMEC, 2009)

Appendix B Design Storm and Precipitation Criteria (Tetra Tech, 2009b) Appendix C Model Construction Logs Appendix D BADCT Heap Pond Closure – Technical Memorandum (Tetra Tech, 2010a) Appendix E Heap Leach Facility Modeling / Treatment Options – Technical Memorandum

(Tetra Tech, 2010b) Appendix F Minimum Waste Rock Cover – Technical Memorandum (Tetra Tech, 2010c)

Tetra Tech February 2010 iv

Page 8: Infiltration, Seepage, Fate, and Transport Modeling Report

Infiltration, Seepage, Fate and Transport Modeling Rosemont Copper Company

EXECUTIVE SUMMARY

The Rosemont Copper Project (Project) is a proposed open pit mine located in Pima County, Arizona with an operational life of 20 to 25 years. This Project will require the construction of four (4) major facilities, which will include an Open Pit, a Waste Rock Storage Area, a Heap Leach Facility, and a Dry Stack Tailings Facility.

At the end of the mine life, final reclamation of the site will include demolition and closure of the Plant Site facilities and final regrading and revegetation of the Rosemont Ridge Landform. The Rosemont Ridge Landform is the consolidated and contoured earthen structure consisting of the Waste Rock Storage Area, the closed Heap Leach Facility encapsulated with waste rock, and the Dry Stack Tailings Facility, also encapsulated with waste rock. The Open Pit will remain as an excavation subject to natural processes of wind and water erosion, and geochemical weathering processes.

This investigation evaluates the environmental consequences of developing the Rosemont deposit, with a focus on the potential to impact the regional groundwater system following completion of the closure process. Post-closure impacts of the Open Pit have been characterized in a separate report. This report presents the results of infiltration and seepage, and fate and transport modeling for the proposed Waste Rock Storage Area, the Heap Leach Facility, and the Dry Stack Tailings Facility.

In this report, infiltration, seepage, fate and transport are defined as follows:

Infiltration is the portion of rainfall runoff (or snowmelt) that enters a facility by downward flow through the surface;

Seepage is the diffuse outward flow of water from a facility; and

Fate and transport refer to the process of passing water through a facility and its resulting chemical composition as it migrates away from that facility.

Infiltration into a facility is dependent on many variables including drainage, climate conditions, physical characteristics of the facility materials, surface conditions such as slope, depth of ponded waters, and the nature of the surface layers which can either absorb or shed water. Infiltration generally depends on factors on the outside of, or above, a facility.

Seepage from a facility can result from meteoric precipitation or from moisture entrained within materials comprising the facility. Seepage resulting from entrained moisture is generally not dependent on climate conditions; seepage rates depend on the moisture content of material placed in the facility, and the nature of barriers to seepage either constructed, or naturally existing, below a facility. Seepage generally depends on factors internal to, or below, a facility.

For the Waste Rock Storage Area and the Heap Leach Facility, seepage and infiltration models were developed by Tetra Tech, Inc. (Tetra Tech) assuming the following three (3) conditions:

Average (annual) climate conditions;

A 100-year, 24-hour storm event; and

A multi-day storm event.

AMEC Earth & Environmental, Inc. (AMEC) used average climate conditions for modeling infiltration and seepage of the Dry Stack Tailings Facility.

Under average climate conditions, seepage from meteoric precipitation did not develop in any of the facilities. Nor did seepage develop from the Waste Rock Storage Area and the closed Heap Leach Facility for the two (2) storm events modeled under the following conditions:

Tetra Tech February 2010 1

Page 9: Infiltration, Seepage, Fate, and Transport Modeling Report

Infiltration, Seepage, Fate and Transport Modeling Rosemont Copper Company

Placement of a minimum 20 foot waste rock cover over the spent heap leach ore pile at closure; and

The outer surface of the Rosemont Ridge Landform was sloped a minimum of one (1) percent, i.e., no stormwater ponding was allowed to occur on the reclaimed Waste Rock Storage Area, especially above the footprint of the encapsulated and closed Heap Leach Facility.

Drainage designs can either encourage or discourage ponding of water on reclaimed surfaces. The final reclaimed surface of the Rosemont Ridge Landform may incorporate stormwater ponding on portions of the Waste Rock Storage Area. If this design option is selected, some storm events, such as the 100-year, 24-hour event, may cause seepage to develop.

Fate and transport modeling showed where there may be the potential for seepage to reach the base of the Waste Rock Storage Area, and that the seepage may have constituents above the Arizona Aquifer Water Quality Standards (AWQS). In these cases, however, the constituent concentrations are not higher than natural background levels that exist in this mineralized area. Chemical modeling results showed a potential arsenic concentration in the seepage of 0.012 milligrams per liter (mg/L). This level of arsenic is slightly above the proposed AWQS of 0.010 mg/L but it is below the current standard of 0.05 mg/L. This concentration is very similar to groundwater conditions at the site. Groundwater monitoring has indicated naturally occurring arsenic concentrations in the area are above the proposed AWQS (0.011 to 0.027 mg/L).

In cases where natural background concentrations are elevated relative to the proposed or existing AWQS, it is generally prudent to encourage offslope drainage, encourage evapotranspiration using revegetation, or to otherwise discourage the generation of seepage. The Rosemont designs follow these criteria.

Seepage from spent heap leach ore will be minimized by a drain-down management approach. After the cessation of leaching, residual leach solutions within the spent heap leach ore will be allowed to drain-down prior to closure of the Heap Leach Facility. A drain-down seepage rate of less than 10 gallons per minute (gpm) is expected about two (2) to three (3) years after leaching is stopped. Closure of the Heap Leach Facility may entail the construction of treatment basins at the base of the Heap Leach Pad to treat residual drain-down seepage. Chemical modeling indicates that drain-down from the spent ore pile will have a low pH and a few constituents slightly above the AWQS. Following completion of the drain-down management, these seepage amounts are expected to be minimal.

Seepage from the Dry Stack Tailings Facility has been assessed based on tailings generated from metallurgical test work. Tailings samples were retained for detailed leachate testing and simulation of long-term weathering using accepted regulatory agency methods. Potential sources of seepage from both rainfall and snowmelt infiltration, and seepage from entrained water, have been evaluated. As modeled by AMEC, seepage due to meteoric precipitation did not develop in the Dry Stack Tailings Facility. However, the potential for some seepage does occur from the facility due to a reduction of retained moisture from within the tailings material. Chemical modeling indicated that none of the measured constituents in this source of seepage exceeded AWQS. This seepage is anticipated to peak at a rate of about 8.4 gpm at the end of the operational period. This low level of seepage steadily decreases over time, and based on modeling results, eventually reaches zero within about 500 years following the cessation of operations.

Results have been compiled on the detailed laboratory studies and predictive modeling for the Rosemont facilities, including waste rock, heap leach residuals, and dry stack tailings residuals. The results of these studies and models using site-specific materials and designs for infiltration,

Tetra Tech February 2010 2

Page 10: Infiltration, Seepage, Fate, and Transport Modeling Report

Infiltration, Seepage, Fate and Transport Modeling Rosemont Copper Company

seepage, and fate and transport modeling show that the Rosemont Waste Rock Storage Area, Heap Leach Facility, and the Dry Stack Tailings Facility will have little or no impact on the quality or quantity of water within the regional groundwater system. A site-wide particle tracking model (fate and transport analysis) is being conducted by Tetra Tech to confirm that these facilities will not impact the regional system.

Tetra Tech February 2010 3

Page 11: Infiltration, Seepage, Fate, and Transport Modeling Report

Infiltration, Seepage, Fate and Transport Modeling Rosemont Copper Company

1.0 INTRODUCTION

The Rosemont Copper Project (Project) includes plans for the construction of an open pit mine located in Pima County, Arizona located approximately 30 miles southeast of Tucson, west of State Route 83 (SR 83). Access to the site is from Interstate 10 to SR 83 south, then west on a proposed Primary Access Road that will be constructed at the start of the Project. In geographical terms, the Project site is located at the approximate latitude and longitude coordinates of 31º 50’N and 110º 45’W.

The Project will require the development of four (4) major facilities which include an Open Pit, a Waste Rock Storage Area, a Heap Leach Facility, and a Dry Stack Tailings Facility. At the end of the mine life, final reclamation of the site will occur, which includes demolition and closure of the Plant Site facilities and final regrading and revegetation of the Rosemont Ridge Landform. The Rosemont Ridge Landform is the consolidated and contoured earthen structure consisting of the Waste Rock Storage Area, the closed Heap Leach Facility encapsulated with waste rock, and the Dry Stack Tailings Facility, also encapsulated with waste rock.

As part of facility characterization and design, infiltration and seepage modeling was performed on the Waste Rock Storage Area and the Heap Leach Facility by Tetra Tech, Inc. (Tetra Tech). Infiltration and seepage modeling of the Dry Stack Tailings Facility was performed by AMEC Earth & Environmental, Inc. (AMEC) (2009). Fate and transport modeling for all three (3) facilities was performed by Tetra Tech.

1.1 Report Organization This report is organized as follows:

Section 1.0 describes the goals of this report, provides a brief description of the Project location, and presents the organization of the report;

Section 2.0 provides a detailed description of the scope of work performed by Tetra Tech for this report;

Section 3.0 describes the Rosemont Copper Project;

Section 4.0 presents the climate data that was used for the modeling efforts;

Section 5.0 provides a detailed explanation of the infiltration and seepage modeling effort;

Section 6.0 provides a detailed explanation of the fate and transport modeling effort;

Section 7.0 provides a summary of the report and conclusions drawn from the data presented herein;

Section 8.0 lists the referenced material that was used to develop this report;

Appendix A contains Section 6.0 of the Dry Stack Tailings Storage Facility Final Design Report developed by AMEC (2009);

Appendix B provides a description of the climate data and the design storm events (Tetra Tech, 2009b);

Appendix C provides model construction logs that were developed for modeling the Waste Rock Storage Area and Heap Leach Facility;

Appendix D provides a conceptual closure strategy for the ponds associated with the Heap Leach Facility (Tetra Tech, 2010a);

Tetra Tech February 2010 4

Page 12: Infiltration, Seepage, Fate, and Transport Modeling Report

Infiltration, Seepage, Fate and Transport Modeling Rosemont Copper Company

Appendix E provides a detailed description of the Heap Leach Facility modeling effort and describes treatment options for potential post-closure drain-down seepage from the spent ore on the Heap Leach Pad (Tetra Tech, 2010b); and

Appendix F provides a description of the modeling efforts that were used to determine a minimum waste rock cover thickness for the closed Heap Leach Facility (Tetra Tech, 2010c).

The closure strategies provided in Appendices D, E, and F supersede any contradictory information in the Aquifer Protection Permit (APP) application submitted to the Arizona Department of Environmental Quality (ADEQ) (Tetra Tech, 2009a).

Tetra Tech February 2010 5

Page 13: Infiltration, Seepage, Fate, and Transport Modeling Report

Infiltration, Seepage, Fate and Transport Modeling Rosemont Copper Company

2.0 SCOPE OF WORK

This report is intended to supplement information provided in the APP application submitted to ADEQ in February 2009 for the Rosemont Copper Project (Tetra Tech, 2009a) concerning infiltration, seepage, and fate and transport modeling previously performed for the following major Project facilities:

Waste Rock Storage Area;

Heap Leach Facility (i.e., spent ore on the Heap Leach Pad); and

Dry Stack Tailings Facility.

Infiltration, seepage, fate and transport are defined as follows:

Infiltration is the portion of rainfall runoff (or snowmelt) that enters a facility by downward flow through the surface;

Seepage is the diffuse outward flow of water from a facility; and

Fate and transport refer to the process of passing water through a facility and its resulting chemical composition as it migrates away from that facility.

In order to assess the potential impact to the environment from these facilities, the following scenarios were modeled:

Average climate conditions (baseline) (all facilities);

Impacts of 100-year, 24-hour storm event (Waste Rock Storage Area and Heap Leach Facility);

Impacts of a multi-day storm event (worst case infiltration scenario) (Waste Rock Storage Area and Heap Leach Facility); and

Closure scenarios (Waste Rock Storage Area and Heap Leach Facility).

Additionally, an estimate of the drain-down time associated with the spent ore material on the Heap Leach Pad was required for closure planning of the Heap Leach Facility.

Infiltration and seepage modeling for the Dry Stack Tailings Facility was originally performed by AMEC [as presented in Section 6.0 of their Dry Stack Tailings Storage Facility Final Design Report (Final Design Report) (AMEC, 2009) and provided in Appendix A of this report]. As a note, AMEC modeled the average climate conditions for the Dry Stack Tailings Facility.

Fate and transport modeling of the Dry Stack Tailings Facility was performed by Tetra Tech using the results from AMEC’s modeling effort. Infiltration, seepage, fate and transport modeling for the Waste Rock Storage Area and Heap Leach Facility were performed by Tetra Tech.

Tetra Tech February 2010 6

Page 14: Infiltration, Seepage, Fate, and Transport Modeling Report

Infiltration, Seepage, Fate and Transport Modeling Rosemont Copper Company

3.0 PROJECT DESCRIPTION

The Project will be developed as an open pit mine with a milling and processing plant for approximately 546 million tons (Mt) of sulfide ore concurrent with copper leaching of over 60 Mt of oxide ore. The anticipated mine life is approximately 20 to 25 years of production. Tailings from the milling process will be dewatered before being transported to the designated Dry Stack Tailings Storage Facility. Approximately 1,232 Mt of waste rock will be generated as part of the mining operation.

Open pit mining techniques will be used to mine the ore and move waste rock (barren) materials. Waste rock will be transported by haul trucks to the Waste Rock Storage Area, screening berms around the Waste Rock Storage Area, the buttresses of the Dry Stack Tailings Storage Facility, or general fill areas as needed.

Sulfide ore will be crushed and conveyed to a mill for processing. The rougher flotation tailings and the scavenger flotation tailings will be combined in a thickener for water recovery. The thickener underflow slurry (about 40-50% water by weight) will be pumped to the Tailings Filter Plant where the water content will be reduced to 15-20% by weight. The dry tailings will be transported, by conveyor, and stacked in the Dry Stack Tailings Facility.

Leaching of the oxide ore will occur within the first six (6) years of the operation. The Heap Leach Facility will be lined with a linear low-density, polyethylene (LLDPE) geomembrane liner underlain by a geosynthetic clay liner (GCL). The facility will utilize gravity drainage, via perforated drain pipelines, to the Pregnant Leach Solution (PLS) Pond. The solution will be pumped to a solvent extraction-electrowinning (SX-EW) plant for processing into copper cathodes. Following the cessation of leaching, the facility will be closed and at least 20 feet of waste rock will be placed over the spent ore.

Additional information regarding the Project facilities is provided in the APP application (Tetra Tech, 2009a) submitted to ADEQ in February 2009.

Tetra Tech February 2010 7

Page 15: Infiltration, Seepage, Fate, and Transport Modeling Report

Infiltration, Seepage, Fate and Transport Modeling Rosemont Copper Company

4.0 REGIONAL SETTING

4.1 Climate The climate in the Project area is typical for an arid continental desert. Summer high temperatures are above 90 degrees Fahrenheit (˚F) with significant cooling at night. Summer is characterized by occasional rainstorms that are often short-duration but high-intensity. Winter is dry and mild with overnight temperatures typically above freezing. Winter can have occasional rainstorm patterns that are of low intensity and last for multiple days.

Weather data for the Project area has been and continues to be collected in order to develop an understanding of the local climate. The following sections summarize the various climate data available for the Project site from nearby weather stations.

4.1.1 Weather Stations Rosemont installed an on-site meteorological station in April 2006 that is monitored by Applied Environmental Consultants (AEC). The monitoring program includes data processing and instrument audits, calibrations, and maintenance. The station records site specific weather data including temperature, precipitation, wind speed, and wind direction. Pan evaporation was added to this station in mid-2008. The station is located at the approximate center of the proposed Open Pit at an elevation of 5,350 feet above mean sea level (amsl). Other weather stations located within an approximate 30 mile radius of the Project site are listed in Table 3.1.

Table 3.1 Weather Stations within an Approximate 30 Mile Radius

Name ID No. Latitude Longitude Elevation (feet amsl)

Distance from Site

Period of Record

Canelo 1 NW 021231 310 33’ 1100 32’ 5,010 23 miles SE 1910 – 2007Helvetia 023981 310 52’ 1100 47’ 4,300 5 miles W 1916 – 1950

Santa Rita 027593 310 46’ 1100 51’ 4,300 11 miles SW 1950 – 2005Tucson U of A 028815 320 15’ 1100 57’ 2,440 31 miles N 1894 – 2007Nogales 6 N 025924 310 25’ 1100 57’ 3,560 34 miles SE 1952 – 2007Note: The Santa Rita station had inconsistent readings from 2006-2007; therefore, these (3) years

were not used in any analysis.

4.1.2 Precipitation The average annual precipitation for the Rosemont area, estimated by Sellers (University of Arizona, 1977) for the period 1931 through 1970, was approximately 16 inches. The annual average annual precipitation measured by the meteorological station located at the Project site from 2006 through 2008, was approximately 17 inches. Precipitation data from the Western Regional Climate Center (WRCC), for weather stations within the approximate 30 mile radius of the Project site, are summarized in Table 3.2 (WRCC, 2009).

Tetra Tech February 2010 8

Page 16: Infiltration, Seepage, Fate, and Transport Modeling Report

Infiltration, Seepage, Fate and Transport Modeling Rosemont Copper Company

Table 3.2 Average Monthly Precipitation Summary (inches)

Month Canelo 1

NW (1910-2007)

Helvetia (1916-1950)

Santa Rita Experimental

Range (1950-2005)

Tucson U of A

(1894-2007)Nogales 6 N (1952-2007)

Rosemont (2006-2008)

January 1.22 1.58 1.63 0.88 1.10 0.59 February 1.17 1.72 1.46 0.83 0.85 0.79

March 0.93 1.14 1.48 0.76 0.90 0.45 April 0.45 0.52 0.69 0.39 0.39 0.45 May 0.20 0.28 0.24 0.18 0.22 0.51 June 0.72 0.67 0.62 0.26 0.47 0.98 July 4.41 4.05 4.87 2.06 4.34 5.51

August 4.04 4.15 4.32 2.15 4.13 3.74 September 1.70 2.19 2.15 1.15 1.55 1.62

October 1.03 0.68 1.62 0.74 1.33 0.24 November 0.84 1.22 1.15 0.77 0.66 1.11 December 1.39 1.52 1.96 0.96 1.43 1.16

TOTAL 18.10 19.72 22.18 11.13 17.37 17.12 Note: Values reported are average over the recorded history.

Illustration 3.1 provides a combined graph of the average monthly precipitation for the six (6) weather stations showing the correlation between the records.

0123456

Janu

ary

Februa

ryMarch Apri

lMay

June Ju

ly

August

Septembe

r

Octobe

r

Novembe

r

Decembe

r

Month

Prec

ipita

tion

(inch

es)

Canelo Helvetia Santa RitaRosemont Station Tucson U of A Nogales

Illustration 3.1 Average Monthly Precipitation

4.1.3 Temperature From 1914 to 1931, the average monthly minimum temperatures at the Rosemont site usually occurred in January and were approximately 36˚F; maximum monthly temperatures usually occurred in June and were above 90˚F (University of Arizona, 1977). Since installation of the on-site weather station in April 2006, the temperatures measured at Rosemont recorded an

Tetra Tech February 2010 9

Page 17: Infiltration, Seepage, Fate, and Transport Modeling Report

Infiltration, Seepage, Fate and Transport Modeling Rosemont Copper Company

average hourly maximum temperature of 94.6˚F in July 2007 and an average hourly minimum temperature of 19.0˚F in November 2006. The average monthly minimum and maximum temperatures for the other weather stations located within the approximate 30 mile radius of the Project site are provided in Table 3.3.

Table 3.3 Average Monthly Minimum and Maximum Temperatures (˚F)

Average Monthly Minimum Average Monthly Maximum Station Name Month Temperature

(˚F) Month Temperature (˚F)

Period of Record

Canelo 1 NW January 26.1 June 90.4 1910 – 2007Helvetia January 35.9 June 92.1 1916 – 1950

Santa Rita January 37.7 June 92.9 1950 – 2005Tucson U of A January 37.6 July 100.1 1894 – 2007Nogales 6 N January 27.3 June 95.3 1952 – 2007

4.1.4 Pan Evaporation Only two (2) of the weather stations, Tucson University of Arizona (U of A) and Nogales 6 N, had recorded pan evaporation data over an extended period of time. As previously discussed, measurements of pan evaporation at the Rosemont weather station were added in June 2008. Table 3.4 presents the available average monthly pan evaporation for the three (3) stations, and Illustration 3.2 provides a graph of the average monthly pan evaporation for the three (3) stations. A correlation was performed using these data, indicating an estimated annual average pan evaporation of about 71.5 inches for the Rosemont site. This data is detailed in a technical memorandum titled, “Rosemont Copper Design Storm and Precipitation” (Tetra Tech, 2009b) provided in Appendix B.

Table 3.4 Average Monthly Pan Evaporation Summary (inches)

Month Tucson U of A

(1894-2007) Nogales 6 N (1952-2007)

Rosemont (2008)

January 3.25 3.59 - February 4.57 4.46 -

March 6.95 7.01 - April 9.88 9.35 - May 12.87 11.91 - June 14.91 13.31 - July 13.17 10.00 4.77

August 11.65 8.28 2.92 September 10.35 8.06 4.11

October 7.81 7.17 2.32 November 4.73 4.49 2.20 December 3.37 3.57 2.22

TOTAL 103.51 91.20 - Note: A correlated annual average pan evaporation rate of about

71.5 inches was estimated for the Rosemont site.

Tetra Tech February 2010 10

Page 18: Infiltration, Seepage, Fate, and Transport Modeling Report

Infiltration, Seepage, Fate and Transport Modeling Rosemont Copper Company

0

2

4

6

8

10

12

14

16

Jan Feb Mar Apr May Jun Jul Aug Sept Oct Nov Dec

Month

Pan

Evap

orat

ion

(inch

es)

Tucson U of A Nogales 6 N Rosemont Copper (Measured) Rosemont (Projected)

Illustration 3.2 Average Monthly Pan Evaporation

4.2 Physiographic Setting and General Geology The Project site lies within the southern portion of the Basin and Range physiographic province, an extensional terrain characterized by discontinuous northwest to northeast-trending mountain ranges separated by broad, thick, fault controlled alluvial basins. This region can be sub-divided into the Sonoran Desert sub-province and Mexican Highland sub-province. Located in western and south-central Arizona, the Sonoran Desert sub-province is generally defined by low mountain ranges and broad, mostly undissected valleys, while the Mexican Highland sub-province of southeastern Arizona and southwestern New Mexico is characterized by greater average altitudes, local relief, and basin dissection. The southern portion of the Basin and Range physiographic province is separated from the Colorado Plateau by the Transitional zone, which is characterized by rugged relief, variably dissected alluvial basins, large mountain ranges, and plateau remnants. Located in the Mexican Highland sub-province, the Project is situated in the northern portion of the Santa Rita Range, near the boundary separating the two (2) sub-provinces (Menges and Pearthree, 1989).

The Project area is underlain by a north striking, steep, easterly tilted section of Cambrian to Permian miogeosynclinal marine sediments (quartzite, limestone, and dolomite). Recent evaluation of core derived from previous exploration programs at the Project site suggests that the Bisbee Group structurally overlies the Paleozoic section within the upper plate of an east dipping, low angle fault zone. At this locality, Mesozoic sediments of the Bisbee Group include the Glance Conglomerate, Willow Canyon Formation, and the Apache Canyon Formation. The Glance Conglomerate is composed of a limestone-pebble conglomerate. It is stratigraphically overlain by a thick, monotonous succession of arkosic (feldspathic) sandstone and conglomerate of the Willow Canyon Formation. Arkosic clastics of the Willow Canyon Formation grade upward into the Apache Canyon Formation, a shale and silty mudstone dominated

Tetra Tech February 2010 11

Page 19: Infiltration, Seepage, Fate, and Transport Modeling Report

Infiltration, Seepage, Fate and Transport Modeling Rosemont Copper Company

sequence containing subordinate amounts of interbedded dark-gray, thin-bedded, micritic limestone, and sandstone.

The northeastern portion of the Rosemont Project area lies within the Mount Fagan Caldera, a complexly faulted, late Cretaceous, dominantly rhyolitic volcanic center, which was subsequently tilted 30 to 50 degrees to the southeast by late Tertiary Basin and Range extensional tectonism. A dissected alluvial fan, exposed along the eastern flank of the Santa Rita Range, is characterized by a gently southeast tilted sequence of Miocene to Pliocene sands and gravels of the Gila Conglomerate. The Gila Conglomerate unconformably overlies the Mesozoic sediments and volcanics of the Bisbee Group and Mount Fagan Caldera in the southeastern portion of the Project area.

Emplacement of Laramide quartz latite porphyry stocks (approximately 56 million years) resulted in the development of large zones of copper-bearing skarn, which host the mineral resource at Rosemont as well as several other smaller occurrences within the Rosemont-Helvetia mining district. Tectonic history of this region includes at least two (2) periods of extensional (late Jurassic to early Cretaceous and late Tertiary) deformation and one (1) period of compressional (late Cretaceous to early Eocene) deformation, which have resulted in the district’s complex structural setting.

Additional information about the Project site geology is provided in the APP application (Tetra Tech, 2009a).

Tetra Tech February 2010 12

Page 20: Infiltration, Seepage, Fate, and Transport Modeling Report

Infiltration, Seepage, Fate and Transport Modeling Rosemont Copper Company

5.0 INFILTRATION AND SEEPAGE MODELING

Infiltration and seepage modeling associated with the Waste Rock Storage Area, the Heap Leach Facility, and the Dry Stack Tailings Facility accomplished the following goals:

Simulated the quantity of water flowing into and through the facilities;

Simulated the time water will spend in contact with waste rock, spent ore on the Heap Leach Pad, and the dry stack tailings; and

Simulated the time for the spent ore to drain-down after the completion of leaching.

The following sections describe the flow modeling physics, model construction techniques, model input parameters, and model results.

5.1 Conceptual Flow Model Illustration 5.1 shows the conceptual model of the Waste Rock Storage Area. Illustration 5.2 shows the conceptual models of the Heap Leach Facility for operational and closure scenarios. Illustration 5.3 shows the conceptual model of the Dry Stack Tailings Facility. The conceptual model of the Dry Stack Tailings Facility shown on Illustration 5.3 was developed by Tetra Tech based on AMEC’s report (2009).

Illustration 5.1 Conceptual Flow Model – Waste Rock Storage Area

Tetra Tech February 2010 13

Page 21: Infiltration, Seepage, Fate, and Transport Modeling Report

Infiltration, Seepage, Fate and Transport Modeling Rosemont Copper Company

Illustration 5.2 Conceptual Flow Model – Heap Leach Facility

Tetra Tech February 2010 14

Page 22: Infiltration, Seepage, Fate, and Transport Modeling Report

Infiltration, Seepage, Fate and Transport Modeling Rosemont Copper Company

Illustration 5.3 Conceptual Flow Model – Dry Stack Tailings Facility

The conceptual models of the Waste Rock Storage Area, Heap Leach Facility, and Dry Stack Tailings Facility are similar to other facilities of this type. The conceptual models provided in Illustrations 5.1 through 5.3 show the system water balance components which consist of:

Precipitation;

Evaporation;

Runoff;

Infiltration; and

Seepage.

In the case of the Heap Leach Facility, the application of the leaching solution was also considered. Water flow was simulated on all parts of the cross section cut through each facility. Water flow is dependent on the system water balance (see Section 5.2) and material properties and occurs largely under unsaturated conditions (see Section 5.3).

5.2 Water Balance The infiltration and seepage modeling described in this report simulates the flow of water and the water balance of the system. Infiltration is defined as the water that enters the facility by downward flow through the surface materials. Seepage is the diffuse flow of water from the facility. A water balance can be defined as the mass of water moving through the components of the hydrologic cycle. In general terms, a water balance is defined as:

Change in Storage = Amount of water in to system – Amount of water out of system

Storage is the water that is considered temporarily static in the system, such as pore water or groundwater. Water that enters the system is generally precipitation, but can also include groundwater inflows if considering a regional scale. Water exiting the system is generally evaporation and runoff. Groundwater outflows from the system are also considered losses from the system.

Tetra Tech February 2010 15

Page 23: Infiltration, Seepage, Fate, and Transport Modeling Report

Infiltration, Seepage, Fate and Transport Modeling Rosemont Copper Company

Infiltration and seepage are not primary components of the water balance, but are directly related and impact the changes in storage. Water that infiltrates into the system increases the storage of water in the pore spaces of the facility. This can impact the flow within the facility, because higher levels of storage generally have a higher rate of flow. Seepage is the outflow of water along the base of the facility and is a diffuse flow over a large area. Seepage is not considered a complete loss from the system because there is the potential for the seepage to continue to flow downward to groundwater. Increases in storage and flow within the facilities can result in a higher quantity of seepage from the facility.

5.3 Unsaturated Flow Physics Flow modeling of the Waste Rock Storage Area, the Heap Leach Facility, and Dry Stack Tailings Facility requires an integrated unsaturated/saturated (variably saturated) flow model, which accounts for the different flow dynamics in the waste rock, spent ore, and tailings materials, respectively. These models are able to account for the transitional flow regimes between the stacked rock media and underlying alluvial and bedrock media. The most significant difference between saturated and unsaturated flow is hydraulic conductivity. The hydraulic conductivity in saturated media is a function of the material type. In unsaturated flow, the hydraulic conductivity is a function of the material properties and the moisture content of the material. The equation used to calculate water flow within unsaturated media is:

HKq ∇−= )(θ

Where:

q = water flow velocity (L2/t)

K(θ) = hydraulic conductivity as a function of soil (or rock) moisture content (L/t)

= hydraulic head (L) H∇The relationship between moisture content and hydraulic conductivity is non-linear, which further complicates the flow dynamics. In saturated material, the physics of flow are relatively simple and are driven by Darcy’s Law where the flow is proportional to the saturated hydraulic conductivity, gravity, and pressure gradients. In simple terms, water flows downhill (downward pressure gradient) and flows faster through coarse material than fine material. However, in unsaturated flow, additional controlling forces include matric pressure, absorption, and electrostatic forces. Matric pressure is the strongest of these three (3) forces.

Matric pressure is the suction created by capillary forces and the interaction of water, air, and solid surfaces. Matric pressure can be observed by placing a thin straw into a body of water as shown on Illustration 5.4. Driven by the surface tension forces, the water rises inside the straw, defying the force of gravity. The thinner the straw, the stronger the suction force will be and the higher the column of water will rise in the tube. The same process occurs in the voids between material particles in waste rock, spent ore, or tailings.

Tetra Tech February 2010 16

Page 24: Infiltration, Seepage, Fate, and Transport Modeling Report

Infiltration, Seepage, Fate and Transport Modeling Rosemont Copper Company

From: Brady, 1990

Illustration 5.4 Example of Matric Pressure

One of the most unusual properties of unsaturated zone flow is that different materials are preferentially conductive with varying moisture contents. Illustration 5.5 shows how hydraulic conductivity values vary with matric pressure for a coarse soil (sandy loam) and a fine soil (clay).

Sandy Loam More Conductive

Clay More Conductive

A

C

B

From: Brady, 1990

Illustration 5.5 Hydraulic Conductivity versus Moisture Content

Under high moisture conditions, pores are saturated and their suction decreases significantly (Illustration 5.5, Point A). In this case, gravity is the strongest force and water will flow downhill from pore space to pore space. The larger pore spaces of the sandy loam allow more flow, which is consistent with Darcy’s Law. At low moisture conditions, the preferential flow changes as shown on Illustration 5.5, Point B. In drier voids, suction forces become stronger than gravitational forces. In this case, the tight materials are the most conductive with small voids that literally suck water through them. Under low moisture conditions, clay is more conductive than the sandy loam.

Tetra Tech February 2010 17

Page 25: Infiltration, Seepage, Fate, and Transport Modeling Report

Infiltration, Seepage, Fate and Transport Modeling Rosemont Copper Company

5.4 Modeling Technique VADOSE/W (GEO-SLOPE, 2007a), a two-dimensional variably saturated flow model that is part of the GeoStudio suite of programs, was used to simulate the flow of water through material in the Waste Rock Storage Area and the Heap Leach Facility. This modeling platform has the following key attributes:

The model can simulate heterogeneous material, and can account for changes in material conditions due to compaction and underlying alluvial and/or bedrock formations;

The model is transient and can be run with varying seasonal conditions; and

The model can be fully integrated with fate and transport modeling through the same software package.

As previously mentioned, infiltration and seepage modeling for the Dry Stack Tailing Facility was completed by AMEC and reported in Section 6.0 of the Final Design Report (AMEC, 2009) (provided in Appendix A). Modeling was performed using the finite element model SVFlux, which is part of the SVOffice 2009 Geotechnical Modeling Suite (Soilvision Systems, 2009). The modeling was completed in a series of steps starting with a one-dimensional model of the climatic influences. Tetra Tech then created a two-dimensional model of the completed Dry Stack Tailing Facility in order to simulate AMEC’s results in preparation for fate and transport modeling.

5.5 Input Parameters The following main input parameters were incorporated into the VADOSE/W (GEO-SLOPE, 2007a) modeling:

Site climate data;

Waste Rock Storage Area and Heap Leach Facility design plans;

Laboratory and library values for unsaturated flow parameters; and

Placement of reclamation soil covers.

The following main input parameters were incorporated into the SVFlux (Soilvision Systems, 2009) modeling:

Site climate data;

Final design plans for the Dry Stack Tailings Facility (AMEC, 2009); and

Laboratory and library values for unsaturated flow parameters.

The following sections describe the data inputs and their sources.

5.5.1 Site Climate Data Both VADOSE/W (GEO-SLOPE, 2007a) and SVFlux (Soilvisions Systems, 2009) allow the ability to apply site-specific climate data to the model. The following parameters were included as part of the climate data file used in the modeling:

Minimum and maximum daily temperature;

Daily precipitation;

Minimum and maximum daily humidity;

Tetra Tech February 2010 18

Page 26: Infiltration, Seepage, Fate, and Transport Modeling Report

Infiltration, Seepage, Fate and Transport Modeling Rosemont Copper Company

Daily evaporation or net radiation; and

Average daily wind speed.

The average climate conditions data set used for modeling the Waste Rock Storage Area and Heap Leach Facility is an average of over 50 years of daily measurements taken at the Nogales 6N Meteorological Station located approximately 30 miles from the Project site. There are several additional meteorological stations within the area, including a meteorological station installed at the Project site in April 2006. Each of these data sets was compared and considered for completeness, similarity to the site information, and period of record. Although the Nogales 6N Meteorological Station most closely matched the data collected at the Project site and was used in the modeling performed on the Waste Rock Storage Area and Heap Leach Pad, precipitation data from the Santa Rita Meteorological Station was also assessed and found to provide no substantial difference to the modeling results. For the Dry Stack Tailings Facility, AMEC used precipitation data from the Santa Rita Meteorological Station.

In addition to the average climate conditions, two (2) storm data sets were used for modeling of the Waste Rock Storage Area and Heap Leach Facility. The first represented a 100-year, 24-hour storm event (4.75 inches of rain over a 24-hour period) occurring during the summer. The second represented a winter event with multiple days of above average precipitation [approximately six (6) inches of rain in seven (7) days]. These storm data sets allowed consideration of the worst case infiltration (winter storms) and runoff conditions (summer storms). For the Dry Stack Tailings Facility, only average climate conditions were considered by AMEC.

5.5.2 Waste Rock Storage Area The Waste Rock Storage Area changes greatly over the mine life in physical shape and in unsaturated flow conditions. Specifically, as material is added to the top of the facility, the underlying waste rock is compressed and consolidated, changing the hydraulic properties of the lower portions of the facility. As a result, a series of linked infiltration and seepage models were built based on the feasibility and potential reclamation designs of the Waste Rock Storage Area:

Beginning of mine life to approximately Year 3;

Year 4 to approximately Year 6;

Year 7 to end of mine life;

Closed facility with various reclamation soil layers placed on outer waste rock surface:

o One (1) foot thick 10-5 centimeter per second (cm/sec) soil;

o Three (3) foot thick 10-5 cm/sec soil;

o Two (2) foot thick 10-5 cm/sec soil with a one (1) foot gravel layer on the soil surface;

Closed facility with no reclamation soil layer placed on the outer waste rock surface; and

Closed facility with ponding on the benches to manage runoff.

Placing mixed soil over the waste rock was modeled with a hydraulic conductivity of 10-5 cm/sec and a grain size ranging from gravel to fines. The reclamation soil layer scenarios were considered both with and without vegetation since it could take more than one (1) growing

Tetra Tech February 2010 19

Page 27: Infiltration, Seepage, Fate, and Transport Modeling Report

Infiltration, Seepage, Fate and Transport Modeling Rosemont Copper Company

season to fully establish vegetation. The modeling results give an indication of the expected infiltration and seepage dynamics during the mine life and after mine closure.

5.5.3 Heap Leach Facility As with the Waste Rock Storage Area, the heap also changes over the mine life in physical shape and in flow conditions. Therefore, a series of linked infiltration and seepage models were built based on the Heap Leach Facility and reclamation designs:

Operating Heap Leach Facility;

Drain-down of the spent ore within the heap [approximately two (2) to three (3) years];

Closed Heap Leach Facility with:

o Five (5) feet of waste rock with and without a one (1) foot of soil layer on the surface;

o Ten (10) feet of waste rock with and without a one (1) foot of soil layer on the surface;

o Fifteen (15) feet of waste rock with and without a one (1) foot of soil layer on the surface;

o Twenty (20) feet of waste rock with and without a one (1) foot of soil layer on the surface; and

o Twenty-five (25) feet of waste rock with and without a one (1) foot of soil layer on the surface.

Surface treatment to the top surface of the spent ore is not anticipated prior to placement of the waste rock. The modeling results give an indication of the expected infiltration and seepage dynamics during the mine life and after mine closure.

5.5.4 Dry Stack Tailings Facility Section 6.0 of the Final Design Report (AMEC, 2009) describes the input parameters and modeling methodology in detail. The following presents a summary from that report.

The Dry Stack Tailings Facility changes greatly over the mine life in physical shape and in unsaturated flow conditions. Specifically, as additional tailings material is added to the top of the facility, the underlying material is compressed and consolidated, changing the hydraulic properties of the lower portions of the facility. As a result, a series of linked one-dimensional infiltration and seepage models were constructed to represent stacking of the tailings material in 50 foot lifts. Each model was run using transient climate conditions applied to the lift for a duration representing the time the surface would be exposed during stacking. A two-dimensional model of the completed facility was then simulated to determine the flow conditions. Modeling for the Dry Stack Tailings Facility did not consider the addition of a reclamation soil layer or vegetation.

5.5.5 Waste Rock Storage Area and the Heap Leach Facility Material Properties The composition of the Waste Rock Storage Area and the Heap Leach Facility included multiple material types, with different properties. The following sections describe the material properties that were assigned to the different areas of the model. The material properties for the Dry Stack Tailings Facility are discussed in Section 5.5.6.

Tetra Tech February 2010 20

Page 28: Infiltration, Seepage, Fate, and Transport Modeling Report

Infiltration, Seepage, Fate and Transport Modeling Rosemont Copper Company

5.5.5.1 Run-of-Mine Material The run-of-mine (ROM) material was modeled with a permeability of 170 feet per hour (ft/hr) (100 cm/sec). This is equivalent to a coarse material with a broad distribution of sizes (poorly sorted) from gravel (0.1 inches) to large boulders (greater than 12 inches). The ROM material property was used on the upper most layer of the Waste Rock Storage Area at each of the time steps considered, as well as for the Heap Leach Facility ore material during operation. The ROM material property was also assigned to the buttress areas of the Waste Rock Storage Area and to the waste rock covering the Heap Leach Facility at closure.

5.5.5.2 Semi-Consolidated Material The semi-consolidated waste rock material was modeled with a permeability of 11.5 ft/hr (10-1 cm/sec). This is equivalent to a coarse material with a broad distribution of sizes (poorly sorted) from sand to boulders. The semi-consolidated waste rock material was used as the bottom waste rock layer in the second period modeled and as the middle waste rock layer in the final modeling period for the Waste Rock Storage Area. It was also used as the central portion of the Heap Leach Facility in the consolidated material scenarios.

5.5.5.3 Consolidated Material The consolidated waste rock material was modeled with a permeability of 1.2 ft/hr (10-2 cm/sec). This is equivalent to a moderately coarse material with a broad distribution of sizes (poorly sorted) from fine sand to boulders. The consolidated waste rock material was used as the bottom waste rock layer for the final period modeled for the Waste Rock Storage Area. It was also used as the bottom layer of the Heap Leach Facility in the consolidated material scenarios.

5.5.5.4 Alluvial Sediments Any remaining alluvial sediments below the Waste Rock Storage Area and the Heap Leach Facility were modeled with a permeability of 10-2 ft/hr (10-4 cm/sec). A series of falling head tests were completed at the Project site to obtain this value as documented in the Geotechnical Addendum (Tetra Tech, 2009c).

5.5.5.5 Bedrock Formation The bedrock formation below the alluvial sediments was modeled with a permeability of 10-6 ft/hr (10-8 cm/sec). This is equivalent to a competent bedrock unit dominated by fracture flow.

5.5.6 Dry Stack Tailings Facility Material Properties The tailings material will be placed in the facility in an unsaturated condition, with an average moisture content of 18 percent by weight. The saturated moisture content of the tailings material is 25 percent by weight, and the field capacity moisture content averages about 11 percent by weight. The tailings material is expected to be relatively homogeneous and has been characterized as a silt with sand. Based on laboratory analysis of the tailings material, the average Liquid Limit is 21, the average Plastic Limit is 20, and the average Plastic Index is one (1).

Hydraulic conductivity testing was also performed on the tailings material. The tests were conducted at several applied normal stresses to assess the reduction of hydraulic conductivity with depth. The tailings material hydraulic conductivity near the surface of the facility is expected to be about 4x10-3 cm/sec. At a depth of approximately 20 – 50 feet below the facility surface to the bottom of the facility, the tailings material hydraulic conductivity is expected to be reduced to 6x10-7 cm/sec.

Tetra Tech February 2010 21

Page 29: Infiltration, Seepage, Fate, and Transport Modeling Report

Infiltration, Seepage, Fate and Transport Modeling Rosemont Copper Company

5.6 Model Construction

5.6.1 Waste Rock Storage Area Model In VADOSE/W (GEO-SLOPE, 2007a), a finite-element model grid was built representing the Waste Rock Storage Area configuration. Each zone of the model was assigned a material property (Section 5.5.5) that represented the expected behavior of the material once placed in the facility. Illustration 5.6 shows the VADOSE/W (GEO-SLOPE, 2007a) model grids constructed for the waste rock scenarios presented in Section 5.5.2. Appendix C presents the model construction reports for each simulation of the Waste Rock Storage Area.

Color Key for Rock and Mine Material (Illustration 5.6) Purple: Unconsolidated ROM Waste Rock;

Orange: Semi-Consolidated Waste Rock;

Blue: Consolidated Waste Rock;

Pink: Unconsolidated Buttress Material (ROM Waste Rock);

Yellow: Alluvial Deposits;

Green: Bedrock Formation;

White: Open Space Where Future Waste Rock Deposition Will Exist;

Dark Brown: Waste Rock; and

Light Brown: Alluvial Deposits.

Illustration 5.6 Waste Rock Storage Area Model Grids [Four (4) Grids]

Tetra Tech February 2010 22

Page 30: Infiltration, Seepage, Fate, and Transport Modeling Report

Infiltration, Seepage, Fate and Transport Modeling Rosemont Copper Company

Illustration 5.6 – (Continued) Waste Rock Storage Area Model Grids [Four (4) Grids]

Tetra Tech February 2010 23

Page 31: Infiltration, Seepage, Fate, and Transport Modeling Report

Infiltration, Seepage, Fate and Transport Modeling Rosemont Copper Company

The model grids shown above represent the staged construction of the Waste Rock Storage Area, including the resultant changes in material properties. The first grid (beginning of mine life to Year 3) represents the early placement of ROM waste rock material. As placement continues (Years 4-7), the lower material is compressed and consolidated under the weight of the new ROM material, making the lower region less permeable. Similarly, as placement continues (Years 7 to closure) with additional waste rock, the lower portions become more consolidated, including the central portion. This further decreases the permeability in both of these areas.

For the closure scenarios, the model was built using the same grid layout as the end of mine life model (third grid shown). The primary difference between the closure models and the end of life model shown was the addition of the various reclamation soil layers discussed in Section 5.5.2. The Waste Rock Storage Area was modeled with side slopes of 3.5H:1V and top surfaces sloped at a grade of 1%.

For a scenario that included water management ponding, a model grid was constructed that focused on this scenario (fourth grid). This model grid focuses on the facility benches where the ponding will potentially occur. No reclamation soil cover was considered for this modeling.

5.6.2 Heap Leach Facility Model In VADOSE/W (GEO-SLOPE, 2007a), a finite-element model grid was built representing the Heap Leach Facility configuration. Each zone of the model was assigned a material property (Section 5.5.5) that represented the expected behavior of the material in the facility. Illustration 5.7 shows the model grids constructed for the Heap Leach Facility scenarios presented in Section 5.5.3. Appendix C presents the model construction reports for each modeling simulation of the Heap Leach Facility.

Color Key for Rock and Mine Material (Illustration 5.7) Purple: ROM Ore;

Pink: Unconsolidated ROM Waste Rock;

Yellow: Alluvial Deposits; and

Green: Bedrock Formation.

Illustration 5.7 Heap Leach Facility Model Grids [Two (2) Grids]

Tetra Tech February 2010 24

Page 32: Infiltration, Seepage, Fate, and Transport Modeling Report

Infiltration, Seepage, Fate and Transport Modeling Rosemont Copper Company

Illustration 5.7 – (Continued) Heap Leach Facility Model Grids [Two (2) Grids]

Because the modeling focused on the facility after stacking, the first grid considered for the operational scenario was the completely stacked Heap Leach Facility shown in the conceptual model (Illustration 5.7). For the closure scenarios, the average climate conditions, the 100-year, 24-hour storm event scenario, and the multi-day storm event scenario were constructed using the same grid layout as the end of leaching scenario, except with the addition of a waste rock layer to the outer surface of the facility (second grid).

The ROM ore stacked within the Heap Leach Facility was modeled with side slopes of 2H:1V and a flat top surface. The waste rock material stacked on top of the heap at closure was modeled with the final reclamation contouring and grading applied on the outer surface. In this final reclamation scenario, there is no surface water ponding directly above the closed spent ore pile, including the former ponds located at the base of the heap.

5.6.3 Dry Stack Tailings Facility Model In SVFlux, a finite-element model grid was built representing the maximum facility section of the Dry Stack Tailings Facility configuration. Each zone of the model was assigned a material property (Section 5.5.6) that represented the expected behavior of the material once placed in the facility. Illustration 5.8 shows the SVFlux model grids constructed for the two-dimensional scenario presented in Section 5.5.4. Appendix A provides Section 6.0 of the Final Design Report (AMEC, 2009).

Tetra Tech February 2010 25

Page 33: Infiltration, Seepage, Fate, and Transport Modeling Report

Infiltration, Seepage, Fate and Transport Modeling Rosemont Copper Company

Illustration 5.8 Dry Stack Tailings Facility Model Grid (taken from AMEC, 2009)

5.7 Steady State Modeling Steady state modeling is challenging when analyzing mining sites because the facilities change quickly and do not reach true steady state conditions until mine closure. To account for this, the Waste Rock Storage Area and Heap Leach Facility models were run as a sequence of steady state models to represent the different time periods of mine life.

The results of each model provided the starting conditions for the next model. The results of each steady state model were not designed to replicate true mine conditions, but to offer non-zero starting values for the subsequent transient modeling scenarios. Modeling of the Dry Stack Tailings Facility was completed as a series of one-dimensional transient models.

5.8 Transient Modeling Transient modeling provides a reasonable simulation of flow conditions within the Waste Rock Storage Area, Heap Leach Facility, and Dry Stack Tailings Facility. The upper most layer of these models is a surface region representing the top surface layer of the facility. It is in this part of the model that atmospheric conditions and soil come in contact, driving the water balance. The water within the facility then moves according to the rules of unsaturated flow physics through the waste rock, ore, or tailings. Finally, and if applicable, the water reaches the underlying subsurface material where it moves to the model discharge point.

5.8.1 Surface Layer VADOSE/W (Geo-Slope, 2007a) and SVFlux (Soilvision Systems, 2009) simulate the dynamics of the facility surface by considering climate and soil interactions. VADOSE/W (Geo-Slope, 2007a) simulates precipitation using time increments with a maximum size of two (2) hours. The daily precipitation data is distributed according to a sinusoidal function that peaks at noon. The distribution pattern in the model allows for peak rainfall over a short period of time around noon, which is a reasonable approximation of field conditions.

Tetra Tech February 2010 26

Page 34: Infiltration, Seepage, Fate, and Transport Modeling Report

Infiltration, Seepage, Fate and Transport Modeling Rosemont Copper Company

In an environment with a net negative water balance such as the arid southwestern United States, evaporation is one of the most important and controlling components of the system. Evaporation and transpiration are calculated from the following climate, soil, and vegetation factors:

Air temperature;

Soil temperature;

Relative humidity;

Solar intensity (from latitude);

Soil temperature;

Soil moisture content;

Leaf area index;

Plant root depth;

Plant wilting point;

Wind speed; and

Measured pan evaporation.

The combination of the factors listed above provides a reasonable estimate of water evaporation and transpiration from the system. Infiltration is based on the unsaturated hydraulic conductivity of the material at a given time. Excess precipitation that has not evaporated, transpired, or infiltrated is tabulated as runoff.

SVFlux also simulates a daily precipitation within the model. The daily precipitation events were reduced to finite duration storms instead of constant precipitation throughout the day. A parabolic global intensity correction was applied to the precipitation dataset to represent real-world conditions. Precipitation events were enabled to begin at noon and run until approximately 7 pm with the peak around 3:30 pm.

5.8.2 Transient Flow within the Facilities The transient flow dynamics within the waste rock, spent ore, and tailings material are simulated over time and space. The models accounts for transitions between material types and produces the following data sets essential to fate and transport modeling:

Water flux within the model domain;

Moisture content;

Water flow velocity; and

Groundwater discharge, if applicable (out of the model domain).

The following sections present the infiltration and seepage model results.

5.9 Model Results The model results are reported in the following formats:

Graphs of the model water (mass) balance;

Graphics of moisture content within the facility material; and

Tetra Tech February 2010 27

Page 35: Infiltration, Seepage, Fate, and Transport Modeling Report

Infiltration, Seepage, Fate and Transport Modeling Rosemont Copper Company

Tables comparing the scenario water (mass) balance parameters as a percent of precipitation.

5.9.1 Waste Rock Storage Area The Waste Rock Storage Area was modeled with and without ponding on the surface of the facility. For the model scenarios without ponding, under each of the three (3) climate conditions modeled (average climate conditions, 24-hour, 100-year storm event, and multi-day storm event), the system realizes a negative water balance. The reason for this is:

Strong evaporation drives the system, even for a multi-day storm event;

Dry waste rock has sufficient storage to hold moisture near the top surface until it can be evaporated;

Dry waste rock has high matric suction that can draw deeper moisture up to the waste rock surface where it can be evaporated; and

Intense storms create high runoff, thus decreasing infiltration.

Illustration 5.9 presents the water balance of the completed Waste Rock Storage Area with no reclamation soil layer under average climate conditions and with no ponding for stormwater runoff control.

Note: The cumulative water balance values plot at zero (0) on the above graph. This illustration only refers to the

average climate conditions. Under this condition, most of the precipitation is not expected to runoff and evaporation drives the water balance resulting in very little increase in storage (i.e., infiltration).

Illustration 5.9 Water Balance for the Waste Rock Storage Area – Average Climate Conditions

As shown on Illustration 5.9, evaporation is a larger part of the overall water balance than precipitation throughout the one (1) year time period. Runoff, storage, and infiltration are such

Tetra Tech February 2010 28

Page 36: Infiltration, Seepage, Fate, and Transport Modeling Report

Infiltration, Seepage, Fate and Transport Modeling Rosemont Copper Company

small parts of the overall water balance that they plot as near zero (0) on this graph. The resulting volumetric moisture contents are in the range of 12% in the upper portions of the facility and down to 4% in the lower portions of the waste rock. These moisture contents equate to less than 50% saturation within the waste rock material. Illustration 5.10 presents the distribution of moisture within the Waste Rock Storage Area with no reclamation soil layer added to the top surface and with no ponding under average climate conditions.

Illustration 5.10 Moisture Content within the Waste Rock Storage Area – Average Climate Conditions

As described in Section 5.5.2, several different reclamation soil scenarios were considered for the Waste Rock Storage Area. The first scenario considered a one (1) foot thick layer of soil with a hydraulic conductivity of approximately 10-5 cm/sec. The preferred soil would be composed of a broad range of particle sizes from gravel to fines. The second scenario considered the same material in a thicker three (3) foot layer. The third scenario considered a two (2) foot layer of the same soil material, with the addition of a layer of gravel at the surface.

The results of these models were very similar. The insensitivity of the model in relation to the reclamation soil layer is likely due to the high evaporation rate. Regardless of the thickness of the soil layer, the infiltration is limited to the top few feet of the facility and is quickly evaporated back out. Illustration 5.11 presents the water balance for the one (1) foot, three (3) foot, and mixed material soil layers with no vegetation.

Tetra Tech February 2010 29

Page 37: Infiltration, Seepage, Fate, and Transport Modeling Report

Infiltration, Seepage, Fate and Transport Modeling Rosemont Copper Company

Illustration 5.11 Water Balance for Un-Vegetated Reclaimed Waste Rock Storage Area – Average Climate Conditions [Three (3) Graphs]

Tetra Tech February 2010 30

Page 38: Infiltration, Seepage, Fate, and Transport Modeling Report

Infiltration, Seepage, Fate and Transport Modeling Rosemont Copper Company

Note: The cumulative water balance values plot at zero (0) on the above graph. These illustrations only refer to the

average climate conditions. Under this condition, most of the precipitation is not expected to runoff and evaporation drives the water balance resulting in very little increase in storage (i.e., infiltration). The slight change in cumulative precipitation between the three (3) graphs is a result of slightly different surface areas within the model domain due to changes in soil cover thickness.

Illustration 5.11 – (Continued) Water Balance for Un-Vegetated Reclaimed Waste Rock Storage Area – Average Climate Conditions [Three (3) Graphs]

The primary difference between the one (1) foot and the three (3) foot scenarios is the amount of water that is available for evaporation. Because the thinner soil layer allows a slightly higher level of infiltration, there is more water available to evaporate out of the system than with the three (3) foot layer. The volumetric moisture content distribution within these models is the same and is in the range of 4% to 12%. Illustration 5.12 presents the moisture content distribution of these models with the reclamation soil layer.

Tetra Tech February 2010 31

Page 39: Infiltration, Seepage, Fate, and Transport Modeling Report

Infiltration, Seepage, Fate and Transport Modeling Rosemont Copper Company

Illustration 5.12 Moisture Content within the Waste Rock Storage Area with Soil Layer – Average Climate Conditions

The final modeling scenario considered was a mixed material with both a 10-5 cm/sec soil layer and a gravel top. This system would be least susceptible to erosion, but the simulations show that it will not perform as well as the plain soil scenario. Without vegetation, the runoff is increased and the evaporation is limited by the amount of water that infiltrates. Illustration 5.13 presents the moisture content distribution for this model.

Illustration 5.13 Moisture Content within the Waste Rock Storage Area with Soil and Gravel – Average Climate Conditions

The same soil and gravel scenarios presented above were also simulated with the addition of vegetation. The results of the two (2) soil only scenarios with vegetation yielded similar results, but with an increase in the removal of water through the addition of transpiration instead of just evaporation (Illustration 5.14).

Tetra Tech February 2010 32

Page 40: Infiltration, Seepage, Fate, and Transport Modeling Report

Infiltration, Seepage, Fate and Transport Modeling Rosemont Copper Company

The distribution of moisture within the Waste Rock Storage Area did not change significantly. Similarly, the mixed soil and gravel scenario had an increase in water lost due to the addition of transpiration. This suggests that in the time required to establish vegetation, the systems will not experience excess infiltration, regardless of the soil cover design.

Illustration 5.14 Water Balances for Vegetated Reclaimed Waste Rock Storage Area– Average Climate Conditions [Three (3) Graphs]

Tetra Tech February 2010 33

Page 41: Infiltration, Seepage, Fate, and Transport Modeling Report

Infiltration, Seepage, Fate and Transport Modeling Rosemont Copper Company

Note: The cumulative water balance values plot at zero (0) on the above graphs. These illustrations only refers to

the average climate conditions. Under this condition, most of the precipitation is not expected to runoff and evaporation drives the water balance resulting in very little increase in storage (i.e., infiltration). The slight change in cumulative precipitation between the three (3) graphs is a result of slightly different surface areas within the model domain due to changes in soil cover thickness.

Illustration 5.14 – (Continued) Water Balances for Vegetated Reclaimed Waste Rock Storage Area– Average Climate Conditions [Three (3) Graphs]

Table 5.1 presents the results of the waste rock models under average climate conditions and assuming no ponding for stormwater control. The percentages provided in the table summarize the water balance as a percent of the total precipitation.

Table 5.1 Waste Rock Storage Area Model Summary – Average Climate Conditions

Storage Runoff Evapotranspiration Scenario

as a percent of precipitation No Reclamation Soil 0% 0% -101% Mixed Reclamation Soil & Gravel 0% 0% -101% Vegetated Reclamation Soil & Gravel -2% 3% -98% 3-Foot Reclamation Soil -14% 0% -116% Vegetated 3-Foot Reclamation Soil -36% 0% -140% 1-Foot Reclamation Soil 0% 0% -101% Vegetated 1-Foot Reclamation Soil -2% 3% -98% NOTE: Negative values represent water lost from the facility. These results do not include

ponding.

Tetra Tech February 2010 34

Page 42: Infiltration, Seepage, Fate, and Transport Modeling Report

Infiltration, Seepage, Fate and Transport Modeling Rosemont Copper Company

In addition to the average climate conditions presented above, these same soil scenarios were also simulated using a 100-year, 24-hour storm event and a multi-day storm event. The 100-year, 24-hour storm event was intended to provide a worst case runoff scenario due to the short duration and high intensity of the storm. The multi-day storm event was intended to provide a worst case infiltration scenario due to the long duration of precipitation and cooler temperatures. Each of these additional simulations confirmed that the addition or design of the reclamation soil layer is not a significant factor due to the high level of evaporation.

Table 5.2 presents results from the 100-year storm event models. Table 5.3 presents results from the multi-day winter storm event models. No ponding of stormwater is assumed under these simulations.

Table 5.2 Waste Rock Storage Area Model Summary – 100-Year, 24-Hour Storm

Storage Runoff Evapotranspiration Scenario

as a percent of precipitation No Reclamation Soil 5% 91% -5% Mixed Reclamation Soil & Gravel 5% 91% -5% Vegetated Reclamation Soil & Gravel 0% 91% -9% 3-Foot Reclamation Soil 1% 94% -5% Vegetated 3-Foot Reclamation Soil 1% 94% -5% 1-Foot Reclamation Soil 1% 94% -5% Vegetated 1-Foot Reclamation Soil 1% 94% -5% NOTE: Negative values represent water lost from the facility. These results do not include

ponding. (Graphs Not Provided)

Table 5.3 Waste Rock Storage Area Model Summary – Multi-Day Storm Event

Storage Runoff Evapotranspiration Scenario

as a percent of precipitation No Reclamation Soil 3% 87% -10% Mixed Reclamation Soil & Gravel 3% 87% -10% Vegetated Reclamation Soil & Gravel 0% 82% -18% 3-Foot Reclamation Soil 10% 79% -10% Vegetated 3-Foot Reclamation Soil 10% 80% -73% 1-Foot Reclamation Soil 2% 88% -10% Vegetated 1-Foot Reclamation Soil 1% 88% -10% NOTE: Negative values represent water lost from the facility. These results do no include ponding. (Graphs

Not Provided)

The most significant thing to note with the Waste Rock Storage Area storm event models is the decrease in evaporation and the increase in runoff over the average climate conditions. Regardless of the addition or design of a reclamation soil layer, most of the precipitation that lands on the facility is lost to runoff and only a small amount infiltrates (positive storage values).

The final Waste Rock Storage Area models considered the option of using the benches of the facility to control runoff. Under the ponding scenarios, the modeling results are similar to those

Tetra Tech February 2010 35

Page 43: Infiltration, Seepage, Fate, and Transport Modeling Report

Infiltration, Seepage, Fate and Transport Modeling Rosemont Copper Company

generated for the entire Waste Rock Storage Area, with the system realizing a negative water balance due to the high evaporation rate under average climate conditions.

However, under the influence of the 100-year, 24-hour storm event and the multi-day storm event, there is increased infiltration into the waste rock in the areas of ponding. The flow of water appears to be downward, and then toward the toe of the facility. Illustration 5.15 presents the moisture content of this portion of the facility after a 100-year, 24-hour storm. Illustration 5.16 presents the same portion of the facility after a multi-day storm event.

Illustration 5.15 Moisture Content within the Waste Rock Storage Area – 100-year, 24-hour storm – with Ponding

Illustration 5.16 Moisture Content within the Waste Rock Storage Area – Multi-day Storm Event – with Ponding

Tetra Tech February 2010 36

Page 44: Infiltration, Seepage, Fate, and Transport Modeling Report

Infiltration, Seepage, Fate and Transport Modeling Rosemont Copper Company

5.9.2 Heap Leach Facility Model Results During operations and the initial two (2) to three (3) year drain-down period following the cessation of leaching, it is assumed that both runoff and seepage will be collected in the double-lined PLS Pond located at the base of the Heap Leach Pad. Therefore, the Heap Leach Facility will be a zero (0) discharge facility during operations with the seepage being collected in the PLS Pond. At closure, and following the placement of waste rock over the spent ore material and over the former PLS and Stormwater Ponds, only drain-down seepage will report to the base of the heap.

Prior to placing waste rock over the pond area, closure and modification of the PLS and Stormwater Ponds are anticipated. Prior to modification, closure of the ponds would follow Prescriptive Best Available Demonstrated Control Technology (BADCT) guidance (ADEQ, 2004) and is detailed in a technical memorandum (Tetra Tech, 2010a) provided in Appendix D. Modification of the ponds may be required for the treatment of residual drain-down seepage and would follow the conceptual design of the treatment system as presented in a technical memorandum (Tetra Tech, 2010b) provided in Appendix E.

5.9.2.1 Heap Drain-Down Model Results After leaching is complete, the spent ore will be allowed to drain for approximately two (2) to three (3) years before the ponds are covered with waste rock. Based on modeling, the flow rate from the spent ore will be less than ten (10) gallons per minute (gpm) at the end of the two (2) to three (3) year period. This represents a near steady-state condition for the heap prior to the addition of the waste rock over the spent ore. The drain-down curve for the spent ore pile presented in Illustration 5.17 was developed using average climate conditions. The spent ore may continue to drain at a decreasing rate for several years after the spent ore is covered with waste rock.

Drain-Down Curve

0

200

400

600

800

1000

1200

1400

1600

020

040

060

080

010

00

Time (days)

Flow

(Gal

lons

per

min

ute)

Illustration 5.17 Drain-Down Curve for the Spent Ore Pile

Tetra Tech February 2010 37

Page 45: Infiltration, Seepage, Fate, and Transport Modeling Report

Infiltration, Seepage, Fate and Transport Modeling Rosemont Copper Company

5.9.2.2 Heap Closure Model Results The closed heap and the ponds located at the base of the heap will be covered with waste rock. The outer surface of the waste rock will be contoured and graded to prevent stormwater from ponding above the closed heap facilities. Following placement of the waste rock, seepage will be limited to the residual drain-down solution as evaporation will prevent meteoric water (precipitation) from infiltrating through the waste rock and into the spent ore.

A waste rock cover thickness analysis was completed using VADOSE/W (GEO-SLOPE, 2007a) to determine the flux into the spent ore, and the moisture content of the soil layer, the waste rock cover material, and the spent ore. A separate technical memorandum illustrating the minimum waste rock cover thickness required over the spent ore material (Tetra Tech, 2010c) is provided in Appendix F.

Modeling results are presented below as graphs comparing the various cover scenarios presented in Section 5.5.3. Illustrations 5.18 and 5.19 present the results of the five (5) waste rock only scenarios. Illustration 5.18 presents the flow (flux) of water into and out of the spent ore over a period of one (1) year while Illustration 5.19 presents the change in moisture content at the upper surface of the spent ore. Illustrations 5.20 and 5.21 present the results of the five (5) combined waste rock/soil layer scenarios. Illustration 5.20 presents the water flux, and Illustration 5.21 presents the moisture content at the upper surface of the spent ore.

Illustration 5.18 Water Flux – Waste Rock Only Over Spent Ore

Tetra Tech February 2010 38

Page 46: Infiltration, Seepage, Fate, and Transport Modeling Report

Infiltration, Seepage, Fate and Transport Modeling Rosemont Copper Company

Illustration 5.19 Moisture Content – Waste Rock Only Over Spent Ore

Illustration 5.20 Water Flux – Waste Rock/Soil Layer Over Spent Ore

Tetra Tech February 2010 39

Page 47: Infiltration, Seepage, Fate, and Transport Modeling Report

Infiltration, Seepage, Fate and Transport Modeling Rosemont Copper Company

Illustration 5.21 Moisture Content – Waste Rock/Soil Layer Over Spent Ore

The contact between the waste rock and the spent ore was used as the location in the model to analyze each of the scenarios, and to provide the data for Illustrations 5.18 through 5.21. In Illustrations 5.18 and 5.20, positive flux values represent the water that is infiltrating into the waste rock or into the combined waste rock/soil layer and reaching the surface of the spent ore. Negative values represent water being removed from the spent ore and waste rock through evaporation.

Based on the results presented in Illustrations 5.18 and 5.20, some precipitation infiltrates into the spent ore during the first month of the model (positive flux values). This is due to the very low moisture content of the waste rock or combined waste rock/soil material being placed on the spent ore. The thinnest waste rock scenario (five [5] feet) had the highest infiltration rate while the thickest waste rock scenario (25 feet) had the lowest infiltration rate (both with and without a soil layer).

Once the initial wetting of the waste rock material was completed, each of the scenarios showed a decrease in the flux, and eventually realized an evaporation controlled period (negative flux values). Both Illustrations 5.18 and 5.20 show this initial increase and then decrease. However, the waste rock only scenarios have a much more erratic pattern over the one (1) year modeling period than the combined waste rock/soil layer scenarios. This suggests that the larger pore spaces and higher permeability of the ROM waste rock is more responsive to changes in climatic conditions. The addition of a one (1) foot thick soil layer to the surface of the waste rock smoothes the erratic pattern observed in Illustration 5.18 and shows a more consistent rate of evaporation.

Based on just the flux data, the combination waste rock/soil layer options are more protective than the waste rock only scenarios. A five (5) foot waste rock thickness with a one (1) foot soil layer performs as effectively as the thicker waste rock only or thicker waste rock/soil layer scenarios. If only waste rock will be placed on the spent ore, the thickness would need to be at

Tetra Tech February 2010 40

Page 48: Infiltration, Seepage, Fate, and Transport Modeling Report

Infiltration, Seepage, Fate and Transport Modeling Rosemont Copper Company

least 20 feet in order to minimize meteoric water infiltrating into the spent ore. A separate technical memorandum illustrating the minimum waste rock cover thickness required over the spent ore material (Tetra Tech, 2010c) is provided in Appendix F.

Illustrations 5.19 and 5.21 present the change in moisture content over time at the waste rock/spent ore contact. These illustrations also show the material being wetted in the early stage of the model. The thinnest waste rock scenarios have the largest increase in moisture content while the thicker layers have less increase. The thinner layers also have a faster increase in moisture content than the thicker layers. This is due to the position of the model point being used for the data analysis. As discussed above, the modeling point being described in the illustrations is located at the contact of the waste rock and the spent ore material. Therefore, the model point is located further from the top surface of the model with the thicker covers, (i.e., the point is deeper in the cover system).

The scenarios modeled without a soil layer also have a faster increase in the moisture content, and a faster decrease. This is related to the smaller pore spaces in the soil layer and associated lower permeability. Regardless of the scenario, the moisture contents are sufficiently low to suggest that no meteoric water will reach the spent ore material at closure. Modeling assumed that all surfaces had a positive drainage of at least one (1) percent, (i.e., no ponding on the cover surface).

Based on the cover thickness evaluation, a waste rock cover of 20 feet was assumed for the primary closure modeling. The cover design model is based on the reclamation contouring of the waste rock surface and the average climate conditions. Illustration 5.22 presents the volumetric moisture content of the closed Heap Leach Facility. Illustration 5.23 presents a graph of the closed Heap Leach Facility water balance for a one (1) year model period having average climate conditions.

Illustration 5.22 Volumetric Moisture Content Distribution within the Closed Heap Leach Facility

Tetra Tech February 2010 41

Page 49: Infiltration, Seepage, Fate, and Transport Modeling Report

Infiltration, Seepage, Fate and Transport Modeling Rosemont Copper Company

Illustration 5.23 Closed Heap Leach Facility Water Balance

The volumetric moisture content in the spent ore material is shown to be less than five (5) percent at one (1) year after waste rock is placed over the spent ore. This represents a saturation level of about 20%. The arrows shown in Illustration 5.22 represent flow vectors (magnitude and direction) of water in the system. Once the waste rock is placed over the spent ore, the dominant component of the system becomes evaporation and water is drawn up and out of the facility. This is also supported by the graph presented as Illustration 5.23. The lines shown above zero (0) represent inflows to the system, while the lines below zero (0) represent outflows, or losses, from the system. The outflows (evaporation and storage) are significantly greater than the inflows, i.e., a negative water balance is observed. Based on these results, water is being removed from storage, thus helping to prevent the future movement of water downward through the spent ore.

In addition to average climate conditions, the closure scenario was also modeled using two (2) storm events (100-year, 24-hour and multi-day precipitation). The 100-year, 24-hour storm represents a short, but intense storm event that has a high potential for above average runoff. The multi-day storm represents a potentially higher than average infiltration condition. Table 5.4 presents a comparison of changes in storage, runoff, and evaporation due to the storm events as a percentage of the total precipitation.

Tetra Tech February 2010 42

Page 50: Infiltration, Seepage, Fate, and Transport Modeling Report

Infiltration, Seepage, Fate and Transport Modeling Rosemont Copper Company

Table 5.4 Comparison of Modeled Storms to Average Climate Conditions

Storage Runoff Evaporation Scenario As a Percent of Precipitation

Average Climate Conditions > -100% 0.00% > -100% 100-year, 24-hour Storm Event 90.9% 6.16% -4.96% Multi-Day Storm Event 86.7% 3.65% -10.0% NOTE: Negative values represent water lost from the system.

When these storms are compared to the model results associated with the average climate conditions, both storms resulted in increased runoff and storage. The increased storage relates directly to increased infiltration. However, it is anticipated that any precipitation that does infiltrate into the waste rock cover will be removed from the facility through evaporation following the storm event.

5.9.3 Dry Stack Tailing Facility The following results of the infiltration and seepage modeling associated with the Dry Stack Tailings Facility were taken directly from the Final Design Report published by AMEC in 2009 (report excerpt provided in Appendix A).

Illustration 5.24 (AMEC Figure 6.7) shows that as the Dry Stack Tailings Facility expands over time, the estimated seepage rate increases to a peak value of approximately 8.4 gpm, at production Year 18. Seepage from the dry stack tailings is due solely to drainage of pore water as the tailings gravimetric moisture content reduces from the as-placed value of 18 percent (by dry weight) to the field capacity value of 11 percent (by dry weight). This observation indicates that meteoric water (precipitation) influences are negligible to the overall seepage from the Dry Stack Tailings Facility. Therefore, there is a finite amount of seepage that can occur from the facility;

Illustration 5.25 (AMEC Figure 6.8) presents the long-term, estimated seepage from the facility. As discussed in the previous point, the peak seepage rate of 8.4 gpm is followed by a gradual decrease from the facility as the moisture content of the tailings decreases over time; and

Illustration 5.26 (AMEC Figure 6.9) presents a typical profile of moisture content with depth over time. This illustration shows a lack of recharge to the dry stack tailings from meteoric water. As shown, the upper eight (8) feet of the dry stack tailings performs as a storage-release unit, whereby moisture lost to evaporation is replenished by precipitation. Evaporation losses are evident by the reduction in moisture content at the surface of the dry stack tailings. Recharge due to precipitation events are evident by the moisture front(s) emanating from the dry stack tailings surface. It is important to note that the moisture front does not extend below eight (8) feet, indicating the limit of the storage-release unit.

One of the most important observations from the seepage analyses is illustrated in the seepage profile for the Dry Stack Tailings Facility. The seepage profile indicates that under the scheduled stacking plan and associated properties of the tailings, saturated conditions within the Dry Stack Tailings Facility are not anticipated to develop and an overall negative (unsaturated) pore pressure distribution is expected. As shown on Illustration 5.27 (AMEC Figure 6.10), the water content distribution (by dry weight) for the one and two-dimensional models at the greatest thickness (550 feet) is between 12 and 22 percent, which is 13 to three (3) percent, respectively, below the saturated moisture content of 25 percent. The close agreement between the one- and

Tetra Tech February 2010 43

Page 51: Infiltration, Seepage, Fate, and Transport Modeling Report

Infiltration, Seepage, Fate and Transport Modeling Rosemont Copper Company

Tetra Tech February 2010 44

two-dimensional models also indicates that one-dimensional seepage modeling is appropriately coupled with an isopach representation of the facility for any production year to determine cumulative seepage. Furthermore, it is important to note the distribution of moisture contents within the facility. Lower moisture contents (2 to 4 percent) are present along the perimeter (rockfill) and the surface of the facility and higher moisture contents are present towards the center and bottom of the facility. This reflects long-term drainage as the tailings moisture content reduces from the as-placed moisture content of 18 percent (by dry weight) to the field capacity of approximately 11 percent (by dry weight). The model results show that recharge to the tailings from precipitation is negligible to non-existent.

Page 52: Infiltration, Seepage, Fate, and Transport Modeling Report

Infiltration, Seepage, Fate and Transport Modeling Rosemont Copper Company

Illustration 5.24 Production Seepage Rates (Figure taken from AMEC, 2009)

Tetra Tech February 2010 45

Page 53: Infiltration, Seepage, Fate, and Transport Modeling Report

Infiltration, Seepage, Fate and Transport Modeling Rosemont Copper Company

Illustration 5.25 Closure Seepage Rates (Figure taken from AMEC, 2009)

Tetra Tech February 2010 46

Page 54: Infiltration, Seepage, Fate, and Transport Modeling Report

Infiltration, Seepage, Fate and Transport Modeling Rosemont Copper Company

Illustration 5.26 Moisture Content with Depth over Time (Figure taken from AMEC, 2009)

Tetra Tech February 2010 47

Page 55: Infiltration, Seepage, Fate, and Transport Modeling Report

epage, Fate and Transport Modeling Rosemont Copper Company

Tetra Tech February 2010 48

Illustration 5.27 Moisture Content Distribution (Figure taken from AMEC, 2009)

Infiltration, Se

Page 56: Infiltration, Seepage, Fate, and Transport Modeling Report

Infiltration, Seepage, Fate and Transport Modeling Rosemont Copper Project

6.0 FATE AND TRANSPORT MODELING

The infiltration and seepage modeling determined the quantity of water infiltrating into and seeping through the material in the Waste Rock Storage Area, Heap Leach Facility, and Dry Stack Tailings Facility, including the time of contact. To determine the quality of water that could potentially discharge from the base of the facilities into the subsurface, fate and transport modeling was completed.

6.1 Conceptual Fate and Transport Model The fate and transport models were built from the same infiltration and seepage models (including material properties) for both the Waste Rock Storage Area and the Heap Leach Facility. Fate and transport modeling for the Dry Stack Tailings Facility was built using a similar geometry and material properties to the infiltration and seepage modeling performed by AMEC.

As determined from the infiltration and seepage modeling, the general flow path of water passing through the facilities is in the vertical direction. Therefore, a series of vertical flow paths were also used to determine the fate and transport of any water moving through the facility. Illustration 6.1 presents the flow paths used for modeling the Waste Rock Storage Area. Illustration 6.2 presents the flow path used for modeling the Heap Leach Facility. Illustration 6.3 presents the flow path used for modeling the Dry Stack Tailings Facility.

Illustration 6.1 Conceptual Fate and Transport Model – Waste Rock Storage Area

Tetra Tech February 2010 49

Page 57: Infiltration, Seepage, Fate, and Transport Modeling Report

Infiltration, Seepage, Fate and Transport Modeling Rosemont Copper Company

Illustration 6.2 Conceptual Fate and Transport Model – Heap Leach Facility

Illustration 6.3 Conceptual Fate and Transport Model – Dry Stack Tailings Facility

Tetra Tech February 2010 50

Page 58: Infiltration, Seepage, Fate, and Transport Modeling Report

Infiltration, Seepage, Fate and Transport Modeling Rosemont Copper Company

6.2 Fate and Transport Modeling Technique Fate and transport modeling was completed in two (2) separate steps. The first step involved particle tracking to determine the path of the water flow, including which materials the flow would come in contact with and the time required to reach the subsurface. The next step was a simple geochemical mixing model representing the water quality due to contact with the materials in the facility. The results of these two (2) steps were an estimation of where potential seepage would occur, including the water quality of the potential seepage. The following sections provide more detail of these two (2) modeling steps.

6.2.1 Particle Tracking Particle tracking modeling was performed using the program CTRAN/W (GEO-SLOPE, 2007b), another component of the GeoStudio software suite. The particle-tracking portion of the modeling estimated the flow paths of the water entering, traveling through, and exiting the Waste Rock Storage Area, Heap Leach Facility, and Dry Stack Tailings Facility. The particle tracking modeling also determined how long the water was in contact with each of the materials. This model did not address particle travel within the aquifer. This is being addressed on an area-wide basis in another modeling effort.

6.2.2 Geochemical Modeling Geochemical modeling was conducted using the computer code PHREEQC Version 2.15.06 (Parkhurst and Appelo, 1999), a reaction path chemical equilibrium model supplied by the U.S. Geological Survey (USGS). PHREEQC is able to process multiple equilibria and mixing reactions to produce the final chemical speciation of a system.

In addition to a computer code, geochemical modeling requires a database of thermodynamic and kinetic parameters associated with the chemical reactions. The database is a separate file from the PHREEQC model to allow for additions, deletions, and updates to the information without impacting the model code. No database is fully comprehensive, so it is often necessary to make these changes and additions manually (Zhu and Anderson, 2002).

For this Project, the WATEQ4F database (Ball and Nordstrom, 1991) was chosen. However, this database did not include all of the metals of concern to the Project, so additional metals were added to the file. The information added was obtained from the PHREEQ database published with the computer code (Parkhurst and Appelo, 1999). The combination of the two (2) databases provided the broad range of metals needed to predict water quality.

6.3 Model Construction The following sections describe the model construction details for the Waste Rock Storage Area, Heap Leach Facility, and Dry Stack Tailings Facility fate and transport modeling.

6.3.1 Waste Rock Storage Area Particle tracking models were constructed for each of the different time steps considered in the infiltration and seepage modeling phase. Information obtained from the particle tracking and the infiltration and seepage modeling were used to construct the geochemical model for each time step.

The geochemical model was constructed as a simple mixing of the starting solutions representing water contacting the material in the Waste Rock Storage Area and then equilibrium with minerals that would be likely to precipitate out of solution. The data used to generate the starting solutions was taken from Synthetic Precipitation Leaching Procedure (SPLP) or

Tetra Tech February 2010 51

Page 59: Infiltration, Seepage, Fate, and Transport Modeling Report

Infiltration, Seepage, Fate and Transport Modeling Rosemont Copper Company

Tetra Tech February 2010 52

Meteoric Water Mobility Procedure (MWMP) testing results created from samples of drill core as documented in the Geochemical Characterization Addendum 1 (Tetra Tech, 2007). The SPLP and MWMP testing methods are designed to represent the leaching of the rock under climatic conditions, thus providing the best analogy for potential seepage. For each rock type represented within the Waste Rock Storage Area, the average results from the SPLP or MWMP testing was used as the starting solution. Table 6.1 presents the starting solutions used to represent each of the rock types that will be present within the Waste Rock Storage Area.

It should be noted that when entering non-detect data for analysis, there are three (3) approaches that are used. The first approach throws out the non-detect values and performs the analysis using only the actual measured value. This approach biases the results high and was not used. The second approach uses a value of zero (0) for all non-detect values. This approach biases the results low and also was not used. The third and most common approach uses a value set at one-half the value of the method detection limit as the input number for non-detects. This approach was used for inputting data in the model for the starting solutions. For those metals that were not detected in any sample for a particular material type (not part of the rock’s composition), NA is shown in Table 6.1.

Page 60: Infiltration, Seepage, Fate, and Transport Modeling Report

epage, Fate and Transport Modeling Rosemont Copper Company

Tetra Tech February 2010 53

Table 6.1 Model Starting Solutions for the Waste Rock Storage Area Modeling

Parameter Units Abrigo Arkose Andesite Bolsa Colina Earp Epitath Escabrosa Horquilla Concha

and Glance

Martin Overburden

and Tertiary Gravel

Quartz Monzonite Porphyry

pH - 8.22 7.8 7.7 7.0 8.21 7.54 8.43 8.46 8.78 7.42 8.2 7.84 7.41 Sulfate mg/L 3.08 27.7 75.3 6.18 609 10.2 298 2.78 39.4 6.34 4.4 3.54 2.37 Aluminum mg/L 0.163 0.039 NA 0.104 NA 0.077 NA NA NA NA NA 0.62 0.46 Arsenic mg/L 0.008 0.0135 0.0131 NA NA 0.006 0.007 NA 0.0196 0.0052 NA 0.031 0.0082 Barium mg/L 0.005 0.0064 0.021 0.003 0.021 0.006 0.016 0.002 0.0099 0.0029 0.002 0.063 0.0191 Calcium mg/L 5.68 14.5 22.8 2.74 234 6.83 113 5.95 38.4 8.69 5.77 5.29 4.97 Cadmium mg/L NA NA NA 0.002 NA NA NA NA NA NA NA NA NA Chlorine mg/L 0.795 3.46 3.03 0.508 1.85 0.905 0.88 0.83 36 0.88 1.18 1.18 1.43 Copper mg/L NA 0.012 NA 0.068 NA NA NA NA NA NA NA NA 0.031 Fluorine mg/L 0.225 0.834 0.89 0.226 1.11 0.423 1.16 0.423 1.46 0.17 0.257 0.32 0.3 Iron mg/L NA NA NA 0.072 NA NA NA NA NA NA NA 0.333 0.1095 Potassium mg/L 4.16 6.41 14.8 1.59 2.78 2.31 3.88 1.03 6.64 0.83 2.92 2.72 3.59 Magnesium mg/L 0.885 2.86 5.21 0.44 3.83 0.709 4.21 1.28 2.235 0.88 2.07 0.583 0.511 Manganese mg/L NA 0.0037 0.013 0.169 0.004 NA NA NA NA NA NA 0.0064 NA Molybdenum mg/L 0.067 NA NA NA 0.07 0.113 0.025 0.007 NA NA 0.015 NA NA Sodium mg/L 1.5 14.1 14.6 3.64 2.7 4.38 4.23 1.97 13.7 5.29 1.87 8.9 6.17 Nickel mg/L NA NA NA NA NA NA NA NA NA NA NA NA NA Nitrite + Nitrate as N mg/L NA 0.027 0.042 NA NA NA 0.082 NA 0.04 NA NA NA NA

Lead mg/L NA NA 0.0247 NA NA NA NA NA NA NA NA 0.01737 NA Selenium mg/L NA 0.06 0.036 NA NA NA NA NA 0.1 NA NA NA NA Zinc mg/L NA NA NA 0.028 NA NA NA NA NA NA NA 0.01 NA

Notes: 1) NA = Metal is not part of the rock's composition and therefore was not included in the model’s starting solution. Thirteen (13) starting solutions were assumed and mixed as

appropriate based on the above rock types, i.e., Abrigo, Arkose, etc. 2) Scherrer, Pre-Cambrian Granodiorite, and the Undefined rock types were not included in the model starting solutions since they are less than 1% of the total Waste Rock

Storage Area (as shown in Table 6.2). 3) Where non-detect values occurred, ½ the detection level was added as the input parameter.

Infiltration, Se

Page 61: Infiltration, Seepage, Fate, and Transport Modeling Report

Infiltration, Seepage, Fate and Transport Modeling Rosemont Copper Company

These solutions were mixed using the relative proportions of each rock type that will ultimately be placed within the Waste Rock Storage Area. Table 6.2 presents the mixing ratios used to construct the model.

Table 6.2 Model Mixing Portions for Waste Rock Storage Area Modeling

Rock Type Tons of Material Percent of Material

Arkose 546,421,000 44.4% Tertiary Gravel 141,249,000 11.5% Abrigo 113,822,000 9.2% Horquilla 87,050,000 7.1% Glance 81,262,000 6.6% Andesite 49,113,000 4.0% Concha 34,110,000 2.8% Martin 31,655,000 2.6% Earp 29,586,000 2.4% Epitaph 27,176,000 2.2% Escabrosa 22,871,000 1.9% Bolsa 23,694,000 1.9% Colina 16,161,000 1.3% Quartz Monzonite Porphyry 12,953,000 1.1% Scherrer 8,524,000 0.69% Pre-Cambrian Granodiorite 4,204,000 0.34% Undefined 1,223,000 0.10% Overburden 391,000 0.03% Total Waste Rock Materials 1,231,465,000 100%

Each of the solutions was equilibriated with atmospheric concentrations of oxygen and carbon dioxide. This was also used to determine the relative pe values (oxidation reduction potential) associated with each solution. Once each solution was mixed, it was equilibriated with common minerals to allow supersaturated minerals to precipitate out of solution.

6.3.2 Heap Leach Facility The information obtained from the particle tracking and the infiltration and seepage modeling was used to construct the geochemical model for the Heap Leach Facility. The geochemical model was constructed using simple mixing of the starting solutions representing water contacting the spent leach ore. The starting solutions were mixed with a dilute (0.5%) sulfuric acid solution to represent the residual leach solution remaining in the pore spaces of the spent ore material after leaching. The data used to generate the starting solution was taken from the geochemical testing program of leached column material.

Table 6.3 presents the starting solution used to represent each rock type that will be present within the spent ore. As mentioned in Section 6.3.1, one-half the value of the detection level was used as the input number for non-detects. For those metals that were not detected in any sample for a particular material type (not part of the rock’s composition), NA is shown in Table 6.3 and the metal was not included in the starting solution.

Tetra Tech February 2010 54

Page 62: Infiltration, Seepage, Fate, and Transport Modeling Report

Infiltration, Seepage, Fate and Transport Modeling Rosemont Copper Company

Table 6.3 Model Starting Solutions for the Heap Leach Facility Modeling

Parameters Units Arkose Andesite

Quartz Monzonite Porphyry

pH 7.8 3.34 3.65 Sulfate mg/L 27.7 2500 772 Silver mg/L NA 0.017 0.007 Aluminum mg/L 0.039 71.4 14 Arsenic mg/L 0.0135 0.0039 NA Barium mg/L 0.0064 0.0271 0.0422 Beryllium mg/L NA 0.0291 0.0075 Cadmium mg/L NA 0.377 0.0849 Calcium mg/L 14.5 526 172 Chlorine mg/L 3.46 6.97 2.8 Chromium mg/L NA 0.04 0.014 Copper mg/L 0.012 53.1 90.1 Fluorine mg/L 0.834 6.38 1.57 Iron mg/L NA 1.09 0.46 Mercury mg/L NA NA 0.00038 Potassium mg/L 6.41 9.81 3.07 Magnesium mg/L 2.86 187 32 Manganese mg/L 0.0037 31.1 6.78 Molybdenum mg/L NA 0.009 NA Sodium mg/L NA 10.3 6.21 Nickel mg/L NA 0.734 0.141 Nitrite + Nitrate as Nitrogen mg/L 14.1 0.122 0.058 Lead mg/L NA 0.0342 0.0445 Selenium mg/L 0.06 0.13 NA Zinc mg/L 0.06 21.5 4.95

Notes: 1) NA = Metal is not part of the rock's composition and therefore was not included in the model’s

starting solution. 2) Three (3) starting solutions were assumed and mixed as appropriate based on the above rock

types, (i.e., Abrigo, Arkose, Quartz Monozonite Porphyry). 3) Where non-detect values occurred, ½ the detection level was added as the input parameter.

The solutions listed in Table 6.3 were mixed using the relative proportions of each material that will be placed in the Heap Leach Facility. Table 6.4 presents the mixing ratios used to construct the model.

Tetra Tech February 2010 55

Page 63: Infiltration, Seepage, Fate, and Transport Modeling Report

Infiltration, Seepage, Fate and Transport Modeling Rosemont Copper Company

Table 6.4 Model Mixing Portions for the Heap Leach Facility Modeling

Rock Type Tons of Heap Material

Percent of Heap Material

Arkose 33,922,000 57% Quartz Monzonite Porphyry 14,406,000 24% Andesite 11,095,000 19%

Totals 59,423,000 100%

Each of the starting solutions was equilibriated with atmospheric concentrations of oxygen and carbon dioxide. This was also used to determine the relative pe values associated with each solution. In addition to the starting solutions presented in Table 6.3, the geochemical modeling included a dilute sulfuric acid solution to represent the residual leach solution remaining in the spent ore at the end of leaching operations. Once the solution was mixed, it was equilibriated with common minerals to allow supersaturated minerals to precipitate out of solution.

6.3.3 Dry Stack Tailings Facility Tetra Tech constructed the particle tracking model using a similar geometry to the infiltration and seepage model built by AMEC. A series of particles were placed within the tailings and waste rock buttress materials. The particles were placed at ten (10) foot depth increments starting at the surface and continuing to a depth of approximately 200 feet.

The geochemical model was constructed as a simple mixing of the starting solutions representing water contacting the material in the Dry Stack Tailings Facility and then equilibrated with minerals that would be likely to precipitate out of solution. The data used to generate the starting solutions was taken from the SPLP testing results created from samples generated by the metallurgical testing program as documented in the Geochemical Characterization Addendum 1 (Tetra Tech, 2007). The SPLP testing method is designed to represent the leaching of the rock under climatic conditions, thus providing the best analogy for potential seepage.

Four (4) samples (May 2006, February 2007, June 2007, and July 2008) of tailings material have been tested for SPLP to date. However, only three (3) of the samples (February 2007, June 2007, and July 2008) were used to represent a starting solution. The tailings sample tested in May 2006 was only analyzed for a small list of parameters, all of which where not detected in the sample. Therefore, the May 2006 SPLP test results where not used in generating the starting solution. The July 2008 tailings sample was created from a composite of material generated to represent Year 0 through Year 3 of the mine life. The February and June 2007 samples were assumed to be Horquilla in composition. Table 6.5 presents the starting solutions used to represent the material that will be placed in the Dry Stack Tailings Facility.

Tetra Tech February 2010 56

Page 64: Infiltration, Seepage, Fate, and Transport Modeling Report

Infiltration, Seepage, Fate and Transport Modeling Rosemont Copper Company

Table 6.5 Model Starting Solutions for the for the Dry Stack Tailings Facility

Parameter Units February 2007 Sample

June 2007 Sample

July 2008 Sample

(Year 0 to 3 Composite)

pH 8.78 8.78 8.26 Aluminum mg/L ND ND ND Antimony mg/L ND ND ND Arsenic mg/L ND ND ND Barium mg/L ND 0.003 0.02

Beryllium mg/L NM ND ND Cadmium mg/L ND ND ND Calcium mg/L 8.78 13.1 15.6 Chloride mg/L 0.36 0.43 0.55

Chromium mg/L ND ND ND Copper mg/L ND ND ND Fluoride mg/L 1.25 1.29 0.85

Iron mg/L ND ND ND Lead mg/L ND ND ND

Magnesium mg/L 0.23 0.17 0.20 Manganese mg/L ND ND ND

Mercury mg/L ND ND 0.0007 Molybdenum mg/L NM 0.08 0.06

Nickel mg/L NM ND ND Potassium mg/L 0.62 0.86 1.24 Selenium mg/L ND ND ND

Silver mg/L ND ND ND Sodium mg/L 2.57 2.22 4.10 Sulfate mg/L 6.95 20 35

Thallium mg/L NM ND ND Uranium mg/L NM NM ND

Zinc mg/L ND ND ND NO2 + NO3 as N mg/L 0.04 NM NM

Notes: 1) ND = Parameter was not detected during sample testing and therefore was not included in

the model’s starting solution. 2) NM = Parameter not measured

The solutions listed in Table 6.5 were mixed as 15% Years 0-3 (July 2008) and 42.5% each of the two (2) Horquilla samples (February and June 2007). Each of the starting solutions was equilibrated with atmospheric concentrations of oxygen and carbon dioxide, which was also used to determine the relative pe value of each solution. Once the solution was mixed, it was equilibrated with common minerals to allow supersaturated minerals to precipitate out of solution.

Tetra Tech February 2010 57

Page 65: Infiltration, Seepage, Fate, and Transport Modeling Report

Infiltration, Seepage, Fate and Transport Modeling Rosemont Copper Company

6.4 Model Results The results of the fate and transport modeling are:

Particle tracking flow paths; and

The resulting chemistry of the facility leachate (seepage).

6.4.1 Waste Rock Storage Area A series of particles were assigned to the CTRAN/W model (Geo-Slope, 2007), and the model was run for multiple years to simulate the long-term behavior of the materials within the Waste Rock Storage Area. Under the non-ponded scenarios, the average velocities observed through the modeling were in the range of 10-6 feet per hour to 10-9 feet per hour. Using these rates, it would require over 10,000 years for water to travel from the top of the waste rock pile to the subsurface below. However, as discussed in Section 5.8, due to the high evaporation rate, infiltration and seepage modeling showed that water is not expected to flow through the facility, even at these low rates.

Illustration 6.4 presents the results of the particle tracking model for the non-ponded scenario with average climate conditions. The particles were originally placed in the upper 40 feet of the facility model. As shown on Illustration 6.4, the flow path of the particles is up toward the facility surface, and water was removed due to the high evaporation rate.

Illustration 6.4 Results of the Waste Rock Storage Area Particle Tracking Model – without Ponding

Tetra Tech February 2010 58

Page 66: Infiltration, Seepage, Fate, and Transport Modeling Report

Infiltration, Seepage, Fate and Transport Modeling Rosemont Copper Company

Particle tracking was not completed for the ponding scenario. It was assumed that under large storm events seepage could occur from the facility. A geochemical mixing and equilibrium model was completed to determine the resulting quality of the seepage water, the results of which are presented in Table 6.6.

Table 6.6 Waste Rock Storage Area Seepage

Parameter AWQS (mg/L)

Waste Rock Seepage (mg/L)

pH NE 7.73 pe (oxidation potential) NE 12.9 Total Alkalinity (as CaCO3) NE 35.9 Total Dissolved Solids NE 2216 Percent error NE 0.06 Aluminum NE 0.114 Arsenic 0.01* 0.013 Barium 2 0.013 Carbon NE 21.1 Calcium NE 626 Cadmium 0.005 0.0004 Chlorine NE 7.01 Copper NE 0.007 Fluorine NE 1.18 Iron NE 0.001 Potassium NE 7.42 Magnesium NE 3.36 Manganese NE 0.0 Molybdenum NE 0.055 Nitrite + Nitrate as N 10 0.018 Sodium NE 18.9 Oxygen NE 7.43 Lead 0.05 0.003 Sulfur NE 1531 Selenium 0.05 0.036 Zinc NE 0.004

Notes: 1) NE = A numeric AWQS has not been established for the

constituent 2) * The proposed AWQS for arsenic is 0.01 mg/L. The current

AWQS for arsenic is 0.05 mg/L. 3) Bold values are those that exceed the AWQS

The results of the mixing model suggest that if seepage were to develop from the Waste Rock Storage Area that it would generally have constituents below the AWQS. Arsenic was the only constituent that exceeded the AWQS (i.e., the value was just slightly above the proposed AWQS of 0.01 mg/L but below the current standard of 0.05 mg/L). With respect to arsenic, however, groundwater at the site shows the influence of mineralized background geology in several wells. Twelve of the wells and springs sampled at the Project site contain arsenic in concentrations above the estimated value derived from the geochemical mixing and equilibrium

Tetra Tech February 2010 59

Page 67: Infiltration, Seepage, Fate, and Transport Modeling Report

Infiltration, Seepage, Fate and Transport Modeling Rosemont Copper Company

model and above the proposed AWQS (0.011 mg/L to 0.027 mg/L) as documented by Errol L. Montgomery & Associates (M&A) in, “Results of Phase 2 Hydrogeologic Investigations and Monitoring Program Rosemont Project, Pima County, Arizona” (M&A, 2009).

6.4.2 Heap Leach Facility A series of particles were placed in the upper portion of the model to determine the inflows/outflows anticipated once the spent ore was covered by waste rock. Particles were placed in the model regions representing both the waste rock and the spent ore material to determine the depth of influence from evaporation. Illustration 6.5 presents the configuration of the particle tracking model.

Illustration 6.5 Closed Heap Leach Facility Particle Tracking Model Setup

The particle tracking model was run for a one (1) year period based on average climate conditions and flow results from the VADOSE/W (GEO-SLOPE, 2007a) modeling. Illustration 6.6 presents the results of the particle tracking model.

Illustration 6.6 Closed Heap Leach Facility Particle Tracking Results

Tetra Tech February 2010 60

Page 68: Infiltration, Seepage, Fate, and Transport Modeling Report

Infiltration, Seepage, Fate and Transport Modeling Rosemont Copper Company

The particles either moved toward the surface of the closed facility or did not move over the one (1) year period. On average, particles within 40 feet of the surface moved upward. Below this point, the particles did not move.

Based on the flow modeling results, the generation of additional seepage from meteoric water is not anticipated once the waste rock cover is placed. The modeling assumed that a minimum waste rock thickness of 20 feet is placed over the spent ore as determined from a separate analysis (Tetra Tech, 2010c, Appendix F). However, a waste rock thickness of five (5) feet with a one (1) foot thick soil layer was also determined to provide equal protection as a 20 foot waste rock cover.

Seepage (resulting from drain-down and infiltration) and storm runoff from the surface of Heap Leach Facility will be collected in the PLS Pond during the initial two (2) to three (3) year drain-down period. After this period, residual seepage would continue to be collected in the former PLS/Stormwater Pond area. The estimated quality of this residual seepage is provided in Table 6.7. By the end of the drain-down period, the PLS Pond and the Stormwater Pond will be closed per Prescriptive BADCT guidance (ADEQ, 2004) as detailed in Appendix D. After closure, the former ponds may be converted to a passive treatment system as documented in Appendix E.

Two (2) different passive systems were considered. The first was an engineered biological type system. This type of a system would be constructed using a variety of carbon sources (manure, straw, wood chips, etc.) to feed the biological system and limestone to maintain proper alkalinity. Seepage would be routed to Treatment Basin 1 (the former PLS Pond) and allowed to attenuate through the treatment materials. Attenuated solutions would then flow into Treatment Basin 2 (the former Stormwater Pond) for further treatment. Treatment Basin 2 would be filled with crushed limestone.

The second system would only use crushed limestone in both basins. Details of the conceptual treatment systems are provided in Appendix E (Tetra Tech, 2010b). In both cases, the concept calls for the PLS Pond to be lined and the Stormwater Pond to be unlined. Both ponds would first be closed prior to constructing the treatment basins per ADEQ guidelines (Tetra Tech, 2010a, Appendix D).

The resulting water quality of the seepage anticipated from these two (2) treatment methods are presented in Table 6.7.

Tetra Tech February 2010 61

Page 69: Infiltration, Seepage, Fate, and Transport Modeling Report

Infiltration, Seepage, Fate and Transport Modeling Rosemont Copper Company

Table 6.7 Heap Leach Facility Geochemical Model Results

AWQSSeepage Without

Treatment

Seepage Through

Engineered Biological

System

Seepage Through Crushed

Limestone Parameter

milligrams per liter (mg/L) pH NE 3.23 6.24 6.84 Pe NE 17.4 -3.2 13.8 Total Alkalinity (as CaCO3) NE -86.9 1215 241 Total Dissolved Solids NE 970 2185 1207 Percent error NE 2.00 1.96 1.71 Silver NE 0.005 0.005 0.005 Aluminum NE 16.0 1.2 0.6 Arsenic 0.01* 0.008 0.008 0.008 Barium 2 0.015 0.015 0.015 Carbon NE 0.65 1217 153 Calcium NE 149 149 249 Cadmium 0.005 0.087 0.087 0.087 Chlorine NE 3.77 3.76 3.77 Chromium 0.1 0.010 0.010 0.010 Copper NE 30.2 30.2 30.2 Fluorine NE 1.95 1.95 1.95 Iron NE 0.300 0.300 0.003 Potassium NE 5.93 5.93 5.93 Magnesium NE 42.3 42.2 42.3 Manganese NE 0.008 0.008 0.000 Molybdenum NE 0.002 0.002 0.002 Sodium NE 10.9 10.9 10.9 Nickel 0.1 0.163 0.163 0.163 Nitrite + Nitrate as N 10 0.035 0.035 0.035 Oxygen NE 7.47 0.00 7.47 Lead 0.05 0.016 0.016 0.016 Sulfur (Sulfate + Sulfide) NE 704 235 704 Selenium 0.05 0.056 0.056 0.056 Zinc NE 4.97 4.97 4.97 Notes:

1) NE = A numeric AWQS has not been established for the constituent. 2) * The proposed AWQS for arsenic is 0.01 mg/L. The current AWQS for arsenic is 0.05 mg/L. 3) Bold values are those that exceed the AWQS

The geochemical modeling results were compared to the AWQS. Seepage from the heap is expected to be of low pH and have a few constituents (cadmium, nickel, and selenium) that are at or slightly above the AWQS. Residual low pH leach solution is expected to remain in the pore spaces of the spent ore, resulting in acidic drain-down seepage.

Tetra Tech February 2010 62

Page 70: Infiltration, Seepage, Fate, and Transport Modeling Report

Infiltration, Seepage, Fate and Transport Modeling Rosemont Copper Company

Based on the results of the geochemical models, the two (2) treatment options improved the water quality of the seepage. Both options increased the pH of the seepage water due to the alkalinity sources within the treatment systems. In addition to an increase in pH, the engineered biological system also significantly reduced the quantity of sulfate in the seepage water. Although not shown in the model results, this type of treatment will also tend to enhance the removal of metals from the system through precipitation. Additionally, biological systems are more effective under anoxic (oxygen deficient) conditions.

Although the crushed limestone does not have an impact on the sulfate concentration, these types of systems also effectively remove other metals through combined pH adjustment and precipitation of metal oxy/hydroxides onto the limestone surface. The precipitation of metals, however, can cause a crushed limestone system to lose its effectiveness over time by blocking access to the alkalinity.

6.4.3 Dry Stack Tailings Facility Based on the modeling presented in the Final Design Report (AMEC, 2009) (Appendix A), the Dry Stack Tailings Facility is expected to discharge until drainage of the pore water is compete. Therefore, fate and transport modeling was completed.

The particle tracking model was run for a period of 20 years to simulate the behavior of the materials within the Dry Stack Tailings Facility. The average velocities observed through the modeling were approximately 10-6 feet per hour. Using these rates, it would require over 10,000 years for water to travel from the top of the Dry Stack Tailings Facility to the subsurface below. However, the infiltration and seepage modeling showed that no seepage is expected to occur from the facility once drainage of the pore water is complete. Illustration 6.7 presents the results of the particle tracking model.

Illustration 6.7 Results of Dry Stack Tailings Facility Particle Tracking Model

The particles were placed at ten (10) foot intervals in the upper 200 feet of the facility model within the tailings and waste rock buttress materials. As shown in Illustration 6.7, the flow path of the particles placed in the tailings material is up toward the top surface, with water removed due to the high evaporation rate. The line of particles placed in the waste rock buttress were also influenced by the high evaporation rate, but flowed in more of a downward path. The rates

Tetra Tech February 2010 63

Page 71: Infiltration, Seepage, Fate, and Transport Modeling Report

Infiltration, Seepage, Fate and Transport Modeling Rosemont Copper Company

of travel are very small and the particles placed at a depth of greater than 150 feet did not move over the 20 year period.

To determine the quality of the seepage from the facility, a geochemical mixing model was completed. The results of the geochemical mixing and equilibrium model for the Dry Stack Tailings Facility are presented in Table 6.8.

Table 6.8 Dry Stack Tailings Facility Seepage

Parameter AWQS (mg/L)

Tailings Seepage (mg/L)

pH NE 7.61 Pe NE 13.0 Total Alkalinity (as CaCO3) NE 20.6 Total Dissolved Solids NE 57 Percent error NE -0.04 Barium 2.00 0.004 Carbon NE 13.1 Calcium NE 13.5 Chlorine NE 0.418 Fluorine NE 1.21 Potassium NE 0.815 Magnesium NE 0.200 Molybdenum NE 0.043 Sodium NE 2.20 Nitrite + Nitrate as N NE 0.017 Sulfur NE 25.1

NE = A numeric AWQS has not been established for the constituent.

The results of the mixing model suggest that any potential seepage from the Dry Stack Tailings Facility indicated that none of the measured constituents exceeded AWQS. This result has been supported by the humidity cell kinetic testing that has been completed as part of the geochemical characterization of the site.

Tetra Tech February 2010 64

Page 72: Infiltration, Seepage, Fate, and Transport Modeling Report

Infiltration, Seepage, Fate and Transport Modeling Rosemont Copper Company

7.0 CONCLUSIONS

The following sections summarize the conclusions of the infiltration, seepage, fate and transport modeling.

7.1 Infiltration and Seepage Modeling Conclusions Based on the results of the infiltration and seepage modeling, the Waste Rock Storage Area, Heap Leach Facility, and Dry Stack Tailings Facility are not expected to impact the regional groundwater system. Under average climate conditions, the water balance of the facilities is negative, with evaporation being the largest component of the system. Under these conditions seepage does not develop.

For the Dry Stack Tailings Facility, however, flow from the facility is anticipated due to a reduction of the pore water within the tailings (reduction of gravimetric moisture content to the field capacity). The flow associated with the reduction in moisture content is anticipated to peak at a rate of 8.4 gallons per minute during Year 18 of the mine life and reaches zero (0) about 500 years following closure.

The heap will drain-down into the open PLS Pond for a period of approximately two (2) to three (3) years following the cessation of leaching. At the end of this period, the drain-down seepage rate is anticipated to be less than ten (10) gpm and the PLS Pond and Stormwater Pond will be closed per Prescriptive BADCT guidance (ADEQ, 2004) as detailed in Appendix D. After closure, the former ponds may be converted to a passive treatment system as documented in Appendix E. Any residual drain-down of the spent ore will pass through the treatment system before being discharged. A minimum waste rock thickness of 20 feet is anticipated to be placed over the spent ore and ponds.

As indicated above, the high evaporation rate of the area limits infiltration and prevents the development of seepage from the Waste Rock Storage Area under average climate conditions. However, ponds may be constructed on the facility surface for stormwater runoff control. Under large storm events, seepage may develop.

7.2 Fate and Transport Modeling Conclusions The results of the fate and transport modeling further support the conclusion that these facilities are not expected to impact the regional groundwater system.

For the Dry Stack Tailings Facility, the results of geochemical modeling were compared to the AWQS and none of the constituents exceeded the standards.

For the Heap Leach Facility, drain-down seepage from the heap is expected to be of low pH and have a few constituents (cadmium, nickel, and selenium) that are at or slightly above the AWQS. Residual low pH leach solution is expected to remain in the pore spaces of the spent ore, thus resulting in low pH drain-down seepage. Treatment, however, is expected to raise the pH of the seepage and possibly attenuate some of the metals.

For the Waste Rock Storage Area, modeling results showed an arsenic concentration of 0.012 mg/L, which is slightly above the proposed AWQS of 0.01 mg/L, but below the current standard of 0.05 mg/L. With respect to arsenic, groundwater at the site shows the influence of mineralized background geology in several wells. Twelve of the wells and springs sampled at the Project site contain arsenic in concentrations above the proposed AWQS (0.011 mg/L to 0.027 mg/L).

Tetra Tech February 2010 65

Page 73: Infiltration, Seepage, Fate, and Transport Modeling Report

Infiltration, Seepage, Fate and Transport Modeling Rosemont Copper Company

7.3 Recommendations The current construction and closure plans associated with the Waste Rock Storage Area, Heap Leach Facility, and Dry Stack Tailings Facility are expected to result in systems that are protective of the environment. If significant changes to the mine plan are necessary, it is recommended that future consideration be made to those changes in terms of the analyses presented herein. It is also recommended that the on-site meteorological station continue to collect data. The data used in the modeling presented herein are from nearby locations, with correlation back to the on-site meteorological station. Should modeling need to be re-addressed in the future, the site specific data should be used as appropriate.

Tetra Tech is preparing a site-wide particle tracking model (fate and transport) intended to quantify any impact on the regional groundwater system from the Waste Rock Storage Area, Heap Leach Facility, and Dry Stack Tailings Facility. Based on the results of the seepage, infiltration and fate and transport modeling performed on these facilities, however, impact to the regional system is not expected.

Tetra Tech February 2010 66

Page 74: Infiltration, Seepage, Fate, and Transport Modeling Report

Infiltration, Seepage, Fate and Transport Modeling Rosemont Copper Company

8.0 REFERENCES

AMEC, (2009). Dry Stack Tailings Storage Facility, Final Design Report, Rosemont Copper Company.

Arizona Department of Environmental Quality (ADEQ), (2004). Arizona Mining Best Available Demonstrated Control Technology (BADCT) Guidance Manual: Aquifer Protection Program. Publication # TB-04-01.

Ball, J.W. and Nordstrom, D.K., (1991). WATEQ4F – User’s Manual with Revised Thermodynamic Database and Test Cases for Calculating Speciation of Major, Trace, and Redox Elements in Natural Water. USGS Open-File Report 90-129, 185 p.

Brady, Nyle C., (1990). The Nature and Properties of Soils. Macmillan Publishing Company: New York, New York.

Errol L. Montgomery & Associates (M&A), (2009). Results of Phase 2 Hydrogeologic Investigations and Monitoring Program Rosemont Project, Pima County, Arizona. Prepared for Rosemont Copper Company. Report Dated February 26, 2009.

GEO-SLOPE International, Ltd. (GEO-SLOPE), (2007a). Vadose Zone Modeling with VADOSE/W 2007: An Engineering Methodology. GEO-SLOPE International Ltd.: Calgary, Alberta, Canada.

GEO-SLOPE, (2007b). Contaminant Modeling with CTRAN/W 2007: An Engineering Methodology. GEO-SLOPE International Ltd.: Calgary, Alberta, Canada.

Menges, C. M., and Peartree, P. A., (1989). Late Cenozoic Tectonism in Arizona and Its Impact on Regional Landscape Evolution; in Geologic Evolution of Arizona: J. P. Jenny and S. J. Reynolds (eds.), Arizona Geological Society Digest, n. 17, p. 649-680.

Parkhurst, David L. and Appelo, C.A.J., (1999) User’s Guide to PHREEQC (Version 2) – A Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations. USGS WRIR 99-4259.

Soilvision Systems, (2009). SVFlux: Saturated/Unsaturated Element 1D/2D/3D Seepage Modeling. Soilvision Systems, Ltd.: Saskatoon, Saskatchewan, Canada.

Tetra Tech, (2007). Geochemical Characterization, Addendum 1. Prepared for Rosemont Copper Company. Report Dated November 2007.

Tetra Tech, (2009a) Aquifer Protection Permit Application. Prepared for Rosemont Copper Company. Report Dated February 2009.

Tetra Tech, Carrasco, J., (2009b) Rosemont Copper Design Storm and Precipitation, Memorandum to D. Roth, January 5, 2009.

Tetra Tech, (2009c) Geotechnical Addendum. Prepared for Rosemont Copper Company. Report Dated February 2009.

Tetra Tech February 2010 67

Page 75: Infiltration, Seepage, Fate, and Transport Modeling Report

Infiltration, Seepage, Fate and Transport Modeling Rosemont Copper Company

Tetra Tech, Thornbrue, M., (2010a). Prescriptive BADCT Closure for the Heap Leach Facility Ponds. Technical Memorandum to K. Arnold. Dated January 14, 2010.

Tetra Tech, Hudson, A., (2010b). Heap Leach Facility Infiltration, Seepage, and Fate and Transport Modeling/Treatment Options, Technical Memorandum to K. Arnold. Dated January 14, 2010.

Tetra Tech, Hudson, A., (2010c). Minimum Thickness Analysis for Waste Rock Placed Over Spent Heap Leach Ore Material, Technical Memorandum to K. Arnold. Dated January 14, 2010.

University of Arizona, (1977). An environmental inventory of the Rosemont area in southern Arizona, Volume I: The present environment: Edited by Davis, R., and Callahan, J.R.

Western Regional Climate Center (2009). http://www.wrcc.dri.edu/summary/Climsmaz.html Arizona. Visited January 7, 2009.

Zhu, Chen and Anderson, Greg, (2002). Environmental Applications of Geochemical Modeling. Cambridge University Press: Cambridge, United Kingdom.

Tetra Tech February 2010 68

Page 76: Infiltration, Seepage, Fate, and Transport Modeling Report

APPENDIX A DRY STACK TAILINGS STORAGE FACILITY FINAL

DESIGN REPORT SECTION 6.0 (AMEC, 2009)

Page 77: Infiltration, Seepage, Fate, and Transport Modeling Report

Rosemont Copper Company Dry Stack Tailings Storage Facility Final Design Report April 15, 2009

S:\PROJECTS\1191 ROSEMONT COPPER TSF\H2 - DESIGN\FINAL DESIGN REPORT\REPORT BODY\ROSEMONT FINAL DESIGN REPORT REV 0 (DTW).DOC 21

6.0 Facility Seepage Analysis

Seepage analyses were performed to estimate seepage rates, assess distribution of pore water pressure, and evaluate the degree of saturation within the dry stack tailings over the life of the facility. The analyses utilized the finite element method (FEM) based computer program SVFlux Version 2.0.13 developed by Soil Vision Systems, Ltd. and part of the SVOffice 2009 Geotechnical Modeling suite. This program can model 1, 2, or 3 dimensional analyses simulating saturated / unsaturated flow through porous media, such as soil or fractured bedrock, and the associated pressure distribution. This program can model either steady state or transient conditions given problem specific geometry and boundary conditions including climatic environmental factors. Once the problem geometry has been established, SVFlux automatically generates and refines the finite element mesh by identifying model nonlinearity through its partial differential equation solver, FlexPDE.

6.1 Methodology

Tailings within the Dry Stack TSF are anticipated to be deposited in an unsaturated condition, at an average moisture content of 18 percent (by dry weight) or less. Based on pilot test data, as-placed moisture content is readily achievable from the filtration process at or near their optimum moisture content (as defined from Standard Proctor tests, ASTM D 698). The unsaturated properties of the dry stack tailings are discussed in detail later in this section.

Meteoric influences are included in the model as precipitation and evaporation on the surface of the deposited dry stack tailings. It is important to note that meteoric water (delivered as precipitation) will have a small recharging effect within the top several feet of the dry stack tailings, but due to the semi-arid climate at the site, it is not likely to have a significant influence on the overall moisture content and seepage through the tailings mass. Overall, evaporation generally produces a cumulative negative flux across the surface of the tailings.

The seepage analysis methodology consisted of the following: (1) evaluating one-dimensional models representing a column of tailings with progressive stacking through time, (2) developing isopach maps representing average depths of tailings for each lift and phase, (3) assessing anticipated facility drainage based upon modeled seepage rates, and (4) conducting two-dimensional analyses to verify the results of the one-dimensional seepage analysis and to assess the lateral pore water pressure and water content distribution within the tailings.

One dimensional models were constructed for the proposed facility and simulated climatic surface flux (or average daily climatic conditions applied to the surface of the model) and the as-placed tailings with a moisture content of 18 percent (by dry weight). The tailings column models were incrementally evaluated using 50-foot lifts to the full height of 550 feet to simulate stacking of tailings over time. Each successive transient model incorporated the pore water distributions from the previous model with the addition of a new 50-foot lift of tailings, thereby conserving mass. The climatic surface flux was applied to each lift increment for the duration of expected exposure varying between several months to several years (depending on the stacking plan). Hydraulic conductivity versus depth relationships (see discussion below), were developed to evaluate pore water response and movement under increasing confining pressures (self weight).

Page 78: Infiltration, Seepage, Fate, and Transport Modeling Report

Rosemont Copper Company Dry Stack Tailings Storage Facility Final Design Report April 15, 2009

S:\PROJECTS\1191 ROSEMONT COPPER TSF\H2 - DESIGN\FINAL DESIGN REPORT\REPORT BODY\ROSEMONT FINAL DESIGN REPORT REV 0 (DTW).DOC 22

Two-dimensional models were developed at the maximum facility section and were conservatively modeled as having initial gravimetric moisture content equal to the as-placed content of 18 percent (by dry weight) throughout the entire section (this is conservative as it provides the maximum flux by gravity drainage). The transient analyses were then conducted under climatic flux to evaluate pore water response and saturation levels within the facility over time.

6.2 Model Development

The one-dimensional models consist of a unit area model with depths varying between 50 and 550 feet, at 50-foot intervals, representing the tailings stacked at different depths. The two-dimensional model consists of a single cross section of the ultimate Dry Stack TSF, the location shown on Figure 6.1, which is considered to be the most critical section representing the highest toe to crest slope (thickest section of tailings). The section geometry was defined based upon existing topography and the proposed facility configuration as shown on Figure 6.2.

The cross section of the proposed Dry Stack TSF for the seepage analysis has crest and toe elevations of approximately 5,250 feet and 4,620, respectively. The facility will have an overall slope of approximately 3.5:1 (horizontal to vertical) and will be constructed in 50-foot lifts. The shell of the facility is comprised of a rockfill buttress with 3:1 exterior slopes, 1.5:1 interior slopes, and intermediate bench widths of 25 feet. The Rock Buttress lifts will have a typical crest width of 150 feet and will be constructed in an upstream method. The tailings underlying the footprint of the rock buttresses will be constructed in 5-foot lifts and will be compacted to 90 percent of a Standard Proctor density. From the downstream toe, the natural ground surface underlying the facility grades uphill at an approximate slope of 4 percent.

6.3 Material Properties

Based upon index testing completed by AMEC as shown in Table 3.2, the dry stack tailings are considered to be relatively homogeneous in nature. This is an important observation given the different ore types that will be encountered through the life of mine. Overall, the tailings can be characterized as a silt with sand (ML) per the USCS, with an average maximum particle size of 0.419 millimeters and average 72.6 percent fines (passing the No. 200 sieve). On average, the tailings have an average liquid limit (LL) of 21, an average plastic limit (PL) of 20, and a plastic index (PI) of approximately 1.

As reported in Section 3.6, saturated hydraulic conductivity tests were conducted on representative samples of tailings material. The tests were conducted at several applied normal stresses to assess the reduction in the hydraulic conductivity with depth. As tailings are added to the Dry Stack TSF, the normal stresses within the lower portions of the tailings will increase due to self-weight. The increased normal stress in turn affects the hydraulic conductivity (increased overburden pressure results in lower void ratio and porosity, resulting in lower values of hydraulic conductivity). Given the nature of the filtering process, the tailings are anticipated to be relatively homogeneous without layered heterogeneity from stacking operations, so isotropic flow conditions (similar hydraulic properties in both the vertical and horizontal planes) are assumed reasonable. The results from the hydraulic conductivity tests are presented in terms of depth of burial on Figure 6.3. The results indicate that the tailings are anticipated to have a hydraulic conductivity of approximately 4 x 10-3 cm/sec near the top of the dry stack tailings. At the bottom of the Dry Stack TSF, the tailings hydraulic conductivity reduces to 6 x 10-7 cm/sec. In fact, as shown on Figure

Page 79: Infiltration, Seepage, Fate, and Transport Modeling Report

Rosemont Copper Company Dry Stack Tailings Storage Facility Final Design Report April 15, 2009

S:\PROJECTS\1191 ROSEMONT COPPER TSF\H2 - DESIGN\FINAL DESIGN REPORT\REPORT BODY\ROSEMONT FINAL DESIGN REPORT REV 0 (DTW).DOC 23

6.3, the hydraulic conductivity of the tailings reduces significantly between approximately 20 and 50 feet below the dry stack tailings surface. This is an important observation, as it indicates that seepage rate from the Dry Stack TSF will be controlled by the lower half (or more) of the tailings.

To assess the behavior of the tailings under unsaturated flow conditions, a series of moisture retention laboratory tests were conducted by Daniel B. Stephens and Associates, Inc. (DBS) on representative samples of the tailings including Colina and MSDR-1. These tests were used to develop a soil water characteristic curve (SWCC) for the tailings materials. The SWCC was developed using the knowledge database within the computer program SVFlux. One SWCC was developed to represent the Colina and MSDR-1 tailings, due to the similarities in gradation, hydraulic conductivity, and moisture-retention characteristics of the materials. The SWCC defines the soil’s ability to store and release moisture. In its simplest form, it is a graphical representation showing the mathematical relationship between the matric suction of a soil (defined as the difference between the pore air pressure, ua, and the pore water pressure, uw) and its moisture content (either gravimetric or volumetric) or degree of saturation (Fredlund and Rahardjo, 1993). The Fredlund and Xing (1994) formulation was adopted for fitting the SWCC for the analysis and is defined below:

⎟⎟⎟⎟⎟⎟⎟

⎜⎜⎜⎜⎜⎜⎜

⎥⎥

⎢⎢

⎥⎥

⎢⎢

⎟⎟⎠

⎞⎜⎜⎝

⎛ Ψ+⎟

⎟⎟⎟⎟

⎜⎜⎜⎜⎜

⎟⎟⎠

⎞⎜⎜⎝

⎛+

⎟⎟⎠

⎞⎜⎜⎝

⎛ Ψ−

−=f

fmn

fr

rsw

aeh

hWW

ln

1101ln

1ln1

6

Where wW = gravimetric water content at any soil suction

sW = saturated gravimetric water content

fa = material parameter which is primarily a function of the air entry value

fn = material parameter which is primarily a function of the rate of pore water migration after

exceeding the air entry value

fm = material parameter which is primarily a function of residual water content

rh = suction corresponding to the residual water content

ψ = soil suction

Page 80: Infiltration, Seepage, Fate, and Transport Modeling Report

Rosemont Copper Company Dry Stack Tailings Storage Facility Final Design Report April 15, 2009

S:\PROJECTS\1191 ROSEMONT COPPER TSF\H2 - DESIGN\FINAL DESIGN REPORT\REPORT BODY\ROSEMONT FINAL DESIGN REPORT REV 0 (DTW).DOC 24

The air entry value, identified above, refers to the matric suction value needed to cause water to be drained from the largest pore space within a soil (Brooks and Corey, 1966) and the residual moisture content (or field capacity) corresponds to the highest value of matric suction that produces no additional water expulsion (seepage). Based on testing data, the saturated moisture content of the tailings is approximately 25 percent (by dry weight) and the field capacity moisture content is approximately 11 percent (by dry weight). As indicated previously, the filtered tailings will be placed within the Dry Stack TSF at a moisture content of approximately 18 percent or less. Therefore, the tailings will be placed at approximately 7 percent above the residual moisture content and approximately 7 percent below saturation. Based on these numbers, it is clear the tailings will be placed in the Dry Stack TSF as unsaturated material. It is also clear, that a limited amount seepage will be generated from the dry stack tailings as the material moisture content drains down from the as-placed value (18 percent) to the field capacity (11 percent). Some of this moisture will be lost to evaporation.

SVFlux utilizes a nonlinear least-squares regression algorithm to estimate the SWCC variables for the Fredlund and Xing Fit (Soilvision, 2008). The SWCC fit to the laboratory data for the tailing samples and the Rock Buttress is shown on Figure 6.4. Note that typical values were selected for the rockfill comprising the shell of the facility.

The unsaturated permeability was estimated by DBS and evaluated with the Fredlund and Xing method so that the relationship between hydraulic conductivity (saturated and unsaturated) can be correlated to soil suction. Figure 6.5 depicts the relationship between the relative hydraulic conductivity and soil suction, where the relative conductivity is defined as the unsaturated hydraulic conductivity at a particular soil suction divided by the saturated hydraulic conductivity. The above relative conductivity versus soil suction and the saturated hydraulic conductivity versus depth relationship provide the basis to describe the seepage conditions within the Dry Stack TSF.

6.4 Boundary Conditions

The boundary conditions are the driving force behind any finite element based analysis, such as a difference in total hydraulic head or rate of flow across a boundary. The one-dimensional models had two boundary conditions, one at each end of the column, while no flow boundaries were assumed in the lateral direction. The top boundary condition was a climatic flux, described more fully below, and the bottom boundary condition was assigned free drainage.

The two-dimensional model boundary conditions include no flow conditions on the right hand side of the model, climatic flux across the top surface and slope of the facility, and free drainage boundary conditions along the base of the model as shown on Figure 6.6.

The climatic flux is comprised of several environmental factors including precipitation, pan evaporation, relative humidity, and temperature. Each of these can be entered as either a constant value, daily value based upon historic data, or equation to simulate shifts in environmental conditions between day and night. Precipitation events can be further reduced to finite duration storms through a global correction instead of a constant flux of precipitation over the duration of the transient analysis. The duration for which a transient model is assessed within the analysis depends on the length of time a column of

Page 81: Infiltration, Seepage, Fate, and Transport Modeling Report

Rosemont Copper Company Dry Stack Tailings Storage Facility Final Design Report April 15, 2009

S:\PROJECTS\1191 ROSEMONT COPPER TSF\H2 - DESIGN\FINAL DESIGN REPORT\REPORT BODY\ROSEMONT FINAL DESIGN REPORT REV 0 (DTW).DOC 25

material is exposed to climatic effects prior to the placement of the next lift of tailings. As the lifts increase laterally, the longer time duration individual lifts are exposed to both environmental climatic influence and downward migration of pore water due to soil draining down to residual moisture content. Runoff was enabled for climatic boundary conditions of the tailings (no ponding of water) as methods will be employed to divert meteoric water off the facility by grading and / or constructing diversion ditches.

To provide a conservative estimate of surface climatic flux, the greatest average annual precipitation of 22.2 inches was selected from the Santa Rita Experimental Range weather station data, and the lowest average annual pan evaporation of 71.5 inches was selected from the Rosemont Projected values provided in the Tetra Tech memo entitled ‘Rosemont Copper Project Design Storm and Precipitation Data/Design Criteria’, dated April 7, 2009. The precipitation and evaporation were applied as actual average daily values over the desired timeframe, not a constant value for each day. For example, lift 1 (50 feet thick) of phase I was subjected to climatic flux for a duration of 62 days, or, this could relate to production year 1 from July 1st to August 31st. This duration represents the amount of time to construct lift 1 and then begin constructing lift 2 of phase I. The next model, lift 2 of phase I (100 feet thick), requires 91 days to construct and represents production year 1 from September 1st to November 31st. Each subsequent model is subjected to climatic flux for the duration of time required for completion and beginning the next lift above.

6.5 Results and Conclusions

The results of the seepage analyses are summarized on Figures 6.7 through 6.10. There are several observations that can be made from the results of the seepage analyses:

• Figure 6.7 shows that as the Dry Stack TSF expands over time, the estimated seepage rate increases to a peak value of approximately 8.4 gpm, at production year 18. The seepage model results show that the seepage from the dry stack tailings is due solely to drainage of pore water as the tailings gravimetric moisture content reduces from the as-placed value of 18 percent (by dry weight) to the field capacity value of 11 percent (by dry weight). This observation indicates that meteoric water (precipitation) influences are negligible to the overall seepage from the Dry Stack TSF. Therefore, there is a finite amount of seepage that can occur from the facility;

• Figure 6.8 presents the long-term, estimated seepage from the facility. As discussed in the previous point, the peak seepage rate of 8.4 gpm, is followed by a gradual decrease from the facility as the moisture content of the tailings is gradually reduced over time;

• Figure 6.9 presents a typical profile of moisture content with depth over time. This figure provides a clear illustration of the lack recharge to the dry stack tailings from precipitation. As shown, the upper 8 feet of the dry stack tailings performs as a storage-release unit, whereby moisture lost to evaporation is replenished by precipitation. Evaporation losses are evident by the reduction in moisture content at the surface of the dry stack tailings. Recharge due to precipitation events are evident by the moisture front(s) emanating from the dry stack tailings surface. It is important to note that the moisture front does not extend below 8 feet, indicating the limit of the storage-release unit.

Page 82: Infiltration, Seepage, Fate, and Transport Modeling Report

Rosemont Copper Company Dry Stack Tailings Storage Facility Final Design Report April 15, 2009

S:\PROJECTS\1191 ROSEMONT COPPER TSF\H2 - DESIGN\FINAL DESIGN REPORT\REPORT BODY\ROSEMONT FINAL DESIGN REPORT REV 0 (DTW).DOC 26

• One of the most important observations from the seepage analyses is illustrated in the seepage profile for the Dry Stack TSF. The seepage profile indicates that under the scheduled stacking plan and properties of the tailings, saturated conditions within the Dry Stack TSF are not anticipated to develop and an overall negative (unsaturared) pore pressure distribution is expected. As shown on Figure 6.10, the water content distribution (by dry weight) for the one and two-dimensional models at the greatest thickness (550 feet) is between 12 and 22 percent, which is 13 to 3 percent, respectively, below the saturated moisture content of 25 percent. The close agreement between the one- and two-dimensional models also indicate that one-dimensional seepage modeling is appropriately coupled with an isopach representation of the facility for any production year to determine cumulative seepage. Furthermore, it is important to note the distribution of moisture contents within the facility. Lower moisture contents (2 to 4 percent) are present along the perimeter (rockfill) and surface of the facility and higher moisture contents towards the center and bottom of the facility. This reflects long term drainage as the tailings moisture content reduces from the as-placed moisture content of 18 percent (by dry weight) to the field capacity of approximately 11 percent (by dry weight). The model results show that recharge to the tailings from precipitation is negligible to non-existent.

The seepage rate from the Dry Stack TSF was evaluated by assessing the anticipated seepage for one-dimensional models representing each lift increment of the tailings cumulatively. The seepage from each one-dimensional model was then applied to an isopach map developed for each year of tailings deposition. In other words, a map is developed of the facility for each year of production in which the average depth of tailings, in 50-foot increments, is shown across the footprint of the facility. For example, the seepage from the one-dimensional model representing lift 1 (50 feet thick) is applied to the area within the isopach map with an average depth of 50 feet. The seepage from the next one-dimensional model representing lift 2 (100-feet thick) is applied to the area within the isopach map with an average depth of 100 feet and so on for each successive lift of tailings. The seepage for each average depth is then added cumulatively for the footprint of the facility, indicating the anticipated seepage from the facility for each year of production.

Although the maximum tailings moisture at placement are not anticipated to exceed 18 percent, higher moisture content would not significantly affect the peak seepage rates from the facility as the hydraulic conductivity of the material is the controlling factor in pore water response. Tailings reporting to the Dry Stack TSF in excess of 18 percent moisture content should be conveyed towards the center of the facility and spread out to promote evaporation and moisture reduction.

Page 83: Infiltration, Seepage, Fate, and Transport Modeling Report
Page 84: Infiltration, Seepage, Fate, and Transport Modeling Report
Page 85: Infiltration, Seepage, Fate, and Transport Modeling Report
Page 86: Infiltration, Seepage, Fate, and Transport Modeling Report
Page 87: Infiltration, Seepage, Fate, and Transport Modeling Report
Page 88: Infiltration, Seepage, Fate, and Transport Modeling Report
Page 89: Infiltration, Seepage, Fate, and Transport Modeling Report
Page 90: Infiltration, Seepage, Fate, and Transport Modeling Report
Page 91: Infiltration, Seepage, Fate, and Transport Modeling Report
Page 92: Infiltration, Seepage, Fate, and Transport Modeling Report
Page 93: Infiltration, Seepage, Fate, and Transport Modeling Report

APPENDIX B DESIGN STORM AND PRECIPITATION CRITERIA

Page 94: Infiltration, Seepage, Fate, and Transport Modeling Report

Tetra Tech 3031 West Ina Road, Tucson, AZ 85741

Tel 520.297.7723 Fax 520.297.7724 www.tetratech.com

Technical Memorandum

To: Daniel Roth – M3

Cc: Jamie Joggerst – Tt

From: Joel Carrasco

Doc #: 057/09-320807-5.3

Subject: Rosemont Copper Project Design Storm and Precipitation Data/Design Criteria

Date: April 7, 2009

1.0 Introduction This memo was developed in order to solidify various design criteria for use at the Rosemont Copper Project (Project) site by various consulting groups. The goal of this analysis was to review information generated from various weather stations and select appropriate precipitation and pan evaporation data applicable to the Project site. Baseline information provided in Tetra Tech’s Stormwater Management Plan (2007) was supplemented with updated weather station information. Hydraulic design parameters needed to update the site-wide stormwater management plan is required as a supplement to this memorandum.

2.0 Precipitation and Pan Evaporation Meteorological records for the immediate vicinity of the Rosemont Project site are of limited use for selecting appropriate precipitation and pan evaporation data. A meteorological station was installed at the Rosemont site in early-2006 to record precipitation. Pan evaporation was added to this station in mid-2008. The station is located at the center of the proposed open pit at an elevation of 5,350 feet above mean sea level (amsl). Weather stations located within an approximate 30 mile radius of the Project site are shown on Figure 1 and listed in Table 2.1.

Page 95: Infiltration, Seepage, Fate, and Transport Modeling Report

2

Figure 1: Meteorology Station Locations

30.8 mi

4.9 mi

10.8 mi

33.8 mi

23.3 mi

Page 96: Infiltration, Seepage, Fate, and Transport Modeling Report

3

Table 2.1: Station Summary

Name ID No. Latitude Longitude Elevation

(feet amsl) Period of Record

Canelo 1 NW 021231 310 33’ 1100 32’ 5,010 1910 – 2007

Helvetia 023981 310 52’ 1100 47’ 4,300 1916 – 1950

Santa Rita 027593 310 46’ 1100 51’ 4,300 1950 – 2005

Tucson U of A 028815 320 15’ 1100 57’ 2,440 1894 – 2007

Nogales 6 N 025924 310 25’ 1100 57’ 3,560 1952 – 2007 Note: The on-site Rosemont weather station is at 5,350’ amsl.

The Santa Rita station has inconsistent readings from 2006-2007; therefore these years were not used in any analysis.

Canelo is located about 23 miles to the southeast of the Project site at an elevation of 5,010 feet amsl. Helvetia is located 5 miles to the west at an elevation of 4,300 feet amsl. The Santa Rita Experimental Range, located about 11 miles to the southwest of the site, is at 4,300 feet amsl. The Tucson U of A station is located about 31 miles to the north at an elevation of 2,440 feet amsl, and Nogales 6 N, located about 34 miles southeast, is at an elevation of 3,560 feet amsl.

The annual average precipitation for the Rosemont area, estimated by Sellers (University of Arizona, 1977) for the period 1931 through 1970, was approximately 16 inches. Based on records available from the Western Regional Climate Center (WRCC, 2006), the average annual precipitation for Helvetia for the period 1916 through 1950 was 19.72 inches.

For comparison with more recent information, the average annual precipitation recorded at the Santa Rita Experimental Range station for the period from 1971 through 2005 was 22.19 inches. Average annual precipitation for Canelo for the period 1971 through 2007 was 18.10 inches. Average annual precipitation for the Tucson U of A station for the period from 1894 through 2007 was 11.13 inches, and the average annual precipitation for Nogales 6 N for the period from 1952 through 2007 was 17.37 inches (WRCC, 2006).

Precipitation and evaporation summary data for the five (5) off-site stations shown in Figure 1 are summarized in Tables 2.2 and 2.3, respectively.

Page 97: Infiltration, Seepage, Fate, and Transport Modeling Report

4

Table 2.2: Average Monthly Total Precipitation Summary (in)

Month

Tucson U of A

(1894-2007) Nogales

(1952-2007) Canelo 1 NW

(1910-2007) Helvetia

(1916-1950)

Santa Rita Experimental

Range (1950-2005)

JAN 0.88 1.10 1.22 1.58 1.63

FEB 0.83 0.85 1.17 1.72 1.46

MAR 0.76 0.90 0.93 1.14 1.48

APR 0.39 0.39 0.45 0.52 0.69

MAY 0.18 0.22 0.20 0.28 0.24

JUNE 0.26 0.47 0.72 0.67 0.62

JULY 2.06 4.34 4.41 4.05 4.87

AUG 2.15 4.13 4.04 4.15 4.32

SEPT 1.15 1.55 1.70 2.19 2.15

OCT 0.74 1.33 1.03 0.68 1.62

NOV 0.77 0.66 0.84 1.22 1.15

DEC 0.96 1.43 1.39 1.52 1.96

TOTAL 11.13 17.37 18.10 19.72 22.19 Note: Average over recorded history.

Only two of the stations, U of A and Nogales, recorded pan evaporation data over an extended period of time. This data is shown in Table 2.2.

Page 98: Infiltration, Seepage, Fate, and Transport Modeling Report

5

Table 2.3: Average Monthly Pan Evaporation Summary (in)

Month

Tucson U of A

(1894-2007) Nogales

(1952-2007)

JAN 3.25 3.59

FEB 4.57 4.46

MAR 6.95 7.01

APR 9.88 9.35

MAY 12.87 11.91

JUNE 14.91 13.31

JULY 13.17 10.00

AUG 11.65 8.28

SEPT 10.35 8.06

OCT 7.81 7.17

NOV 4.73 4.49

DEC 3.37 3.57

TOTAL 103.51 91.20 Note: U of A Station is at 2,440’ amsl. Nogales Station is at 3,560’ amsl. Rosemont Station is at 5,350’ amsl. As indicated, Rosemont Copper installed an on-site monitoring station that began recording meteorological data in April 2006. This station is monitored by Applied Environmental Consultants (AEC), and the monitoring program includes data processing and instrument audits, calibrations, and maintenance. Measurements of pan evaporation were added at the Rosemont Weather Station in June 2008. However, they were not included in any analysis due to the short period of recorded data. The Rosemont meteorological monitoring site is located at the center of the proposed open pit at an elevation of 5,350 feet amsl. Table 2.4 summarizes the average monthly precipitation for the data recorded over the last two (2) years (April 2006 through September 2008). Detailed precipitation information, as needed, can be found on the quarterly reports provided by AEC. Data is recorded daily and provided to Rosemont on a quarterly basis.

Page 99: Infiltration, Seepage, Fate, and Transport Modeling Report

6

Table 2.4: Average Monthly Precipitation Summary (in)

Month

Rosemont Station

(2006-2008)

JAN 0.59 FEB 0.79 MAR 0.45 APR 0.45 MAY 0.51 JUNE 0.98 JULY 5.51 AUG 3.74 SEPT 1.62 OCT 0.24 NOV 1.11 DEC 1.16

TOTAL 17.12 Note: Rosemont Station is at 5,350’ amsl.

3.0 Climatology Rainfall totals for various rainfall events were taken from the online National Oceanic and Atmospheric Administration (NOAA) site. The methods used to determine the temporal distribution of the various rainfall events are discussed in Appendix A1 of Atlas 14 (NOAA, 2004). Arizona lies in the convective precipitation area (Figure A.1.1 from Atlas 14), and 52% of the convective storms have the majority of rainfall occurring in the first quartile (first one and a half hours) of the rainfall event. Figure A.1.9.A from Atlas 14 was used for the temporal distribution. Pertinent climatology data derived from the NOAA Atlas is presented in the Attachment A of this memo. Table 3.1 presents the flood frequency analysis rainfall depths from the NOAA Atlas, i.e. rainfall depths recommended for the use of the Rosemont Copper Project. The temporal distributions for runoff modeling are derived from the 6-hr temporal distributions compressed into a 1-hr distribution and are summarized in Table 3.2. Attachment A provides backup information from the NOAA Atlas.

Page 100: Infiltration, Seepage, Fate, and Transport Modeling Report

7

Table 3.1: Flood Frequency Storm Precipitation Summary (in)

Event 1-Hour 3-Hour 6-Hour 24-Hour

2-Year 1.42 1.60 1.83 2.21

5-Year 1.85 2.03 2.30 2.75

10-Year 2.16 2.38 2.68 3.18

25-Year 2.57 2.86 3.22 3.77

50-Year 2.87 3.24 3.66 4.23

100-Year 3.17 3.63 4.12 4.75

500-Year 3.84 4.59 5.24 6.00

1000-Year 4.14 5.03 5.76 6.57

Table 3.2: 1-hr Flood Frequency Design Precipitation Hyetographs

% of % of Time Storm Depth (in) Duration Rainfall (min) 2-Yr 5-Yr 10-Yr 25-Yr 100-Yr

0.0% 0.0% 0 0.00 0.00 0.00 0.00 0.00

8.3% 23.1% 5 0.33 0.43 0.50 0.59 0.73

16.7% 44.8% 10 0.64 0.83 0.97 1.15 1.42

25.0% 65.0% 15 0.92 1.20 1.40 1.67 2.06

33.3% 81.6% 20 1.16 1.51 1.76 2.10 2.59

41.7% 90.1% 25 1.28 1.67 1.95 2.32 2.86

50.0% 93.6% 30 1.33 1.73 2.02 2.41 2.97

58.3% 96.5% 35 1.37 1.79 2.08 2.48 3.06

66.7% 98.6% 40 1.40 1.82 2.13 2.53 3.13

75.0% 99.7% 45 1.42 1.84 2.15 2.56 3.16

83.3% 99.9% 50 1.42 1.85 2.16 2.57 3.17

91.7% 100.0% 55 1.42 1.85 2.16 2.57 3.17

100.0% 100.0% 60 1.42 1.85 2.16 2.57 3.17

Storm depths and temporal distributions illustrated above were based on the latitude and longitude of the Rosemont Project site. These values are applicable to sizing stormwater conveyance channels, etc.

Page 101: Infiltration, Seepage, Fate, and Transport Modeling Report

8

4.0 Results Data derived from the Nogales weather station was selected to represent the long-term weather conditions at the Rosemont site. In comparison to Rosemont, the total average annual rainfall for the Nogales station is 17.37 inches which is less than a 2% difference (0.25 inches) of the Rosemont station. Although the Nogales station is located at an elevation of 3,560 feet amsl versus 5,350 feet amsl for the Rosemont station, the Nogales station is the closest station to the Rosemont that includes more than 50 years of continuous data for both precipitation and evaporation measurements. Pan evaporation data from the Nogales was adjusted to the Rosemont project site based on a linear trend with the each station’s elevation. Table 4.1 summaries the Nogales station meteorological measurements and the projected Rosemont pan evaporation values. This data is recommended where precipitation and pan evaporation data is required, such as infiltration modeling.

Table 4.1: Average Monthly Nogales Station Summary (in)

Month Precipitation Pan Evaporation

Rosemont Projected Pan Evaporation

JAN 1.10 3.59 4.13

FEB 0.85 4.46 4.28

MAR 0.90 7.01 7.11

APR 0.39 9.35 8.50

MAY 0.22 11.91 10.38

JUNE 0.47 13.31 10.75

JULY 4.34 10.00 4.93

AUG 4.13 8.28 2.89

SEPT 1.55 8.06 4.40

OCT 1.33 7.17 6.15

NOV 0.66 4.49 4.11

DEC 1.43 3.57 3.89

TOTAL 17.37 91.20 71.52 Note: Nogales Station is at 3,560’ amsl.

Rosemont Station is at 5,350’ amsl.

5.0 Hydrology Methodology Rosemont Copper site can be divided into two (2) types of areas for hydrologic purposes. The two (2) types of areas include small watersheds and large watersheds.

Page 102: Infiltration, Seepage, Fate, and Transport Modeling Report

9

One hour storms will be utilized for the peak design flow for sizing of channels. 24-hour storms will be utilized where volume design is required such as pond sizing.

Small Watersheds (5 acres or less):

The Rational Method will be used for estimating peak run-off rates from small watersheds such as building roofs, walkways, parking lots, and other small structures. For volume design requirements, the 24-hour storm should be used.

The Peak Flow Rate can be estimated using: Q =CIA

Q = Flow rate, ft3/s C = Run-off Coefficient I = Rainfall Intensity, in/hr A = Area, acres

Large Watersheds (more than 5 acres):

The SCS procedure will be utilized for watershed basins greater than 5 acres. The SCS procedure consists of selecting a design storm and computing direct run-off with the use of curve numbers and numerous soil cover combinations.

Lag Time equation:

5.0

7.08.0

1900)1(

ySLLg +

=

Lg = Lag Time, hrs. L = Distance of the Longest Watercourse, ft. Y = Average watercourse slope, %.

101000−=

CNS

Curve Number

The Natural Resource Conservation Service (NRCS) has developed a widely used curve number procedure for estimating run-off. This procedure will be used to estimate the direct runoff for each watershed basin.

Rainfall infiltration losses depend primarily on soil characteristics and land use (surface cover). The NRCS method uses a combination of soil conditions and land use to assign run-off factors known as run-off curve numbers. These represent the run-off potential of an area when the soil is not frozen (i.e. the higher the CN, the higher the run-off potential).

Page 103: Infiltration, Seepage, Fate, and Transport Modeling Report

10

Hydrologic soil data is compiled by the NRCS as part of soil surveys developed for the through the United States. The data used is from the detailed Soil Survey Geographic Database (SSURGO) data set. The hydrologic soil group is an indication of the run-off potential of the soil. Soils are classified A, B, C, D according to run-off potential. 'A' type soils, such as sandy soil, have very low run-off potential. Heavy clay and mucky soils are of type 'D' and have very high run-off potential. Land use areas are tabulated in the SCS TR-55 manual and correspond to specific curve numbers based on soil types. These curve numbers are applicable to average antecedent moisture conditions.

6.0 References Applied Environmental Consultants Meteorological Data (2007-2008) NOAA Atlas 14 Vol. 1 Version 4- Precipitation-Frequency Atlas of the United States (NOAA, 2008); http://hdsc.nws.noaa.gov/hdsc/pfds/sa/az_pfds.html Site Water Management Plan (Tetra Tech, 2007) U.S. Department of Agriculture, Soil Conservation Service. 1993. National Engineering

Handbook, Section 4, Hydrology (NEH-4). U.S. Soil Conservation Service. Technical Release 55: Urban Hydrology for Small Watersheds. USDA (U.S. Department of Agriculture). June 1986. Western Regional Climate Center (WRCC, 2008)

Page 104: Infiltration, Seepage, Fate, and Transport Modeling Report

Attachment A

Page 105: Infiltration, Seepage, Fate, and Transport Modeling Report

Site Water Management Rosemont Copper

CLIENT: Rosemont CopperPROJECT: Rosemont Copper Project JOB NO: 114-320807SUBJECT: Climatology BY: J. CarrascoDETAILS Average Monthly Total Precipitation Date: 12/19/2008

Station Jan Feb Mar Apr May Jun Jul Aug Sept Oct Nov Dec TotalNogales 6 N 1.1 0.85 0.9 0.39 0.22 0.47 4.34 4.13 1.55 1.33 0.66 1.43 17.37

Tucson U of A 0.88 0.83 0.76 0.39 0.18 0.26 2.06 2.15 1.15 0.74 0.77 0.96 11.13Rosemont Copper 0.59 0.79 0.45 0.45 0.51 0.98 5.51 3.74 1.62 0.24 1.11 1.16 17.15

Source: http://www.wrcc.dri.edu/summary/Climsmaz.html

Total Precipitation(in)

Average Monthly Precipitation

0

1

2

3

4

5

6

Jan Feb Mar Apr May Jun Jul Aug Sept Oct Nov Dec

Month

Prec

ip (i

n)

Nogales 6 N Tucson U of A Rosemont Copper

Tetra Tech December 2008

Page 106: Infiltration, Seepage, Fate, and Transport Modeling Report

Site Water Management Rosemont Copper

CLIENT: Rosemont Copper PROJECT: Rosemont Copper Project JOB NO: 114-320807SUBJECT: Climatology BY: J. CarrascoDETAILS Average Annual Total Precipitation Date: 12/19/2008

Station Jan Feb Mar Apr May Jun Jul Aug Sept Oct Nov Dec TotalNogales 6 N 1.1 0.85 0.9 0.39 0.22 0.47 4.34 4.13 1.55 1.33 0.66 1.43 17.37

Tucson U of A 0.88 0.83 0.76 0.39 0.18 0.26 2.06 2.15 1.15 0.74 0.77 0.96 11.13Rosemont Copper 0.59 0.79 0.45 0.45 0.51 0.98 5.51 3.74 1.62 0.24 1.11 1.16 17.15

Source: http://www.wrcc.dri.edu/summary/Climsmaz.html

Total Precipitation(in)

0

2

4

6

8

10

12

14

16

18

Tota

l Pre

cip.

(in)

Nogales 6 N Tucson U of A Rosemont CopperStation

Average Total Annual Precipitaion

Tetra Tech December 2008

Page 107: Infiltration, Seepage, Fate, and Transport Modeling Report

Site Water Management Rosemont Copper

CLIENT: Rosemont CopperPROJECT: Rosemont Copper Project JOB NO: 114-320807SUBJECT: Climatology BY: J. CarrascoDETAILS Average Monthly Pan Evaporation Date: 1/16/2009

Station Jan Feb Mar Apr May Jun Jul Aug Sept Oct Nov Dec Total ElevationTucson U of A 3.25 4.57 6.95 9.88 12.87 14.91 13.17 11.65 10.35 7.81 4.73 3.37 103.51 2440

Nogales 6 N 3.59 4.46 7.01 9.35 11.91 13.31 9.89 8.28 8.06 7.17 4.49 3.57 91.09 3560Rosemont Copper (Measured) 4.77 2.92 4.11 2.32 2.20 2.22 18.53 5350

Rosemont (Projected) 4.13 4.28 7.11 8.5 10.38 10.75 4.93 2.89 4.4 6.15 4.11 3.89 71.52 5350

Source: http://www.wrcc.dri.edu/summary/Climsmaz.html

Pan Evaporation(in)

Average Monthly Pan Evaporation

0

2

4

6

8

10

12

14

16

Jan Feb Mar Apr May Jun Jul Aug Sept Oct Nov Dec

Month

Pan

Evap

orat

ion

(inch

es)

Tucson U of A Nogales 6 N Rosemont Copper (Measured) Rosemont (Projected)

Tetra Tech January 2009

Page 108: Infiltration, Seepage, Fate, and Transport Modeling Report

POINT PRECIPITATIONFREQUENCY ESTIMATES

FROM NOAA ATLAS 14Arizona 31.862 N 110.692 W 4429 feet

from "Precipitation-Frequency Atlas of the United States" NOAA Atlas 14, Volume 1, Version 4G.M. Bonnin, D. Martin, B. Lin, T. Parzybok, M.Yekta, and D. Riley

NOAA, National Weather Service, Silver Spring, Maryland, 2006Extracted: Fri Dec 19 2008

Precipitation Frequency Estimates (inches)ARI*

(years)5

min10min

15min

30min

60min

120min 3 hr 6 hr 12 hr 24 hr 48 hr 4

day 7 day 10day

20day

30day

45day

60day

1 0.35 0.54 0.66 0.89 1.10 1.22 1.27 1.47 1.72 1.77 1.98 2.37 2.84 3.30 4.54 5.76 7.17 8.482 0.45 0.69 0.85 1.15 1.42 1.55 1.60 1.83 2.15 2.21 2.47 2.95 3.55 4.13 5.67 7.19 8.95 10.575 0.59 0.90 1.11 1.49 1.85 1.99 2.03 2.30 2.68 2.75 3.07 3.69 4.46 5.15 7.01 8.80 10.84 12.7810 0.69 1.04 1.30 1.75 2.16 2.33 2.38 2.68 3.11 3.18 3.57 4.31 5.20 5.97 8.03 10.02 12.23 14.3825 0.82 1.24 1.54 2.08 2.57 2.80 2.86 3.22 3.72 3.77 4.26 5.19 6.24 7.09 9.39 11.58 13.97 16.3650 0.91 1.39 1.72 2.32 2.87 3.16 3.24 3.66 4.20 4.23 4.81 5.90 7.07 7.96 10.42 12.73 15.22 17.77

100 1.01 1.53 1.90 2.56 3.17 3.53 3.63 4.12 4.71 4.75 5.39 6.65 7.94 8.87 11.46 13.86 16.44 19.13200 1.10 1.68 2.08 2.80 3.46 3.90 4.04 4.59 5.23 5.28 5.99 7.44 8.85 9.81 12.49 14.97 17.61 20.43500 1.22 1.86 2.31 3.10 3.84 4.40 4.59 5.24 5.94 6.00 6.82 8.55 10.12 11.09 13.86 16.39 19.09 22.061000 1.32 2.00 2.48 3.35 4.14 4.79 5.03 5.76 6.50 6.57 7.47 9.45 11.14 12.09 14.90 17.45 20.18 23.25

* These precipitation frequency estimates are based on a partial duration series. ARI is the Average Recurrence Interval.Please refer to NOAA Atlas 14 Document for more information. NOTE: Formatting forces estimates near zero to appear as zero.

* Upper bound of the 90% confidence intervalPrecipitation Frequency Estimates (inches)

ARI**(years)

5min

10min

15min

30min

60min

120min

3hr

6hr

12hr

24hr

48hr

4day

7day

10day

20day

30day

45day

60day

1 0.40 0.60 0.75 1.00 1.24 1.37 1.42 1.65 1.92 1.93 2.17 2.60 3.13 3.64 4.97 6.28 7.80 9.222 0.51 0.77 0.96 1.29 1.60 1.74 1.79 2.06 2.40 2.42 2.71 3.25 3.92 4.56 6.22 7.85 9.74 11.505 0.66 1.00 1.24 1.67 2.07 2.23 2.27 2.58 2.99 3.00 3.37 4.07 4.92 5.68 7.69 9.61 11.81 13.9210 0.77 1.17 1.45 1.95 2.41 2.60 2.66 3.01 3.47 3.48 3.92 4.74 5.74 6.58 8.82 10.95 13.33 15.6725 0.91 1.39 1.72 2.31 2.86 3.12 3.19 3.62 4.15 4.19 4.67 5.70 6.90 7.83 10.32 12.68 15.25 17.8750 1.02 1.55 1.93 2.59 3.21 3.53 3.62 4.12 4.70 4.75 5.29 6.49 7.83 8.80 11.47 13.95 16.66 19.45

100 1.13 1.72 2.14 2.88 3.56 3.96 4.08 4.66 5.30 5.35 5.93 7.33 8.82 9.84 12.64 15.22 18.04 21.00200 1.24 1.89 2.35 3.16 3.91 4.40 4.57 5.22 5.93 5.99 6.63 8.24 9.87 10.93 13.84 16.48 19.38 22.49500 1.40 2.12 2.63 3.55 4.39 5.01 5.25 6.03 6.82 6.88 7.60 9.55 11.36 12.43 15.46 18.16 21.12 24.431000 1.52 2.32 2.87 3.87 4.79 5.52 5.83 6.70 7.54 7.61 8.38 10.60 12.60 13.64 16.72 19.42 22.44 25.88

* The upper bound of the confidence interval at 90% confidence level is the value which 5% of the simulated quantile values for a given frequency are greater than.** These precipitation frequency estimates are based on a partial duration series. ARI is the Average Recurrence Interval.Please refer to NOAA Atlas 14 Document for more information. NOTE: Formatting prevents estimates near zero to appear as zero.

* Lower bound of the 90% confidence intervalPrecipitation Frequency Estimates (inches)

ARI**(years)

5min

10min

15min

30min

60min

120min

3hr

6hr

12hr

24hr

48hr

4day

7day

10day

20day

30day

45day

60day

1 0.32 0.48 0.60 0.80 0.99 1.10 1.15 1.31 1.55 1.62 1.82 2.17 2.60 3.02 4.16 5.29 6.61 7.792 0.41 0.62 0.77 1.03 1.28 1.40 1.45 1.64 1.93 2.03 2.27 2.71 3.24 3.77 5.20 6.61 8.24 9.715 0.52 0.80 0.99 1.33 1.65 1.78 1.83 2.05 2.39 2.52 2.82 3.38 4.06 4.69 6.41 8.07 9.98 11.7310 0.61 0.93 1.15 1.55 1.92 2.07 2.13 2.38 2.77 2.91 3.27 3.93 4.72 5.42 7.33 9.17 11.24 13.1825 0.72 1.09 1.36 1.83 2.26 2.47 2.54 2.83 3.28 3.43 3.88 4.69 5.63 6.41 8.54 10.57 12.80 14.9550 0.80 1.21 1.50 2.02 2.50 2.76 2.83 3.18 3.67 3.82 4.34 5.29 6.34 7.15 9.43 11.58 13.89 16.20

100 0.87 1.32 1.64 2.21 2.74 3.05 3.14 3.52 4.05 4.22 4.83 5.92 7.07 7.91 10.30 12.56 14.93 17.38200 0.94 1.43 1.77 2.39 2.96 3.32 3.43 3.86 4.43 4.62 5.32 6.56 7.81 8.66 11.15 13.48 15.91 18.47500 1.02 1.56 1.93 2.60 3.22 3.67 3.81 4.30 4.93 5.14 5.98 7.41 8.79 9.65 12.24 14.63 17.12 19.801000 1.08 1.65 2.05 2.76 3.41 3.93 4.09 4.63 5.29 5.54 6.48 8.08 9.56 10.41 13.05 15.46 17.98 20.75

* The lower bound of the confidence interval at 90% confidence level is the value which 5% of the simulated quantile values for a given frequency are less than.** These precipitation frequency estimates are based on a partial duration maxima series. ARI is the Average Recurrence Interval.Please refer to NOAA Atlas 14 Document for more information. NOTE: Formatting prevents estimates near zero to appear as zero.

Precipitation Frequency Data Server http://hdsc.nws.noaa.gov/cgi-bin/hdsc/buildout.perl?type=pf&units=us&se...

1 of 3 12/19/2008 4:05 PM

Page 109: Infiltration, Seepage, Fate, and Transport Modeling Report

Maps -

Precipitation Frequency Data Server http://hdsc.nws.noaa.gov/cgi-bin/hdsc/buildout.perl?type=pf&units=us&se...

2 of 3 12/19/2008 4:05 PM

Page 110: Infiltration, Seepage, Fate, and Transport Modeling Report

These maps were produced using a direct map request from theU.S. Census Bureau Mapping and Cartographic ResourcesTiger Map Server.

Please read disclaimer for more information.

Other Maps/Photographs -

View USGS digital orthophoto quadrangle (DOQ) covering this location from TerraServer; USGS Aerial Photograph may also be availablefrom this site. A DOQ is a computer-generated image of an aerial photograph in which image displacement caused by terrain relief and camera tilts has been removed. It combines the imagecharacteristics of a photograph with the geometric qualities of a map. Visit the USGS for more information.

Watershed/Stream Flow Information -

Find the Watershed for this location using the U.S. Environmental Protection Agency's site.

Climate Data Sources -

Precipitation frequency results are based on data from a variety of sources, but largely NCDC. The following links provide general informationabout observing sites in the area, regardless of if their data was used in this study. For detailed information about the stations used in this study,please refer to NOAA Atlas 14 Document.

Using the National Climatic Data Center's (NCDC) station search engine, locate other climate stations within: ...OR... of this location (31.862/-110.692). Digital ASCII data can be obtained directly from NCDC.

Find Natural Resources Conservation Service (NRCS) SNOTEL (SNOwpack TELemetry) stations by visiting theWestern Regional Climate Center's state-specific SNOTEL station maps.

Hydrometeorological Design Studies CenterDOC/NOAA/National Weather Service1325 East-West HighwaySilver Spring, MD 20910(301) 713-1669Questions?: [email protected]

Disclaimer

Precipitation Frequency Data Server http://hdsc.nws.noaa.gov/cgi-bin/hdsc/buildout.perl?type=pf&units=us&se...

3 of 3 12/19/2008 4:05 PM

Page 111: Infiltration, Seepage, Fate, and Transport Modeling Report

U.S. Department

of Commerce

National Oceanic and Atmospheric

Administration

National Weather Service

Silver Spring,

Maryland, 2004 revised 2006

NOAA Atlas 14 Precipitation-Frequency Atlas of the United States Volume 1 Version 4.0: Semiarid Southwest (Arizona,

Southeast California, Nevada, New Mexico, Utah)

Geoffrey M. Bonnin, Deborah Martin, Bingzhang Lin, Tye Parzybok, Michael Yekta, David Riley

Page 112: Infiltration, Seepage, Fate, and Transport Modeling Report

NOAA Atlas 14 Volume 1 Version 4.0 A.1-1

Appendix A.1. Temporal distributions of heavy precipitation associated with NOAA Atlas 14 Volume 1 1. Introduction Temporal distributions of heavy precipitation are provided for use with precipitation frequency estimates from NOAA Atlas 14 Volume 1 for 6-, 12-, 24- and 96-hour durations covering the semiarid southwestern United States. The temporal distributions are expressed in probabilistic terms as cumulative percentages of precipitation and duration at various percentiles. The starting time of precipitation accumulation was defined in the same fashion as it was for precipitation frequency estimates for consistency.

The project area was divided into two sub-regions based on the seasonality of observed heavy precipitation events. Figure A.1.1 shows the areal divisions for the temporal distribution regions.

Temporal distributions for each duration are presented in Figures A.1.2 and A.1.3. The data were also subdivided into quartiles based on where in the distribution the most precipitation occurred in order to provide more specific information on the varying distributions that were observed. Figures A.1.4 through A.1.11 depict temporal distributions for each quartile for the four durations. Digital data to generate all temporal distribution curves are available at http://hdsc.nws.noaa.gov/hdsc/pfds/pfds_temporal.html. Table A.1.1 lists the number and proportion of cases in each quartile for each duration and region. 2. Methodology. This project largely followed the methodology used by the Illinois State Water Survey (Huff, 1990) except in the definition of the precipitation accumulation. This project computed precipitation accumulations for specific (6-, 12-, 24- and 96-hour) time periods as opposed to single events or storms in order to be consistent with the way duration was defined in the associated precipitation frequency project. As a result, the accumulation cases may contain parts of one, or more than one precipitation event. Accumulation computations were made moving from earlier to later in time resulting in an expected bias towards front loaded distributions when compared with distributions for single storm events.

The General and Convective Precipitation Areas (Figure A.1.1) were established using factors set forth in previous work (Gifford et al., 1967; NOAA, 1989), including the seasonality of maximum precipitation and event types. Maximum events in the General Precipitation Area were dominated by cool season precipitation while maximum events in the Convective Precipitation Area occurred in the warm season.

For every precipitation observing station in the project area that recorded precipitation at least once an hour, the three largest precipitation accumulations were selected for each month in the entire period of record and for each of the four durations. A minimum threshold was applied to make sure only heavier precipitation cases were being captured. The precipitation with an average recurrence interval (ARI) of 2 years at each observing station for each duration was used as the minimum threshold at that station.

A minimum threshold of 25-year ARI was tested. It was found to produce results similar to using a 2-year ARI minimum threshold. The 25-year ARI threshold was rejected because it reduced the number of samples sufficiently to cause concern for the stability of the estimates.

Each of the accumulations was converted into a ratio of the cumulative hourly precipitation to the total precipitation for that duration, and a ratio of the cumulative time to the total time. Thus, the last value of the summation ratios always had a value of 100%. Within the General Area, and separately within the Convective Precipitation Area, the data were combined, cumulative deciles of precipitation were computed at each time step, and then results were plotted to provide the graphs presented in Figures A.1.2 and A.1.3. The data were also separated into categories by the quartile in which the greatest percentage of the total precipitation occurred and the procedure was repeated for each

Page 113: Infiltration, Seepage, Fate, and Transport Modeling Report

NOAA Atlas 14 Volume 1 Version 4.0 A.1-2

quartile category to produce the graphs shown in Figures A.1.4 through A.1.11. A moving window weighted average smoothing technique was performed on each curve.

3. Interpreting the Results Figures A.1.2 and A.1.3 present cumulative probability plots of temporal distributions for the 6-, 12-, 24- and 96-hour durations for the General and the Convective Precipitation Areas. Figures A.1.4 through A.1.11 present the same information but for categories based on the quartile of most precipitation. The x-axis is the cumulative percentage of the time period. The y-axis is the cumulative percentage of total precipitation.

The data on the graph represent the average of many events illustrating the cumulative probability of occurrence at 10% increments. For example, the 10% of cases in which precipitation is concentrated closest to the beginning of the time period will have distributions that fall above and to the left of the 10% curve. At the other end of the spectrum, only 10% of cases are likely to have a temporal distribution falling to the right and below the 90% curve. In these latter cases the bulk of the precipitation falls toward the end of the time period. The 50% curve represents the median temporal distribution on each graph.

First-quartile graphs consist of cases where the greatest percentage of the total precipitation fell during the first quarter of the time period, i.e., the first 1.5 hours of a 6-hour period, the first 3 hours of a 12-hour period, etc. The second, third and fourth quartile plots, similarly are for cases where the most precipitation fell in the second, third or fourth quarter of the time period.

The time distributions consistently show a greater spread, and therefore greater variation, between the 10% and 90% probabilities as the duration increases. Longer durations are more likely to have captured more than one event separated by drier periods; however, this has not been objectively tested as the cause of the greater variation at longer durations. The median of the distributions gradually becomes steeper at longer durations. The cases of the Convective Precipitation Area had steeper gradients than the cases of the General Precipitation Area for all durations and quartiles.

The following is an example of how to interpret the results using Figure A.1.8a and Table A.1.1. Of the 1,728 cases in the General Precipitation Area, 630 of them were first-quartile events:

• In 10% of these cases, 50% of the total rainfall (y-axis) fell in the first 1.8 hours of event time (7.5% on the x-axis). By the 12th hour (50% on the x-axis), all of the precipitation (100% on the y-axis) had fallen.

• A median case of this type will drop half of its total rain (50% on the y-axis) in 5.4 hours (22.5% on the x-axis).

• In 90 percent of these events, 50% of the total precipitation fell by 10.2 hours (42.5% on the x-axis).

4. Application of Results Care should be taken in the use of these data. The data are presented in order to show the range of possibilities and to show that the range can be broad. The data should be used in a way that reflects the goals of the user. For example while all cases represented in the data will preserve volume, there will be a broad range of peak flow that could be computed. In those instances where peak flow is a critical design criterion, users should consider temporal distributions likely to produce higher peaks rather than the 50th percentile or median cases, for example. In addition, users should consider whether using results from one of the quartiles rather than from the "all cases" sample might achieve more appropriate results for their situation. 5. Summary and General Findings The results presented here can be used for determining temporal distributions of heavy precipitation at particular durations and amounts and at particular levels of probability. The results are designed

Page 114: Infiltration, Seepage, Fate, and Transport Modeling Report

NOAA Atlas 14 Volume 1 Version 4.0 A.1-3

for use with precipitation frequency estimates and may not be the same as the temporal distributions of single storms or single precipitation events. A majority of the cases analyzed were first-quartile cases regardless of precipitation area or duration (Table A.1.1). Fewer and fewer cases fell into each of the subsequent quartile categories with the fourth quartile containing the fewest number of cases. The time distributions show a greater spread between the percentiles with increasing duration. The median of the distributions becomes steeper with increasing duration. Overall, the Convective Precipitation Area distributions showed a steeper gradient and therefore depicted more initially intense precipitation than the General Precipitation Area distributions regardless of duration. Table A.1.1. Numbers and proportion of cases in each quartile for each duration and temporal distribution region associated with NOAA Atlas 14 Volume 1.

Convective Precipitation Area

1st Quartile 2nd Quartile 3rd Quartile 4th Quartile Total number

of cases 6-hour 1679 (52%) 744 (23%) 509 (16%) 284 (9%) 3216

12-hour 1753 (51%) 769 (22%) 567 (17%) 354 (10%) 3443 24-hour 1751 (50%) 645 (19%) 571 (17%) 492 (14%) 3459 96-hour 1952 (63%) 707 (19%) 530 (14%) 527 (14%) 3716

General Precipitation Area

1st Quartile 2nd Quartile 3rd Quartile 4th Quartile Total number

of cases 6-hour 669 (36%) 471 (26%) 468 (25%) 243 (13%) 1851

12-hour 596 (33%) 465 (26%) 469 (26%) 277 (15%) 1807 24-hour 630 (36%) 442 (26%) 380 (22%) 276 (16%) 1728 96-hour 841 (46%) 376 (21%) 292 (16%) 320 (17%) 1829

Page 115: Infiltration, Seepage, Fate, and Transport Modeling Report

NOAA Atlas 14 Volume 1 Version 4.0 A.1-4

Figu

re A

.1.1

. Reg

iona

l div

isio

n fo

r tem

pora

l dis

tribu

tions

ass

ocia

ted

with

NO

AA

Atla

s 14

Vol

ume

1.

Page 116: Infiltration, Seepage, Fate, and Transport Modeling Report

NOAA Atlas 14 Volume 1 Version 4.0 A.1-8

FIGURE A.1.5 TEMPORAL DISTRIBUTION: 6-HOUR DURATION

CONVECTIVE PRECIPITATION AREA

A. 1ST-QUARTILE CASES B. 2ND-QUARTILE CASES

C. 3RD-QUARTILE CASES D. 4TH-QUARTILE CASES

Percent of Duration

Per

cent

of T

otal

Pre

cipi

tatio

n P

erce

nt o

f Tot

al P

reci

pita

tion

Percent of Duration

0

10

20

30

40

50

60

70

80

90

100

0 25 50 75 100

90%

70%

50%

10%

30%

0

10

20

30

40

50

60

70

80

90

100

0 25 50 75 100

10%

90%70%

50%30%

0

10

20

30

40

50

60

70

80

90

100

0 25 50 75 100

10%

90%

70%

50%30%

0

10

20

30

40

50

60

70

80

90

100

0 25 50 75 100

10%

90%

70%50%30%

Page 117: Infiltration, Seepage, Fate, and Transport Modeling Report

APPENDIX C MODEL CONSTRUCTION LOGS

Page 118: Infiltration, Seepage, Fate, and Transport Modeling Report

Transient Coupled VADOSE/W Report generated using GeoStudio 2007, version 7.13. Copyright © 1991‐2008 GEO‐SLOPE International Ltd. 

File Information Created By: Amy L. Hudson, REM File Name: WRD baseline_v9.gsz Comments: This model represents the waste rock dump. It has been constructed in three steps, which correspond to the construction of the facility. Each of the construction models is steady state, representing about 1/3 of construction time. The final steady state model in the sequence represents the final geometry of the facility. This becomes the parent model to the transient models using average site climate data. Each transient model represents one year of time. This series of models simulates the mixed soil and gravel cover. 

Project Settings Length(L) Units: feet Time(t) Units: Hours Force(F) Units: lbf Temp(T) Units: F Energy Units: BTU Latent Heat of Water: 8975 Phase Change Temperature: 32 Unit Weight of Water: 62.4 pcf View: 2D 

Analysis Settings 

Transient Coupled VADOSE/W Kind: VADOSE/W Method: Transient Coupled Settings 

Initial PWP: Parent Analysis Initial Thermal Conditions Source: Parent Analysis Gas Diffusion: Oxygen Initial Concentrations from: Parent Analysis Exclude cumulative values: No 

Control Ground Freezing Latent Heat Effects: No Vegetation: Yes Apply Runoff: Yes 

Convergence Maximum Number of Iterations: 100 

Page 119: Infiltration, Seepage, Fate, and Transport Modeling Report

Tolerance: 0.1 Maximum Change in K: 1 Rate of Change in K: 1.1 Minimum Change in K: 0.0001 Equation Solver: Parallel Direct Potential Seepage Max # of Reviews: 10 

Time Step Generation Method: Linear Use Adaptive Time Stepping: Yes Adaptive Step Settings 

Adaptive Method: Vector Normal Max % Change per Step: 2.5 Max. Courant Number: 2 Range Min Step: 0.01 Range Max Step: 1 

Materials 

Alluvial ground Model: Full Thermal Hydraulic 

K‐Function: Silt #2, Ksat = 1.18e‐02 ft/hr Vol. WC. Function: Silt #2 K‐Ratio: 1 K‐Direction: 0 ° 

Thermal Thermal K Fn (K vs VWC): Silt Vol Specific Heat Fn: Silt (Btu/ft3 F) 

Gas Gas Decay (Yrs.): 0 

Bedrock Model: Full Thermal Hydraulic 

K‐Function: Well‐Graded #3 (high clay), Ksat = 8.42e‐06 ft/hr Vol. WC. Function: Well‐Graded #3 (high clay) K‐Ratio: 1 K‐Direction: 0 ° 

Thermal Thermal K Fn (K vs VWC): Clay Vol Specific Heat Fn: Clay (Btu/Ft3 F) 

Gas Gas Decay (Yrs.): 0 

Bottom waste rock Model: Full Thermal 

Page 120: Infiltration, Seepage, Fate, and Transport Modeling Report

Hydraulic K‐Function: Uniform sand, Ksat = 1.2 ft/hr Vol. WC. Function: Uniform sand K‐Ratio: 1 K‐Direction: 0 ° 

Thermal Thermal K Fn (K vs VWC): Sand Vol Specific Heat Fn: Sand (Btu/Ft3 F) 

Gas Gas Decay (Yrs.): 0 

Top waste rock Model: Full Thermal Hydraulic 

K‐Function: Andesite Rock Vol. WC. Function: Andesite Rock K‐Ratio: 1 K‐Direction: 0 ° 

Thermal Thermal K Fn (K vs VWC): Sand Vol Specific Heat Fn: Sand (Btu/Ft3 F) 

Gas Gas Decay (Yrs.): 0 

Buttress Model: Full Thermal Hydraulic 

K‐Function: Andesite Rock Vol. WC. Function: Andesite Rock K‐Ratio: 1 K‐Direction: 0 ° 

Thermal Thermal K Fn (K vs VWC): Sand Vol Specific Heat Fn: Sand (Btu/Ft3 F) 

Gas Gas Decay (Yrs.): 0 

Middle waste rock Model: Full Thermal Hydraulic 

K‐Function: Pete's Coarse Ore Vol. WC. Function: Pete's Coarse Ore K‐Ratio: 1 K‐Direction: 0 ° 

Thermal Thermal K Fn (K vs VWC): Sand Vol Specific Heat Fn: Sand (Btu/Ft3 F) 

Gas 

Page 121: Infiltration, Seepage, Fate, and Transport Modeling Report

Gas Decay (Yrs.): 0 

Top of waste Model: Full Thermal Hydraulic 

K‐Function: Andesite Rock Vol. WC. Function: Andesite Rock K‐Ratio: 1 K‐Direction: 0 ° 

Thermal Thermal K Fn (K vs VWC): Sand Vol Specific Heat Fn: Sand (Btu/Ft3 F) 

Gas Gas Decay (Yrs.): 0 

Cover Model: Full Thermal Hydraulic 

K‐Function: Glacial Till (Compacted), Ksat = 1.18e‐03 ft/hr Vol. WC. Function: Glacial Till (Compacted) K‐Ratio: 1 K‐Direction: 0 ° 

Thermal Thermal K Fn (K vs VWC): Silt Vol Specific Heat Fn: Silt (Btu/ft3 F) 

Gas Gas Decay (Yrs.): 0 

Boundary Conditions 

GW surface Type: Head (H) 4600 

Side recharge Review: true Type: Unit Flux (q) 1e‐009 

Air temperature Type: Temperature (T) 75 

Oxygen concentration Type: Concentration (C) 0.0174 

Page 122: Infiltration, Seepage, Fate, and Transport Modeling Report

Climate Data Sets 

Average annual conditions Name: Average annual conditions Latitude: 31 Distribution: Sinusoidal Distribution 

Entry Modifier 

Max T Offset: 0 Min T Offset: 0 Max RH Offset: 0 Min RH Offset: 0 Wind Scale: 100 Precipitation Scale: 100 Start Precip Offset: 0 End Precip Offset: 0 PET Scale: 100 Net Radiation Scale: 100 

Climate Entries 

Day # Max T (°F) 

Min T (°F) 

Max RH (%) 

Min RH (%) 

Wind  Precipitation Precipitation 

Started Precipitation 

Ended PET 

Net Radiation 

1  64  27  58  35  8.802  0.019  0  24  0.10129032  0.10129032 

2  63  26  58  35  8.802  0.061  0  24  0.10129032  0.10129032 

3  62  27  58  35  8.802  0.046  0  24  0.10129032  0.10129032 

4  62  26  58  35  8.802  0.05  0  24  0.10129032  0.10129032 

5  62  27  58  35  8.802  0.028  0  24  0.10129032  0.10129032 

6  62  27  58  35  8.802  0.11  0  24  0.10129032  0.10129032 

7  62  28  58  35  8.802  0.039  0  24  0.10129032  0.10129032 

8  64  28  58  35  8.802  0.062  0  24  0.10129032  0.10129032 

9  65  27  58  35  8.802  0.033  0  24  0.10129032  0.10129032 

10  65  27  58  35  8.802  0.024  0  24  0.10129032  0.10129032 

11  64  28  58  35  8.802  0.045  0  24  0.10129032  0.10129032 

12  64  27  58  35  8.802  0.033  0  24  0.10129032  0.10129032 

13  64  27  58  35  8.802  0.036  0  24  0.10129032  0.10129032 

14  64  27  58  35  8.802  0.041  0  24  0.10129032  0.10129032 

15  65  27  58  35  8.802  0.016  0  24  0.10129032  0.10129032 

16  65  28  58  35  8.802  0.016  0  24  0.10129032  0.10129032 

17  65  28  58  35  8.802  0.038  0  24  0.10129032  0.10129032 

18  64  27  58  35  8.802  0.059  0  24  0.10129032  0.10129032 

19  66  27  58  35  8.802  0.05  0  24  0.10129032  0.10129032 

20  64  27  58  35  8.802  0.032  0  24  0.10129032  0.10129032 

21  63  27  58  35  8.802  0.024  0  24  0.10129032  0.10129032 

22  64  27  58  35  8.802  0.029  0  24  0.10129032  0.10129032 

23  64  28  58  35  8.802  0.011  0  24  0.10129032  0.10129032 

Page 123: Infiltration, Seepage, Fate, and Transport Modeling Report

24  64  27  58  35  8.802  0.027  0  24  0.10129032  0.10129032 

25  66  28  58  35  8.802  0.033  0  24  0.10129032  0.10129032 

26  67  27  58  35  8.802  0.022  0  24  0.10129032  0.10129032 

27  66  28  58  35  8.802  0.029  0  24  0.10129032  0.10129032 

28  65  28  58  35  8.802  0.03  0  24  0.10129032  0.10129032 

29  64  27  58  35  8.802  0.013  0  24  0.10129032  0.10129032 

30  65  28  58  35  8.802  0.05  0  24  0.10129032  0.10129032 

31  65  27  58  35  8.802  0.04  0  24  0.10129032  0.10129032 

32  64  27  53  30  8.802  0.021  0  24  0.15275862  0.15275862 

33  65  27  53  30  8.802  0.011  0  24  0.15275862  0.15275862 

34  65  26  53  30  8.802  0.014  0  24  0.15275862  0.15275862 

35  65  28  53  30  8.802  0.028  0  24  0.15275862  0.15275862 

36  66  30  53  30  8.802  0.052  0  24  0.15275862  0.15275862 

37  66  29  53  30  8.802  0.013  0  24  0.15275862  0.15275862 

38  67  29  53  30  8.802  0.026  0  24  0.15275862  0.15275862 

39  67  29  53  30  8.802  0.046  0  24  0.15275862  0.15275862 

40  66  31  53  30  8.802  0.07  0  24  0.15275862  0.15275862 

41  65  29  53  30  8.802  0.037  0  24  0.15275862  0.15275862 

42  66  29  53  30  8.802  0.053  0  24  0.15275862  0.15275862 

43  65  31  53  30  8.802  0.052  0  24  0.15275862  0.15275862 

44  67  31  53  30  8.802  0.031  0  24  0.15275862  0.15275862 

45  67  31  53  30  8.802  0.051  0  24  0.15275862  0.15275862 

46  66  30  53  30  8.802  0.035  0  24  0.15275862  0.15275862 

47  67  30  53  30  8.802  0.03  0  24  0.15275862  0.15275862 

48  68  30  53  30  8.802  0.017  0  24  0.15275862  0.15275862 

49  68  30  53  30  8.802  0.023  0  24  0.15275862  0.15275862 

50  67  31  53  30  8.802  0.009  0  24  0.15275862  0.15275862 

51  66  30  53  30  8.802  0.021  0  24  0.15275862  0.15275862 

52  65  29  53  30  8.802  0.047  0  24  0.15275862  0.15275862 

53  66  29  53  30  8.802  0.045  0  24  0.15275862  0.15275862 

54  67  28  53  30  8.802  0.008  0  24  0.15275862  0.15275862 

55  68  29  53  30  8.802  0.06  0  24  0.15275862  0.15275862 

56  68  30  53  30  8.802  0.028  0  24  0.15275862  0.15275862 

57  68  31  53  30  8.802  0.029  0  24  0.15275862  0.15275862 

58  69  30  53  30  8.802  0.013  0  24  0.15275862  0.15275862 

59  68  31  53  30  8.802  0.024  0  24  0.15275862  0.15275862 

60  68  31  45  24  10.269  0.047  0  24  0.23032258  0.23032258 

61  68  33  45  24  10.269  0.034  0  24  0.23032258  0.23032258 

62  66  31  45  24  10.269  0.082  0  24  0.23032258  0.23032258 

63  66  30  45  24  10.269  0.066  0  24  0.23032258  0.23032258 

64  67  31  45  24  10.269  0.018  0  24  0.23032258  0.23032258 

65  68  31  45  24  10.269  0.037  0  24  0.23032258  0.23032258 

66  69  31  45  24  10.269  0.046  0  24  0.23032258  0.23032258 

67  69  32  45  24  10.269  0.035  0  24  0.23032258  0.23032258 

68  72  33  45  24  10.269  0.011  0  24  0.23032258  0.23032258 

69  72  34  45  24  10.269  0.022  0  24  0.23032258  0.23032258 

70  70  34  45  24  10.269  0.038  0  24  0.23032258  0.23032258 

Page 124: Infiltration, Seepage, Fate, and Transport Modeling Report

71  69  33  45  24  10.269  0.018  0  24  0.23032258  0.23032258 

72  69  31  45  24  10.269  0.054  0  24  0.23032258  0.23032258 

73  69  32  45  24  10.269  0.019  0  24  0.23032258  0.23032258 

74  71  32  45  24  10.269  0.012  0  24  0.23032258  0.23032258 

75  71  33  45  24  10.269  0.017  0  24  0.23032258  0.23032258 

76  71  34  45  24  10.269  0.007  0  24  0.23032258  0.23032258 

77  72  35  45  24  10.269  0.029  0  24  0.23032258  0.23032258 

78  71  34  45  24  10.269  0.011  0  24  0.23032258  0.23032258 

79  73  34  45  24  10.269  0.044  0  24  0.23032258  0.23032258 

80  73  34  45  24  10.269  0.045  0  24  0.23032258  0.23032258 

81  73  36  45  24  10.269  0.018  0  24  0.23032258  0.23032258 

82  73  35  45  24  10.269  0.029  0  24  0.23032258  0.23032258 

83  73  33  45  24  10.269  0.025  0  24  0.23032258  0.23032258 

84  73  34  45  24  10.269  0.012  0  24  0.23032258  0.23032258 

85  74  36  45  24  10.269  0.018  0  24  0.23032258  0.23032258 

86  72  36  45  24  10.269  0.053  0  24  0.23032258  0.23032258 

87  72  37  45  24  10.269  0.03  0  24  0.23032258  0.23032258 

88  72  37  45  24  10.269  0.021  0  24  0.23032258  0.23032258 

89  72  36  45  24  10.269  0.004  0  24  0.23032258  0.23032258 

90  75  36  45  24  10.269  0.001  0  24  0.23032258  0.23032258 

91  75  36  37  21  11.736  0.023  0  24  0.31433333  0.31433333 

92  74  36  37  21  11.736  0.034  0  24  0.31433333  0.31433333 

93  73  35  37  21  11.736  0.008  0  24  0.31433333  0.31433333 

94  73  36  37  21  11.736  0.028  0  24  0.31433333  0.31433333 

95  75  37  37  21  11.736  0.006  0  24  0.31433333  0.31433333 

96  77  38  37  21  11.736  0.028  0  24  0.31433333  0.31433333 

97  77  38  37  21  11.736  0.02  0  24  0.31433333  0.31433333 

98  76  37  37  21  11.736  0.011  0  24  0.31433333  0.31433333 

99  77  37  37  21  11.736  0.004  0  24  0.31433333  0.31433333 

100  79  38  37  21  11.736  0.011  0  24  0.31433333  0.31433333 

101  78  38  37  21  11.736  0.004  0  24  0.31433333  0.31433333 

102  78  38  37  21  11.736  0.002  0  24  0.31433333  0.31433333 

103  77  38  37  21  11.736  0.004  0  24  0.31433333  0.31433333 

104  79  38  37  21  11.736  0.006  0  24  0.31433333  0.31433333 

105  80  38  37  21  11.736  0.009  0  24  0.31433333  0.31433333 

106  79  39  37  21  11.736  0.031  0  24  0.31433333  0.31433333 

107  79  40  37  21  11.736  0.031  0  24  0.31433333  0.31433333 

108  79  40  37  21  11.736  0  0  24  0.31433333  0.31433333 

109  79  39  37  21  11.736  0.023  0  24  0.31433333  0.31433333 

110  78  38  37  21  11.736  0.001  0  24  0.31433333  0.31433333 

111  80  40  37  21  11.736  0.004  0  24  0.31433333  0.31433333 

112  80  39  37  21  11.736  0.018  0  24  0.31433333  0.31433333 

113  79  39  37  21  11.736  0.002  0  24  0.31433333  0.31433333 

114  80  39  37  21  11.736  0  0  24  0.31433333  0.31433333 

115  81  40  37  21  11.736  0.005  0  24  0.31433333  0.31433333 

116  81  41  37  21  11.736  0.009  0  24  0.31433333  0.31433333 

117  80  40  37  21  11.736  0.016  0  24  0.31433333  0.31433333 

Page 125: Infiltration, Seepage, Fate, and Transport Modeling Report

118  81  40  37  21  11.736  0.029  0  24  0.31433333  0.31433333 

119  81  42  37  21  11.736  0.013  0  24  0.31433333  0.31433333 

120  81  40  37  21  11.736  0.009  0  24  0.31433333  0.31433333 

121  82  41  30  16  10.269  0.006  0  24  0.41483871  0.41483871 

122  81  41  30  16  10.269  0.017  0  24  0.41483871  0.41483871 

123  82  42  30  16  10.269  0  0  24  0.41483871  0.41483871 

124  83  42  30  16  10.269  0  0  24  0.41483871  0.41483871 

125  83  43  30  16  10.269  0.002  0  24  0.41483871  0.41483871 

126  82  42  30  16  10.269  0.009  0  24  0.41483871  0.41483871 

127  82  43  30  16  10.269  0.004  0  24  0.41483871  0.41483871 

128  83  42  30  16  10.269  0.004  0  24  0.41483871  0.41483871 

129  84  43  30  16  10.269  0  0  24  0.41483871  0.41483871 

130  84  43  30  16  10.269  0.002  0  24  0.41483871  0.41483871 

131  84  44  30  16  10.269  0.003  0  24  0.41483871  0.41483871 

132  86  44  30  16  10.269  0.001  0  24  0.41483871  0.41483871 

133  86  43  30  16  10.269  0.005  0  24  0.41483871  0.41483871 

134  86  44  30  16  10.269  0.002  0  24  0.41483871  0.41483871 

135  87  45  30  16  10.269  0.001  0  24  0.41483871  0.41483871 

136  87  45  30  16  10.269  0.006  0  24  0.41483871  0.41483871 

137  87  46  30  16  10.269  0.002  0  24  0.41483871  0.41483871 

138  87  46  30  16  10.269  0  0  24  0.41483871  0.41483871 

139  88  47  30  16  10.269  0.02  0  24  0.41483871  0.41483871 

140  88  47  30  16  10.269  0.026  0  24  0.41483871  0.41483871 

141  88  46  30  16  10.269  0.017  0  24  0.41483871  0.41483871 

142  88  46  30  16  10.269  0.007  0  24  0.41483871  0.41483871 

143  88  46  30  16  10.269  0  0  24  0.41483871  0.41483871 

144  88  47  30  16  10.269  0.01  0  24  0.41483871  0.41483871 

145  89  47  30  16  10.269  0.002  0  24  0.41483871  0.41483871 

146  88  46  30  16  10.269  0.006  0  24  0.41483871  0.41483871 

147  89  48  30  16  10.269  0.017  0  24  0.41483871  0.41483871 

148  90  47  30  16  10.269  0.004  0  24  0.41483871  0.41483871 

149  90  49  30  16  10.269  0.011  0  24  0.41483871  0.41483871 

150  89  49  30  16  10.269  0.029  0  24  0.41483871  0.41483871 

151  90  49  30  16  10.269  0.009  0  24  0.41483871  0.41483871 

152  91  50  31  18  10.269  0.002  0  24  0.47133333  0.47133333 

153  92  49  31  18  10.269  0.001  0  24  0.47133333  0.47133333 

154  92  49  31  18  10.269  0.004  0  24  0.47133333  0.47133333 

155  92  50  31  18  10.269  0.01  0  24  0.47133333  0.47133333 

156  92  51  31  18  10.269  0.012  0  24  0.47133333  0.47133333 

157  93  51  31  18  10.269  0.011  0  24  0.47133333  0.47133333 

158  93  51  31  18  10.269  0.004  0  24  0.47133333  0.47133333 

159  92  51  31  18  10.269  0.003  0  24  0.47133333  0.47133333 

160  93  51  31  18  10.269  0.006  0  24  0.47133333  0.47133333 

161  92  51  31  18  10.269  0.002  0  24  0.47133333  0.47133333 

162  93  51  31  18  10.269  0  0  24  0.47133333  0.47133333 

163  93  52  31  18  10.269  0.006  0  24  0.47133333  0.47133333 

164  94  52  31  18  10.269  0.007  0  24  0.47133333  0.47133333 

Page 126: Infiltration, Seepage, Fate, and Transport Modeling Report

165  95  54  31  18  10.269  0.005  0  24  0.47133333  0.47133333 

166  96  54  31  18  10.269  0.003  0  24  0.47133333  0.47133333 

167  96  54  31  18  10.269  0.007  0  24  0.47133333  0.47133333 

168  96  55  31  18  10.269  0  0  24  0.47133333  0.47133333 

169  97  56  31  18  10.269  0.026  0  24  0.47133333  0.47133333 

170  98  56  31  18  10.269  0.043  0  24  0.47133333  0.47133333 

171  98  56  31  18  10.269  0.016  0  24  0.47133333  0.47133333 

172  98  56  31  18  10.269  0.048  0  24  0.47133333  0.47133333 

173  98  57  31  18  10.269  0.027  0  24  0.47133333  0.47133333 

174  98  57  31  18  10.269  0.021  0  24  0.47133333  0.47133333 

175  98  58  31  18  10.269  0.015  0  24  0.47133333  0.47133333 

176  98  58  31  18  10.269  0.014  0  24  0.47133333  0.47133333 

177  98  59  31  18  10.269  0.037  0  24  0.47133333  0.47133333 

178  98  60  31  18  10.269  0.019  0  24  0.47133333  0.47133333 

179  99  60  31  18  10.269  0.012  0  24  0.47133333  0.47133333 

180  98  61  31  18  10.269  0.067  0  24  0.47133333  0.47133333 

181  98  61  31  18  10.269  0.041  0  24  0.47133333  0.47133333 

182  98  63  57  36  8.802  0.011  0  24  0.45612903  0.45612903 

183  98  62  57  36  8.802  0.039  0  24  0.45612903  0.45612903 

184  98  63  57  36  8.802  0.087  0  24  0.45612903  0.45612903 

185  97  62  57  36  8.802  0.113  0  24  0.45612903  0.45612903 

186  97  63  57  36  8.802  0.093  0  24  0.45612903  0.45612903 

187  97  63  57  36  8.802  0.146  0  24  0.45612903  0.45612903 

188  96  63  57  36  8.802  0.069  0  24  0.45612903  0.45612903 

189  96  63  57  36  8.802  0.075  0  24  0.45612903  0.45612903 

190  96  64  57  36  8.802  0.118  0  24  0.45612903  0.45612903 

191  95  64  57  36  8.802  0.114  0  24  0.45612903  0.45612903 

192  95  63  57  36  8.802  0.199  0  24  0.45612903  0.45612903 

193  95  64  57  36  8.802  0.114  0  24  0.45612903  0.45612903 

194  95  64  57  36  8.802  0.135  0  24  0.45612903  0.45612903 

195  94  64  57  36  8.802  0.071  0  24  0.45612903  0.45612903 

196  94  64  57  36  8.802  0.247  0  24  0.45612903  0.45612903 

197  94  65  57  36  8.802  0.137  0  24  0.45612903  0.45612903 

198  93  65  57  36  8.802  0.202  0  24  0.45612903  0.45612903 

199  92  64  57  36  8.802  0.136  0  24  0.45612903  0.45612903 

200  93  65  57  36  8.802  0.241  0  24  0.45612903  0.45612903 

201  93  64  57  36  8.802  0.231  0  24  0.45612903  0.45612903 

202  92  65  57  36  8.802  0.159  0  24  0.45612903  0.45612903 

203  92  64  57  36  8.802  0.182  0  24  0.45612903  0.45612903 

204  92  64  57  36  8.802  0.132  0  24  0.45612903  0.45612903 

205  93  64  57  36  8.802  0.125  0  24  0.45612903  0.45612903 

206  93  64  57  36  8.802  0.156  0  24  0.45612903  0.45612903 

207  93  64  57  36  8.802  0.207  0  24  0.45612903  0.45612903 

208  92  64  57  36  8.802  0.162  0  24  0.45612903  0.45612903 

209  91  64  57  36  8.802  0.221  0  24  0.45612903  0.45612903 

210  91  64  57  36  8.802  0.156  0  24  0.45612903  0.45612903 

211  90  64  57  36  8.802  0.197  0  24  0.45612903  0.45612903 

Page 127: Infiltration, Seepage, Fate, and Transport Modeling Report

212  91  64  57  36  8.802  0.077  0  24  0.45612903  0.45612903 

213  91  64  68  44  7.335  0.119  0  24  0.41483871  0.41483871 

214  91  64  68  44  7.335  0.179  0  24  0.41483871  0.41483871 

215  91  64  68  44  7.335  0.128  0  24  0.41483871  0.41483871 

216  92  64  68  44  7.335  0.093  0  24  0.41483871  0.41483871 

217  91  63  68  44  7.335  0.164  0  24  0.41483871  0.41483871 

218  91  64  68  44  7.335  0.15  0  24  0.41483871  0.41483871 

219  91  63  68  44  7.335  0.069  0  24  0.41483871  0.41483871 

220  93  64  68  44  7.335  0.127  0  24  0.41483871  0.41483871 

221  92  64  68  44  7.335  0.165  0  24  0.41483871  0.41483871 

222  91  64  68  44  7.335  0.094  0  24  0.41483871  0.41483871 

223  91  63  68  44  7.335  0.183  0  24  0.41483871  0.41483871 

224  92  64  68  44  7.335  0.137  0  24  0.41483871  0.41483871 

225  92  63  68  44  7.335  0.209  0  24  0.41483871  0.41483871 

226  92  62  68  44  7.335  0.157  0  24  0.41483871  0.41483871 

227  90  63  68  44  7.335  0.191  0  24  0.41483871  0.41483871 

228  90  62  68  44  7.335  0.106  0  24  0.41483871  0.41483871 

229  92  62  68  44  7.335  0.142  0  24  0.41483871  0.41483871 

230  91  62  68  44  7.335  0.248  0  24  0.41483871  0.41483871 

231  91  63  68  44  7.335  0.05  0  24  0.41483871  0.41483871 

232  91  62  68  44  7.335  0.157  0  24  0.41483871  0.41483871 

233  91  62  68  44  7.335  0.089  0  24  0.41483871  0.41483871 

234  92  62  68  44  7.335  0.074  0  24  0.41483871  0.41483871 

235  92  62  68  44  7.335  0.143  0  24  0.41483871  0.41483871 

236  92  62  68  44  7.335  0.163  0  24  0.41483871  0.41483871 

237  91  61  68  44  7.335  0.168  0  24  0.41483871  0.41483871 

238  92  61  68  44  7.335  0.107  0  24  0.41483871  0.41483871 

239  92  61  68  44  7.335  0.124  0  24  0.41483871  0.41483871 

240  92  61  68  44  7.335  0.031  0  24  0.41483871  0.41483871 

241  92  61  68  44  7.335  0.201  0  24  0.41483871  0.41483871 

242  92  60  68  44  7.335  0.076  0  24  0.41483871  0.41483871 

243  92  60  68  44  7.335  0.064  0  24  0.41483871  0.41483871 

244  92  60  58  35  7.335  0.031  0  24  0.32866667  0.32866667 

245  92  60  58  35  7.335  0.1  0  24  0.32866667  0.32866667 

246  91  60  58  35  7.335  0.066  0  24  0.32866667  0.32866667 

247  91  61  58  35  7.335  0.077  0  24  0.32866667  0.32866667 

248  91  60  58  35  7.335  0.07  0  24  0.32866667  0.32866667 

249  92  59  58  35  7.335  0.074  0  24  0.32866667  0.32866667 

250  92  58  58  35  7.335  0.084  0  24  0.32866667  0.32866667 

251  92  58  58  35  7.335  0.044  0  24  0.32866667  0.32866667 

252  92  58  58  35  7.335  0.035  0  24  0.32866667  0.32866667 

253  92  59  58  35  7.335  0.106  0  24  0.32866667  0.32866667 

254  91  58  58  35  7.335  0.041  0  24  0.32866667  0.32866667 

255  91  57  58  35  7.335  0.047  0  24  0.32866667  0.32866667 

256  91  57  58  35  7.335  0.097  0  24  0.32866667  0.32866667 

257  90  56  58  35  7.335  0.057  0  24  0.32866667  0.32866667 

258  90  55  58  35  7.335  0.117  0  24  0.32866667  0.32866667 

Page 128: Infiltration, Seepage, Fate, and Transport Modeling Report

259  90  55  58  35  7.335  0.024  0  24  0.32866667  0.32866667 

260  90  55  58  35  7.335  0.002  0  24  0.32866667  0.32866667 

261  90  55  58  35  7.335  0.031  0  24  0.32866667  0.32866667 

262  89  55  58  35  7.335  0.043  0  24  0.32866667  0.32866667 

263  89  53  58  35  7.335  0.018  0  24  0.32866667  0.32866667 

264  90  53  58  35  7.335  0.016  0  24  0.32866667  0.32866667 

265  89  52  58  35  7.335  0.037  0  24  0.32866667  0.32866667 

266  89  52  58  35  7.335  0.09  0  24  0.32866667  0.32866667 

267  88  52  58  35  7.335  0.061  0  24  0.32866667  0.32866667 

268  89  52  58  35  7.335  0.014  0  24  0.32866667  0.32866667 

269  89  52  58  35  7.335  0.015  0  24  0.32866667  0.32866667 

270  89  51  58  35  7.335  0.007  0  24  0.32866667  0.32866667 

271  89  50  58  35  7.335  0.042  0  24  0.32866667  0.32866667 

272  89  49  58  35  7.335  0.048  0  24  0.32866667  0.32866667 

273  89  50  58  35  7.335  0.064  0  24  0.32866667  0.32866667 

274  89  50  53  31  7.335  0.065  0  24  0.24419355  0.24419355 

275  87  50  53  31  7.335  0.125  0  24  0.24419355  0.24419355 

276  86  50  53  31  7.335  0.111  0  24  0.24419355  0.24419355 

277  85  50  53  31  7.335  0.036  0  24  0.24419355  0.24419355 

278  85  49  53  31  7.335  0.078  0  24  0.24419355  0.24419355 

279  87  48  53  31  7.335  0.015  0  24  0.24419355  0.24419355 

280  86  48  53  31  7.335  0.051  0  24  0.24419355  0.24419355 

281  85  47  53  31  7.335  0.063  0  24  0.24419355  0.24419355 

282  85  46  53  31  7.335  0.121  0  24  0.24419355  0.24419355 

283  85  47  53  31  7.335  0.028  0  24  0.24419355  0.24419355 

284  86  45  53  31  7.335  0.042  0  24  0.24419355  0.24419355 

285  85  44  53  31  7.335  0.034  0  24  0.24419355  0.24419355 

286  84  44  53  31  7.335  0.021  0  24  0.24419355  0.24419355 

287  84  45  53  31  7.335  0.001  0  24  0.24419355  0.24419355 

288  82  45  53  31  7.335  0.02  0  24  0.24419355  0.24419355 

289  82  44  53  31  7.335  0.01  0  24  0.24419355  0.24419355 

290  82  44  53  31  7.335  0.047  0  24  0.24419355  0.24419355 

291  82  43  53  31  7.335  0.02  0  24  0.24419355  0.24419355 

292  82  42  53  31  7.335  0.035  0  24  0.24419355  0.24419355 

293  81  43  53  31  7.335  0.065  0  24  0.24419355  0.24419355 

294  81  43  53  31  7.335  0.047  0  24  0.24419355  0.24419355 

295  80  42  53  31  7.335  0.05  0  24  0.24419355  0.24419355 

296  79  41  53  31  7.335  0.04  0  24  0.24419355  0.24419355 

297  80  40  53  31  7.335  0.011  0  24  0.24419355  0.24419355 

298  80  40  53  31  7.335  0.017  0  24  0.24419355  0.24419355 

299  80  39  53  31  7.335  0.016  0  24  0.24419355  0.24419355 

300  79  39  53  31  7.335  0.004  0  24  0.24419355  0.24419355 

301  78  38  53  31  7.335  0.044  0  24  0.24419355  0.24419355 

302  78  39  53  31  7.335  0.022  0  24  0.24419355  0.24419355 

303  77  37  53  31  7.335  0.025  0  24  0.24419355  0.24419355 

304  75  37  53  31  7.335  0.069  0  24  0.24419355  0.24419355 

305  75  36  53  30  8.802  0.006  0  24  0.157  0.157 

Page 129: Infiltration, Seepage, Fate, and Transport Modeling Report

306  75  36  53  30  8.802  0.011  0  24  0.157  0.157 

307  75  36  53  30  8.802  0.015  0  24  0.157  0.157 

308  76  35  53  30  8.802  0.007  0  24  0.157  0.157 

309  76  34  53  30  8.802  0.005  0  24  0.157  0.157 

310  76  36  53  30  8.802  0.013  0  24  0.157  0.157 

311  76  36  53  30  8.802  0.018  0  24  0.157  0.157 

312  75  36  53  30  8.802  0.019  0  24  0.157  0.157 

313  74  35  53  30  8.802  0.03  0  24  0.157  0.157 

314  74  35  53  30  8.802  0.005  0  24  0.157  0.157 

315  75  36  53  30  8.802  0.019  0  24  0.157  0.157 

316  75  36  53  30  8.802  0.072  0  24  0.157  0.157 

317  74  36  53  30  8.802  0.042  0  24  0.157  0.157 

318  73  36  53  30  8.802  0.031  0  24  0.157  0.157 

319  71  35  53  30  8.802  0.024  0  24  0.157  0.157 

320  70  32  53  30  8.802  0.046  0  24  0.157  0.157 

321  69  32  53  30  8.802  0.041  0  24  0.157  0.157 

322  68  31  53  30  8.802  0.017  0  24  0.157  0.157 

323  68  30  53  30  8.802  0.022  0  24  0.157  0.157 

324  69  29  53  30  8.802  0  0  24  0.157  0.157 

325  70  30  53  30  8.802  0.032  0  24  0.157  0.157 

326  70  30  53  30  8.802  0.012  0  24  0.157  0.157 

327  69  31  53  30  8.802  0.015  0  24  0.157  0.157 

328  70  30  53  30  8.802  0.041  0  24  0.157  0.157 

329  70  32  53  30  8.802  0.02  0  24  0.157  0.157 

330  69  31  53  30  8.802  0.04  0  24  0.157  0.157 

331  68  29  53  30  8.802  0.011  0  24  0.157  0.157 

332  67  28  53  30  8.802  0.009  0  24  0.157  0.157 

333  67  28  53  30  8.802  0.031  0  24  0.157  0.157 

334  66  28  53  30  8.802  0.012  0  24  0.157  0.157 

335  67  29  60  38  7.335  0.066  0  24  0.10129032  0.10129032 

336  68  29  60  38  7.335  0.022  0  24  0.10129032  0.10129032 

337  68  28  60  38  7.335  0.009  0  24  0.10129032  0.10129032 

338  68  29  60  38  7.335  0.058  0  24  0.10129032  0.10129032 

339  68  29  60  38  7.335  0.067  0  24  0.10129032  0.10129032 

340  66  28  60  38  7.335  0.06  0  24  0.10129032  0.10129032 

341  67  28  60  38  7.335  0.017  0  24  0.10129032  0.10129032 

342  66  28  60  38  7.335  0.042  0  24  0.10129032  0.10129032 

343  64  28  60  38  7.335  0.037  0  24  0.10129032  0.10129032 

344  64  28  60  38  7.335  0.064  0  24  0.10129032  0.10129032 

345  65  28  60  38  7.335  0.072  0  24  0.10129032  0.10129032 

346  64  28  60  38  7.335  0.04  0  24  0.10129032  0.10129032 

347  63  27  60  38  7.335  0.029  0  24  0.10129032  0.10129032 

348  64  26  60  38  7.335  0.031  0  24  0.10129032  0.10129032 

349  64  26  60  38  7.335  0.053  0  24  0.10129032  0.10129032 

350  64  27  60  38  7.335  0.053  0  24  0.10129032  0.10129032 

351  65  28  60  38  7.335  0.081  0  24  0.10129032  0.10129032 

352  66  29  60  38  7.335  0.092  0  24  0.10129032  0.10129032 

Page 130: Infiltration, Seepage, Fate, and Transport Modeling Report

353  65  29  60  38  7.335  0.033  0  24  0.10129032  0.10129032 

354  65  28  60  38  7.335  0.049  0  24  0.10129032  0.10129032 

355  65  28  60  38  7.335  0.042  0  24  0.10129032  0.10129032 

356  64  26  60  38  7.335  0.045  0  24  0.10129032  0.10129032 

357  63  26  60  38  7.335  0.021  0  24  0.10129032  0.10129032 

358  62  26  60  38  7.335  0.041  0  24  0.10129032  0.10129032 

359  63  25  60  38  7.335  0.13  0  24  0.10129032  0.10129032 

360  63  27  60  38  7.335  0.027  0  24  0.10129032  0.10129032 

361  63  26  60  38  7.335  0.043  0  24  0.10129032  0.10129032 

362  63  27  60  38  7.335  0.059  0  24  0.10129032  0.10129032 

363  63  28  60  38  7.335  0.04  0  24  0.10129032  0.10129032 

364  62  27  60  38  7.335  0.029  0  24  0.10129032  0.10129032 

365  63  26  60  38  7.335  0.051  0  24  0.10129032  0.10129032 

Multi‐Day Storm Event Name: Multi‐Day Storm Event Latitude: 31 Distribution: Sinusoidal Distribution 

Entry Modifier 

Max T Offset: 0 Min T Offset: 0 Max RH Offset: 0 Min RH Offset: 0 Wind Scale: 100 Precipitation Scale: 100 Start Precip Offset: 0 End Precip Offset: 0 PET Scale: 100 Net Radiation Scale: 100 

Climate Entries 

Day # Max T (°F) 

Min T (°F) 

Max RH (%) 

Min RH (%) 

Wind  Precipitation Precipitation 

Started Precipitation 

Ended PET 

1  53  36  60  38  7.3  0.3  0  24  0.1 

2  47  32  60  38  7.3  1.6  0  24  0.1 

3  45  35  60  38  7.3  1.8  0  24  0.1 

4  42  34  60  38  7.3  0.4  0  24  0.1 

5  43  32  60  38  7.3  0.8  0  24  0.1 

6  53  41  60  38  7.3  0.1  0  24  0.1 

7  57  38  60  38  7.3  0.8  0  24  0.1 

8  47  33  60  38  7.3  0.1  0  24  0.1 

Page 131: Infiltration, Seepage, Fate, and Transport Modeling Report

24‐hour, 100‐year Storm Name: 24‐hour, 100‐year Storm Latitude: 31 Distribution: Sinusoidal Distribution 

Entry Modifier 

Max T Offset: 0 Min T Offset: 0 Max RH Offset: 0 Min RH Offset: 0 Wind Scale: 100 Precipitation Scale: 100 Start Precip Offset: 0 End Precip Offset: 0 PET Scale: 100 Net Radiation Scale: 100 

Climate Entries 

Day # Max T (°F) 

Min T (°F) 

Max RH (%) 

Min RH (%) 

Wind  Precipitation Precipitation 

Started Precipitation 

Ended PET 

1  65  43  60  38  7.3  4.8  0  24  0.1 

2  65  43  60  38  7.3  0.1  0  24  0.1 

K Functions 

Glacial Till (Compacted), Ksat = 1.18e‐03 ft/hr Model: Data Point Function Function: X‐Conductivity vs. Pore‐Water Pressure 

Curve Fit to Data: 100 % Segment Curvature: 46 % 

K‐Saturation: 0.00118 Data Points: Matric Suction (psf), X‐Conductivity (ft/hr) 

Data Point: (0.005, 0.00118) Data Point: (0.01, 0.00118) Data Point: (0.050666, 0.00118) Data Point: (0.2567, 0.00118) Data Point: (1.3006, 0.00118) Data Point: (6.5895, 0.00118) Data Point: (24.444, 0.00118) Data Point: (33.386, 0.00118) Data Point: (169.15, 0.00118) Data Point: (857.03, 0.00043659) Data Point: (2330.4, 3.3793e‐005) 

Page 132: Infiltration, Seepage, Fate, and Transport Modeling Report

Data Point: (4342.2, 2.2328e‐006) Data Point: (4636.3, 1.7977e‐006) Data Point: (6942.2, 6.4031e‐007) Data Point: (9248.1, 2.8627e‐007) Data Point: (11554, 1.4215e‐007) Data Point: (13860, 6.8668e‐008) Data Point: (16166, 3.2348e‐008) Data Point: (18472, 1.2477e‐008) Data Point: (20778, 4.5849e‐009) Data Point: (22000, 4.5849e‐009) 

Estimation Properties Hydraulic K Sat: 0 ft/hr Hyd. K‐Function Estimation Method: Van Genuchten Function Maximum: 1000 Minimum: 0.01 Num. Points: 20 Residual Water Content: 0 ft³/ft³ 

Well‐Graded #3 (high clay), Ksat = 8.42e‐06 ft/hr Model: Data Point Function Function: X‐Conductivity vs. Pore‐Water Pressure 

Curve Fit to Data: 100 % Segment Curvature: 46 % 

K‐Saturation: 8.42e‐006 Data Points: Matric Suction (psf), X‐Conductivity (ft/hr) 

Data Point: (0.005, 8.42e‐006) Data Point: (0.01, 8.42e‐006) Data Point: (0.028381, 8.4189e‐006) Data Point: (0.080549, 8.4164e‐006) Data Point: (0.22861, 8.4109e‐006) Data Point: (0.64881, 8.3984e‐006) Data Point: (1.8414, 8.3705e‐006) Data Point: (5.2261, 8.3078e‐006) Data Point: (14.832, 8.1678e‐006) Data Point: (15.714, 8.1562e‐006) Data Point: (42.096, 7.857e‐006) Data Point: (119.47, 7.1792e‐006) Data Point: (339.08, 5.7708e‐006) Data Point: (962.35, 3.2787e‐006) Data Point: (1529.9, 1.9956e‐006) Data Point: (2731.3, 7.4428e‐007) Data Point: (3044.1, 5.8644e‐007) Data Point: (4558.3, 2.0754e‐007) Data Point: (6072.4, 8.7118e‐008) Data Point: (7586.6, 4.1843e‐008) Data Point: (7751.6, 3.8891e‐008) Data Point: (9100.8, 2.229e‐008) Data Point: (10615, 1.2866e‐008) 

Page 133: Infiltration, Seepage, Fate, and Transport Modeling Report

Data Point: (12129, 7.9116e‐009) Data Point: (13643, 5.1188e‐009) Data Point: (15158, 3.4526e‐009) Data Point: (16672, 2.4107e‐009) Data Point: (18186, 1.733e‐009) Data Point: (19700, 1.2773e‐009) Data Point: (21214, 9.6176e‐010) Data Point: (22000, 8.3637e‐010) 

Estimation Properties Hydraulic K Sat: 0 ft/hr Hyd. K‐Function Estimation Method: Van Genuchten Function Maximum: 1000 Minimum: 0.01 Num. Points: 20 Residual Water Content: 0 ft³/ft³ 

Uniform sand, Ksat = 1.2 ft/hr Model: Data Point Function Function: X‐Conductivity vs. Pore‐Water Pressure 

Curve Fit to Data: 100 % Segment Curvature: 46 % 

K‐Saturation: 1.195 Data Points: Matric Suction (psf), X‐Conductivity (ft/hr) 

Data Point: (0.005, 1.195) Data Point: (0.01, 1.195) Data Point: (0.050666, 1.195) Data Point: (0.2567, 1.195) Data Point: (1.3006, 1.195) Data Point: (6.5895, 1.195) Data Point: (24.444, 1.195) Data Point: (33.386, 1.195) Data Point: (169.15, 0.043088) Data Point: (857.03, 0.00011369) Data Point: (2330.4, 7.2714e‐006) Data Point: (4342.2, 1.5997e‐006) Data Point: (4636.3, 1.3647e‐006) Data Point: (6942.2, 5.1531e‐007) Data Point: (9248.1, 2.5207e‐007) Data Point: (11554, 1.4201e‐007) Data Point: (13860, 8.6635e‐008) Data Point: (16166, 7.5467e‐008) Data Point: (18472, 7.5467e‐008) Data Point: (20778, 7.5467e‐008) Data Point: (22000, 7.5467e‐008) 

Estimation Properties Hydraulic K Sat: 0 ft/hr Hyd. K‐Function Estimation Method: Van Genuchten Function Maximum: 1000 

Page 134: Infiltration, Seepage, Fate, and Transport Modeling Report

Minimum: 0.01 Num. Points: 20 Residual Water Content: 0 ft³/ft³ 

Pete's Coarse Ore Model: Data Point Function Function: X‐Conductivity vs. Pore‐Water Pressure 

Curve Fit to Data: 100 % Segment Curvature: 46 % 

K‐Saturation: 11.5 Data Points: Matric Suction (psf), X‐Conductivity (ft/hr) 

Data Point: (0.105, 11.5) Data Point: (0.209, 11.5) Data Point: (0.751, 11.5) Data Point: (2.7, 11.5) Data Point: (9.69, 10.7) Data Point: (23.2, 6.93) Data Point: (34.8, 5.92) Data Point: (125, 1.49) Data Point: (450, 0.0316) Data Point: (1620, 0.000873) Data Point: (2210, 0.000179) Data Point: (4400, 2.21e‐005) Data Point: (5810, 2.21e‐005) Data Point: (6590, 2.21e‐005) Data Point: (8780, 2.21e‐005) Data Point: (11000, 2.21e‐005) Data Point: (13200, 2.21e‐005) Data Point: (15300, 2.21e‐005) Data Point: (17500, 2.21e‐005) Data Point: (19700, 2.21e‐005) Data Point: (20900, 2.21e‐005) 

Estimation Properties Hydraulic K Sat: 0 ft/hr Hyd. K‐Function Estimation Method: Van Genuchten Function Maximum: 1000 Minimum: 0.01 Num. Points: 20 Residual Water Content: 0 ft³/ft³ 

Andesite Rock Model: Data Point Function Function: X‐Conductivity vs. Pore‐Water Pressure 

Curve Fit to Data: 100 % Segment Curvature: 48 % 

K‐Saturation: 170 Data Points: Matric Suction (psf), X‐Conductivity (ft/hr) 

Data Point: (0.005, 170) 

Page 135: Infiltration, Seepage, Fate, and Transport Modeling Report

Data Point: (0.01, 170) Data Point: (0.055505, 170) Data Point: (0.30808, 170) Data Point: (1.71, 170) Data Point: (9.4912, 2.3949) Data Point: (52.681, 0.010516) Data Point: (55.556, 0.0089604) Data Point: (292.4, 6.6243e‐005) Data Point: (1623, 6.3256e‐011) Data Point: (5296.3, 4.0245e‐024) Data Point: (9008.2, 4.0245e‐024) Data Point: (10537, 4.0245e‐024) Data Point: (15778, 4.0245e‐024) Data Point: (21019, 4.0245e‐024) Data Point: (26259, 4.0245e‐024) Data Point: (31500, 4.0245e‐024) Data Point: (36741, 4.0245e‐024) Data Point: (41981, 4.0245e‐024) Data Point: (47222, 4.0245e‐024) Data Point: (50000, 4.0245e‐024) 

Estimation Properties Hydraulic K Sat: 0 ft/hr Hyd. K‐Function Estimation Method: Van Genuchten Function Maximum: 1000 Minimum: 0.01 Num. Points: 20 Residual Water Content: 0 ft³/ft³ 

Silt #2, Ksat = 1.18e‐02 ft/hr Model: Data Point Function Function: X‐Conductivity vs. Pore‐Water Pressure 

Curve Fit to Data: 100 % Segment Curvature: 46 % 

K‐Saturation: 0.0118 Data Points: Matric Suction (psf), X‐Conductivity (ft/hr) 

Data Point: (0.005, 0.0118) Data Point: (0.01, 0.0118) Data Point: (0.050666, 0.0118) Data Point: (0.2567, 0.0118) Data Point: (1.3006, 0.0118) Data Point: (6.5895, 0.0118) Data Point: (24.444, 0.0118) Data Point: (33.386, 0.0118) Data Point: (169.15, 0.0093876) Data Point: (857.03, 0.00028444) Data Point: (2330.4, 6.917e‐006) Data Point: (4342.2, 4.335e‐007) Data Point: (4636.3, 3.444e‐007) 

Page 136: Infiltration, Seepage, Fate, and Transport Modeling Report

Data Point: (6942.2, 1.2285e‐007) Data Point: (9248.1, 6.3069e‐008) Data Point: (11554, 3.4728e‐008) Data Point: (13860, 1.9603e‐008) Data Point: (16166, 1.1243e‐008) Data Point: (18472, 1.1243e‐008) Data Point: (20778, 1.1243e‐008) Data Point: (22000, 1.1243e‐008) 

Estimation Properties Hydraulic K Sat: 0 ft/hr Hyd. K‐Function Estimation Method: Van Genuchten Function Maximum: 1000 Minimum: 0.01 Num. Points: 20 Residual Water Content: 0 ft³/ft³ 

Leaf Area Index Boundary Functions 

Poor grass Model: Spline Data Point Function Function: Leaf Area Index vs. Days 

Curve Fit to Data: 100 % Segment Curvature: 46 % 

Y‐Intercept: 0 Data Points: Days, Leaf Area Index 

Data Point: (0, 0) Data Point: (12.586, 0) Data Point: (25.172, 0) Data Point: (37.759, 0.042672) Data Point: (50.345, 0.1119) Data Point: (62.931, 0.2082) Data Point: (75.517, 0.39372) Data Point: (88.103, 0.57924) Data Point: (100.69, 0.72935) Data Point: (113.28, 0.87317) Data Point: (125.86, 0.95782) Data Point: (138.45, 0.9746) Data Point: (151.03, 0.99) Data Point: (163.62, 0.99) Data Point: (176.21, 0.99) Data Point: (188.79, 0.99) Data Point: (201.38, 0.99) Data Point: (213.97, 0.98471) Data Point: (226.55, 0.96793) Data Point: (239.14, 0.95115) Data Point: (251.72, 0.92694) 

Page 137: Infiltration, Seepage, Fate, and Transport Modeling Report

Data Point: (264.31, 0.90219) Data Point: (276.9, 0.83486) Data Point: (289.48, 0.73241) Data Point: (302.07, 0.62404) Data Point: (314.66, 0.48559) Data Point: (327.24, 0.34714) Data Point: (339.83, 0) Data Point: (352.41, 0) Data Point: (365, 0) 

Estimation Properties Sample Material: Poor Num. Points: 30 First Day of Growing Season: 0 Last Day of Growing Season: 0 Number of Years: 1 

Plant Moisture Limiting Boundary Functions 

Wilting function Model: Spline Data Point Function Function: Limiting Factor vs. Matric Suction 

Curve Fit to Data: 100 % Segment Curvature: 46 % 

Y‐Intercept: 1 Data Points: Matric Suction (psf), Limiting Factor 

Data Point: (‐33000, 0) Data Point: (‐2200, 1) 

Root Depth Boundary Functions 

New Function Model: Spline Data Point Function Function: Root Depth vs. Days 

Curve Fit to Data: 100 % Segment Curvature: 100 % 

Y‐Intercept: ‐0.5 Data Points: Days, Root Depth (ft) 

Data Point: (1, ‐0.5) Data Point: (100, ‐0.5) Data Point: (200, ‐0.5) Data Point: (300, ‐0.5) Data Point: (365, ‐0.5) 

Page 138: Infiltration, Seepage, Fate, and Transport Modeling Report

Vol. Water Content Functions 

Glacial Till (Compacted) Model: Fredlund‐Xing Function Function: Vol. Water Content vs. Pore‐Water Pressure 

A: 1259 psf N: 2.2973 M: 1.0662 Saturated Water Content: 0.23 ft³/ft³ Suction Limit: 2.0885e+007 Mv: 1e‐009 /psf 

Porosity: 0.23 

Well‐Graded #3 (high clay) Model: Fredlund‐Xing Function Function: Vol. Water Content vs. Pore‐Water Pressure 

A: 23272 psf N: 0.81304 M: 1.4413 Saturated Water Content: 0.34001 ft³/ft³ Suction Limit: 2.0885e+007 Mv: 1e‐009 /psf 

Porosity: 0.34000981 

Uniform sand Model: Fredlund‐Xing Function Function: Vol. Water Content vs. Pore‐Water Pressure 

A: 102.15 psf N: 6.5065 M: 0.54096 Saturated Water Content: 0.35 ft³/ft³ Suction Limit: 2.0885e+007 Mv: 1e‐009 /psf 

Porosity: 0.35 

Pete's Coarse Ore Model: Data Point Function Function: Vol. Water Content vs. Pore‐Water Pressure 

Curve Fit to Data: 100 % Segment Curvature: 48 % Mv: 0 /psf 

Porosity: 0.41231 Data Points: Matric Suction (psf), Vol. Water Content (ft³/ft³) 

Data Point: (1.05, 0.41231) Data Point: (2.09, 0.411) Data Point: (10.4, 0.406) Data Point: (41.8, 0.391) 

Page 139: Infiltration, Seepage, Fate, and Transport Modeling Report

Data Point: (125, 0.321) Data Point: (418, 0.171) Data Point: (1570, 0.0863) Data Point: (5220, 0.0513) 

Estimation Properties Vol. WC Estimation Method: Sample functions Sample Material: Clay Saturated Water Content: 0 ft³/ft³ Liquid Limit: 0 % Diameter at 10% passing: 0 Diameter at 60% passing: 0 Maximum: 1000 Minimum: 0.01 Num. Points: 20 

Andesite Rock Model: Data Point Function Function: Vol. Water Content vs. Pore‐Water Pressure 

Curve Fit to Data: 100 % Segment Curvature: 48 % Mv: 0 /psf 

Porosity: 0.27 Data Points: Matric Suction (psf), Vol. Water Content (ft³/ft³) 

Data Point: (1, 0.27) Data Point: (2, 0.24865) Data Point: (4.7707, 0.22405) Data Point: (5.5556, 0.22045) Data Point: (11.38, 0.20798) Data Point: (27.144, 0.19815) Data Point: (64.748, 0.1926) Data Point: (154.45, 0.18908) Data Point: (368.4, 0.1861) Data Point: (529.63, 0.18548) Data Point: (878.76, 0.18466) Data Point: (1053.7, 0.18466) Data Point: (1577.8, 0.18466) Data Point: (2096.1, 0.18466) Data Point: (2101.9, 0.18466) Data Point: (2625.9, 0.18466) Data Point: (3150, 0.18466) Data Point: (3674.1, 0.18466) Data Point: (4198.1, 0.18466) Data Point: (4722.2, 0.18466) Data Point: (5000, 0.18466) 

Estimation Properties Vol. WC Estimation Method: Sample functions Sample Material: Clay Saturated Water Content: 0 ft³/ft³ 

Page 140: Infiltration, Seepage, Fate, and Transport Modeling Report

Liquid Limit: 0 % Diameter at 10% passing: 0 Diameter at 60% passing: 0 Maximum: 1000 Minimum: 0.01 Num. Points: 20 

Silt #2 Model: Fredlund‐Xing Function Function: Vol. Water Content vs. Pore‐Water Pressure 

A: 492.7 psf N: 2.8872 M: 1.1969 Saturated Water Content: 0.44 ft³/ft³ Suction Limit: 2.0885e+007 Mv: 1e‐009 /psf 

Porosity: 0.44 

Thermal K vs VolWC Functions 

Clay Model: Spline Data Point Function Function: Thermal Conductivity vs. Vol. Water Content 

Curve Fit to Data: 100 % Segment Curvature: 48 % 

Y‐Intercept: 0.6425 Data Points: Vol. Water Content (ft³/ft³), Thermal Conductivity (BTU/hr/ft/°F) 

Data Point: (0, 0.6425) Data Point: (0.021579, 0.73776) Data Point: (0.043158, 0.83302) Data Point: (0.064737, 0.88875) Data Point: (0.086316, 0.92828) Data Point: (0.10789, 0.95895) Data Point: (0.12947, 0.98401) Data Point: (0.15105, 1.0052) Data Point: (0.17263, 1.0235) Data Point: (0.19421, 1.0397) Data Point: (0.21579, 1.0542) Data Point: (0.23737, 1.0673) Data Point: (0.25895, 1.0793) Data Point: (0.28053, 1.0903) Data Point: (0.30211, 1.1005) Data Point: (0.32368, 1.1099) Data Point: (0.34526, 1.1188) Data Point: (0.36684, 1.1271) Data Point: (0.38842, 1.135) 

Page 141: Infiltration, Seepage, Fate, and Transport Modeling Report

Data Point: (0.41, 1.1424) Estimation Properties 

MineralThermalK: 0 BTU/hr/ft/°F Maximum: 1 Minimum: 0 Num. Points: 20 

Silt Model: Spline Data Point Function Function: Thermal Conductivity vs. Vol. Water Content 

Curve Fit to Data: 100 % Segment Curvature: 48 % 

Y‐Intercept: 0.75017 Data Points: Vol. Water Content (ft³/ft³), Thermal Conductivity (BTU/hr/ft/°F) 

Data Point: (0, 0.75017) Data Point: (0.02, 0.86287) Data Point: (0.04, 0.97557) Data Point: (0.06, 1.0415) Data Point: (0.08, 1.0883) Data Point: (0.1, 1.1246) Data Point: (0.12, 1.1542) Data Point: (0.14, 1.1793) Data Point: (0.16, 1.201) Data Point: (0.18, 1.2201) Data Point: (0.2, 1.2372) Data Point: (0.22, 1.2527) Data Point: (0.24, 1.2669) Data Point: (0.26, 1.2799) Data Point: (0.28, 1.292) Data Point: (0.3, 1.3032) Data Point: (0.32, 1.3137) Data Point: (0.34, 1.3235) Data Point: (0.36, 1.3328) Data Point: (0.38, 1.3416) 

Estimation Properties MineralThermalK: 0 BTU/hr/ft/°F Maximum: 1 Minimum: 0 Num. Points: 20 

Sand Model: Spline Data Point Function Function: Thermal Conductivity vs. Vol. Water Content 

Curve Fit to Data: 100 % Segment Curvature: 48 % 

Y‐Intercept: 1.2184 Data Points: Vol. Water Content (ft³/ft³), Thermal Conductivity (BTU/hr/ft/°F) 

Data Point: (0, 1.2184) 

Page 142: Infiltration, Seepage, Fate, and Transport Modeling Report

Data Point: (0.015789, 1.4094) Data Point: (0.031579, 1.6004) Data Point: (0.047368, 1.7121) Data Point: (0.063158, 1.7914) Data Point: (0.078947, 1.8529) Data Point: (0.094737, 1.9031) Data Point: (0.11053, 1.9456) Data Point: (0.12632, 1.9823) Data Point: (0.14211, 2.0148) Data Point: (0.15789, 2.0438) Data Point: (0.17368, 2.0701) Data Point: (0.18947, 2.0941) Data Point: (0.20526, 2.1161) Data Point: (0.22105, 2.1365) Data Point: (0.23684, 2.1555) Data Point: (0.25263, 2.1733) Data Point: (0.26842, 2.19) Data Point: (0.28421, 2.2058) Data Point: (0.3, 2.2207) 

Estimation Properties MineralThermalK: 0 BTU/hr/ft/°F Maximum: 1 Minimum: 0 Num. Points: 20 

Vol. Specific Heat Functions 

Clay (Btu/Ft3 F) Model: Spline Data Point Function Function: Volumetric Specific Heat Capacity vs. Vol. Water Content 

Curve Fit to Data: 100 % Segment Curvature: 46 % 

Y‐Intercept: 20.189 Data Points: Vol. Water Content (ft³/ft³), Volumetric Specific Heat Capacity (BTU/ft³/°F) 

Data Point: (0, 20.189) Data Point: (0.021579, 21.535) Data Point: (0.043158, 22.881) Data Point: (0.064737, 24.228) Data Point: (0.086316, 25.574) Data Point: (0.10789, 26.92) Data Point: (0.12947, 28.266) Data Point: (0.15105, 29.612) Data Point: (0.17263, 30.959) Data Point: (0.19421, 32.305) Data Point: (0.21579, 33.651) Data Point: (0.23737, 34.997) 

Page 143: Infiltration, Seepage, Fate, and Transport Modeling Report

Data Point: (0.25895, 36.344) Data Point: (0.28053, 37.69) Data Point: (0.30211, 39.036) Data Point: (0.32368, 40.382) Data Point: (0.34526, 41.729) Data Point: (0.36684, 43.075) Data Point: (0.38842, 44.421) Data Point: (0.41, 45.767) 

Estimation Properties MassSpecHeat: 0 BTU/g/°F Maximum: 1 Minimum: 0 Num. Points: 20 

Silt (Btu/ft3 F) Model: Spline Data Point Function Function: Volumetric Specific Heat Capacity vs. Vol. Water Content 

Curve Fit to Data: 100 % Segment Curvature: 46 % 

Y‐Intercept: 18.707 Data Points: Vol. Water Content (ft³/ft³), Volumetric Specific Heat Capacity (BTU/ft³/°F) 

Data Point: (0, 18.707) Data Point: (0.02, 19.955) Data Point: (0.04, 21.203) Data Point: (0.06, 22.45) Data Point: (0.08, 23.698) Data Point: (0.1, 24.946) Data Point: (0.12, 26.194) Data Point: (0.14, 27.441) Data Point: (0.16, 28.689) Data Point: (0.18, 29.937) Data Point: (0.2, 31.184) Data Point: (0.22, 32.432) Data Point: (0.24, 33.68) Data Point: (0.26, 34.928) Data Point: (0.28, 36.175) Data Point: (0.3, 37.423) Data Point: (0.32, 38.671) Data Point: (0.34, 39.918) Data Point: (0.36, 41.166) Data Point: (0.38, 42.414) 

Estimation Properties MassSpecHeat: 0 BTU/g/°F Maximum: 1 Minimum: 0 Num. Points: 20 

Page 144: Infiltration, Seepage, Fate, and Transport Modeling Report

Sand (Btu/Ft3 F) Model: Spline Data Point Function Function: Volumetric Specific Heat Capacity vs. Vol. Water Content 

Curve Fit to Data: 100 % Segment Curvature: 46 % 

Y‐Intercept: 19.705 Data Points: Vol. Water Content (ft³/ft³), Volumetric Specific Heat Capacity (BTU/ft³/°F) 

Data Point: (0, 19.705) Data Point: (0.015789, 20.69) Data Point: (0.031579, 21.675) Data Point: (0.047368, 22.66) Data Point: (0.063158, 23.645) Data Point: (0.078947, 24.63) Data Point: (0.094737, 25.615) Data Point: (0.11053, 26.6) Data Point: (0.12632, 27.585) Data Point: (0.14211, 28.57) Data Point: (0.15789, 29.556) Data Point: (0.17368, 30.541) Data Point: (0.18947, 31.526) Data Point: (0.20526, 32.511) Data Point: (0.22105, 33.496) Data Point: (0.23684, 34.481) Data Point: (0.25263, 35.466) Data Point: (0.26842, 36.451) Data Point: (0.28421, 37.436) Data Point: (0.3, 38.421) 

Estimation Properties MassSpecHeat: 0 BTU/g/°F Maximum: 1 Minimum: 0 Num. Points: 20 

Page 145: Infiltration, Seepage, Fate, and Transport Modeling Report

Transient Coupled VADOSE/W Report generated using GeoStudio 2007, version 7.13. Copyright © 1991‐2008 GEO‐SLOPE International Ltd. 

File Information Created By: Amy L. Hudson, REM File Name: WRD baseline_v10.gsz Comments: This model represents the waste rock dump. It has been constructed in three steps, which correspond to the construction of the facility. Each of the construction models is steady state, representing about 1/3 of construction time. The final steady state model in the sequence represents the final geometry of the facility. This becomes the parent model to the transient models using average site climate data. Each transient model represents one year of time. This series of models simulates the 3 foot soil cover. 

Project Settings Length(L) Units: feet Time(t) Units: Hours Force(F) Units: lbf Temp(T) Units: F Energy Units: BTU Latent Heat of Water: 8975 Phase Change Temperature: 32 Unit Weight of Water: 62.4 pcf View: 2D 

Analysis Settings 

Transient Coupled VADOSE/W Kind: VADOSE/W Method: Transient Coupled Settings 

Initial PWP: Parent Analysis Initial Thermal Conditions Source: Parent Analysis Gas Diffusion: Oxygen Initial Concentrations from: Parent Analysis Exclude cumulative values: No 

Control Ground Freezing Latent Heat Effects: No Vegetation: Yes Apply Runoff: Yes 

Convergence Maximum Number of Iterations: 100 Tolerance: 0.1 

Page 146: Infiltration, Seepage, Fate, and Transport Modeling Report

Maximum Change in K: 1 Rate of Change in K: 1.1 Minimum Change in K: 0.0001 Equation Solver: Parallel Direct Potential Seepage Max # of Reviews: 10 

Time Step Generation Method: Linear Use Adaptive Time Stepping: Yes Adaptive Step Settings 

Adaptive Method: Vector Normal Max % Change per Step: 2.5 Max. Courant Number: 2 Range Min Step: 0.01 Range Max Step: 1 

Materials 

Alluvial ground Model: Full Thermal Hydraulic 

K‐Function: Silt #2, Ksat = 1.18e‐02 ft/hr Vol. WC. Function: Silt #2 K‐Ratio: 1 K‐Direction: 0 ° 

Thermal Thermal K Fn (K vs VWC): Silt Vol Specific Heat Fn: Silt (Btu/ft3 F) 

Gas Gas Decay (Yrs.): 0 

Bedrock Model: Full Thermal Hydraulic 

K‐Function: Well‐Graded #3 (high clay), Ksat = 8.42e‐06 ft/hr Vol. WC. Function: Well‐Graded #3 (high clay) K‐Ratio: 1 K‐Direction: 0 ° 

Thermal Thermal K Fn (K vs VWC): Clay Vol Specific Heat Fn: Clay (Btu/Ft3 F) 

Gas Gas Decay (Yrs.): 0 

Bottom waste rock Model: Full Thermal Hydraulic 

Page 147: Infiltration, Seepage, Fate, and Transport Modeling Report

K‐Function: Uniform sand, Ksat = 1.2 ft/hr Vol. WC. Function: Uniform sand K‐Ratio: 1 K‐Direction: 0 ° 

Thermal Thermal K Fn (K vs VWC): Sand Vol Specific Heat Fn: Sand (Btu/Ft3 F) 

Gas Gas Decay (Yrs.): 0 

Top waste rock Model: Full Thermal Hydraulic 

K‐Function: Andesite Rock Vol. WC. Function: Andesite Rock K‐Ratio: 1 K‐Direction: 0 ° 

Thermal Thermal K Fn (K vs VWC): Sand Vol Specific Heat Fn: Sand (Btu/Ft3 F) 

Gas Gas Decay (Yrs.): 0 

Buttress Model: Full Thermal Hydraulic 

K‐Function: Andesite Rock Vol. WC. Function: Andesite Rock K‐Ratio: 1 K‐Direction: 0 ° 

Thermal Thermal K Fn (K vs VWC): Sand Vol Specific Heat Fn: Sand (Btu/Ft3 F) 

Gas Gas Decay (Yrs.): 0 

Middle waste rock Model: Full Thermal Hydraulic 

K‐Function: Pete's Coarse Ore Vol. WC. Function: Pete's Coarse Ore K‐Ratio: 1 K‐Direction: 0 ° 

Thermal Thermal K Fn (K vs VWC): Sand Vol Specific Heat Fn: Sand (Btu/Ft3 F) 

Gas Gas Decay (Yrs.): 0 

Page 148: Infiltration, Seepage, Fate, and Transport Modeling Report

Cover Model: Full Thermal Hydraulic 

K‐Function: Glacial Till (Compacted), Ksat = 1.18e‐03 ft/hr Vol. WC. Function: Glacial Till (Compacted) K‐Ratio: 1 K‐Direction: 0 ° 

Thermal Thermal K Fn (K vs VWC): Silt Vol Specific Heat Fn: Silt (Btu/ft3 F) 

Gas Gas Decay (Yrs.): 0 

Boundary Conditions 

GW surface Type: Head (H) 4600 

Side recharge Review: true Type: Unit Flux (q) 1e‐009 

Air temperature Type: Temperature (T) 75 

Oxygen concentration Type: Concentration (C) 0.0174 

Climate Data Sets 

Average annual conditions Name: Average annual conditions Latitude: 31 Distribution: Sinusoidal Distribution 

Entry Modifier 

Max T Offset: 0 Min T Offset: 0 Max RH Offset: 0 Min RH Offset: 0 Wind Scale: 100 Precipitation Scale: 100 Start Precip Offset: 0 End Precip Offset: 0 

Page 149: Infiltration, Seepage, Fate, and Transport Modeling Report

PET Scale: 100 Net Radiation Scale: 100 

Climate Entries Day # 

Max T (°F) 

Min T (°F) 

Max RH (%) 

Min RH (%) 

Wind  Precipitation Precipitation 

Started Precipitation 

Ended PET 

Net Radiation 

1  64  27  58  35  8.802  0.019  0  24  0.10129032  0.10129032 

2  63  26  58  35  8.802  0.061  0  24  0.10129032  0.10129032 

3  62  27  58  35  8.802  0.046  0  24  0.10129032  0.10129032 

4  62  26  58  35  8.802  0.05  0  24  0.10129032  0.10129032 

5  62  27  58  35  8.802  0.028  0  24  0.10129032  0.10129032 

6  62  27  58  35  8.802  0.11  0  24  0.10129032  0.10129032 

7  62  28  58  35  8.802  0.039  0  24  0.10129032  0.10129032 

8  64  28  58  35  8.802  0.062  0  24  0.10129032  0.10129032 

9  65  27  58  35  8.802  0.033  0  24  0.10129032  0.10129032 

10  65  27  58  35  8.802  0.024  0  24  0.10129032  0.10129032 

11  64  28  58  35  8.802  0.045  0  24  0.10129032  0.10129032 

12  64  27  58  35  8.802  0.033  0  24  0.10129032  0.10129032 

13  64  27  58  35  8.802  0.036  0  24  0.10129032  0.10129032 

14  64  27  58  35  8.802  0.041  0  24  0.10129032  0.10129032 

15  65  27  58  35  8.802  0.016  0  24  0.10129032  0.10129032 

16  65  28  58  35  8.802  0.016  0  24  0.10129032  0.10129032 

17  65  28  58  35  8.802  0.038  0  24  0.10129032  0.10129032 

18  64  27  58  35  8.802  0.059  0  24  0.10129032  0.10129032 

19  66  27  58  35  8.802  0.05  0  24  0.10129032  0.10129032 

20  64  27  58  35  8.802  0.032  0  24  0.10129032  0.10129032 

21  63  27  58  35  8.802  0.024  0  24  0.10129032  0.10129032 

22  64  27  58  35  8.802  0.029  0  24  0.10129032  0.10129032 

23  64  28  58  35  8.802  0.011  0  24  0.10129032  0.10129032 

24  64  27  58  35  8.802  0.027  0  24  0.10129032  0.10129032 

25  66  28  58  35  8.802  0.033  0  24  0.10129032  0.10129032 

26  67  27  58  35  8.802  0.022  0  24  0.10129032  0.10129032 

27  66  28  58  35  8.802  0.029  0  24  0.10129032  0.10129032 

28  65  28  58  35  8.802  0.03  0  24  0.10129032  0.10129032 

29  64  27  58  35  8.802  0.013  0  24  0.10129032  0.10129032 

30  65  28  58  35  8.802  0.05  0  24  0.10129032  0.10129032 

31  65  27  58  35  8.802  0.04  0  24  0.10129032  0.10129032 

32  64  27  53  30  8.802  0.021  0  24  0.15275862  0.15275862 

33  65  27  53  30  8.802  0.011  0  24  0.15275862  0.15275862 

34  65  26  53  30  8.802  0.014  0  24  0.15275862  0.15275862 

35  65  28  53  30  8.802  0.028  0  24  0.15275862  0.15275862 

36  66  30  53  30  8.802  0.052  0  24  0.15275862  0.15275862 

37  66  29  53  30  8.802  0.013  0  24  0.15275862  0.15275862 

38  67  29  53  30  8.802  0.026  0  24  0.15275862  0.15275862 

39  67  29  53  30  8.802  0.046  0  24  0.15275862  0.15275862 

40  66  31  53  30  8.802  0.07  0  24  0.15275862  0.15275862 

41  65  29  53  30  8.802  0.037  0  24  0.15275862  0.15275862 

Page 150: Infiltration, Seepage, Fate, and Transport Modeling Report

42  66  29  53  30  8.802  0.053  0  24  0.15275862  0.15275862 

43  65  31  53  30  8.802  0.052  0  24  0.15275862  0.15275862 

44  67  31  53  30  8.802  0.031  0  24  0.15275862  0.15275862 

45  67  31  53  30  8.802  0.051  0  24  0.15275862  0.15275862 

46  66  30  53  30  8.802  0.035  0  24  0.15275862  0.15275862 

47  67  30  53  30  8.802  0.03  0  24  0.15275862  0.15275862 

48  68  30  53  30  8.802  0.017  0  24  0.15275862  0.15275862 

49  68  30  53  30  8.802  0.023  0  24  0.15275862  0.15275862 

50  67  31  53  30  8.802  0.009  0  24  0.15275862  0.15275862 

51  66  30  53  30  8.802  0.021  0  24  0.15275862  0.15275862 

52  65  29  53  30  8.802  0.047  0  24  0.15275862  0.15275862 

53  66  29  53  30  8.802  0.045  0  24  0.15275862  0.15275862 

54  67  28  53  30  8.802  0.008  0  24  0.15275862  0.15275862 

55  68  29  53  30  8.802  0.06  0  24  0.15275862  0.15275862 

56  68  30  53  30  8.802  0.028  0  24  0.15275862  0.15275862 

57  68  31  53  30  8.802  0.029  0  24  0.15275862  0.15275862 

58  69  30  53  30  8.802  0.013  0  24  0.15275862  0.15275862 

59  68  31  53  30  8.802  0.024  0  24  0.15275862  0.15275862 

60  68  31  45  24  10.269  0.047  0  24  0.23032258  0.23032258 

61  68  33  45  24  10.269  0.034  0  24  0.23032258  0.23032258 

62  66  31  45  24  10.269  0.082  0  24  0.23032258  0.23032258 

63  66  30  45  24  10.269  0.066  0  24  0.23032258  0.23032258 

64  67  31  45  24  10.269  0.018  0  24  0.23032258  0.23032258 

65  68  31  45  24  10.269  0.037  0  24  0.23032258  0.23032258 

66  69  31  45  24  10.269  0.046  0  24  0.23032258  0.23032258 

67  69  32  45  24  10.269  0.035  0  24  0.23032258  0.23032258 

68  72  33  45  24  10.269  0.011  0  24  0.23032258  0.23032258 

69  72  34  45  24  10.269  0.022  0  24  0.23032258  0.23032258 

70  70  34  45  24  10.269  0.038  0  24  0.23032258  0.23032258 

71  69  33  45  24  10.269  0.018  0  24  0.23032258  0.23032258 

72  69  31  45  24  10.269  0.054  0  24  0.23032258  0.23032258 

73  69  32  45  24  10.269  0.019  0  24  0.23032258  0.23032258 

74  71  32  45  24  10.269  0.012  0  24  0.23032258  0.23032258 

75  71  33  45  24  10.269  0.017  0  24  0.23032258  0.23032258 

76  71  34  45  24  10.269  0.007  0  24  0.23032258  0.23032258 

77  72  35  45  24  10.269  0.029  0  24  0.23032258  0.23032258 

78  71  34  45  24  10.269  0.011  0  24  0.23032258  0.23032258 

79  73  34  45  24  10.269  0.044  0  24  0.23032258  0.23032258 

80  73  34  45  24  10.269  0.045  0  24  0.23032258  0.23032258 

81  73  36  45  24  10.269  0.018  0  24  0.23032258  0.23032258 

82  73  35  45  24  10.269  0.029  0  24  0.23032258  0.23032258 

83  73  33  45  24  10.269  0.025  0  24  0.23032258  0.23032258 

84  73  34  45  24  10.269  0.012  0  24  0.23032258  0.23032258 

85  74  36  45  24  10.269  0.018  0  24  0.23032258  0.23032258 

86  72  36  45  24  10.269  0.053  0  24  0.23032258  0.23032258 

87  72  37  45  24  10.269  0.03  0  24  0.23032258  0.23032258 

88  72  37  45  24  10.269  0.021  0  24  0.23032258  0.23032258 

Page 151: Infiltration, Seepage, Fate, and Transport Modeling Report

89  72  36  45  24  10.269  0.004  0  24  0.23032258  0.23032258 

90  75  36  45  24  10.269  0.001  0  24  0.23032258  0.23032258 

91  75  36  37  21  11.736  0.023  0  24  0.31433333  0.31433333 

92  74  36  37  21  11.736  0.034  0  24  0.31433333  0.31433333 

93  73  35  37  21  11.736  0.008  0  24  0.31433333  0.31433333 

94  73  36  37  21  11.736  0.028  0  24  0.31433333  0.31433333 

95  75  37  37  21  11.736  0.006  0  24  0.31433333  0.31433333 

96  77  38  37  21  11.736  0.028  0  24  0.31433333  0.31433333 

97  77  38  37  21  11.736  0.02  0  24  0.31433333  0.31433333 

98  76  37  37  21  11.736  0.011  0  24  0.31433333  0.31433333 

99  77  37  37  21  11.736  0.004  0  24  0.31433333  0.31433333 

100  79  38  37  21  11.736  0.011  0  24  0.31433333  0.31433333 

101  78  38  37  21  11.736  0.004  0  24  0.31433333  0.31433333 

102  78  38  37  21  11.736  0.002  0  24  0.31433333  0.31433333 

103  77  38  37  21  11.736  0.004  0  24  0.31433333  0.31433333 

104  79  38  37  21  11.736  0.006  0  24  0.31433333  0.31433333 

105  80  38  37  21  11.736  0.009  0  24  0.31433333  0.31433333 

106  79  39  37  21  11.736  0.031  0  24  0.31433333  0.31433333 

107  79  40  37  21  11.736  0.031  0  24  0.31433333  0.31433333 

108  79  40  37  21  11.736  0  0  24  0.31433333  0.31433333 

109  79  39  37  21  11.736  0.023  0  24  0.31433333  0.31433333 

110  78  38  37  21  11.736  0.001  0  24  0.31433333  0.31433333 

111  80  40  37  21  11.736  0.004  0  24  0.31433333  0.31433333 

112  80  39  37  21  11.736  0.018  0  24  0.31433333  0.31433333 

113  79  39  37  21  11.736  0.002  0  24  0.31433333  0.31433333 

114  80  39  37  21  11.736  0  0  24  0.31433333  0.31433333 

115  81  40  37  21  11.736  0.005  0  24  0.31433333  0.31433333 

116  81  41  37  21  11.736  0.009  0  24  0.31433333  0.31433333 

117  80  40  37  21  11.736  0.016  0  24  0.31433333  0.31433333 

118  81  40  37  21  11.736  0.029  0  24  0.31433333  0.31433333 

119  81  42  37  21  11.736  0.013  0  24  0.31433333  0.31433333 

120  81  40  37  21  11.736  0.009  0  24  0.31433333  0.31433333 

121  82  41  30  16  10.269  0.006  0  24  0.41483871  0.41483871 

122  81  41  30  16  10.269  0.017  0  24  0.41483871  0.41483871 

123  82  42  30  16  10.269  0  0  24  0.41483871  0.41483871 

124  83  42  30  16  10.269  0  0  24  0.41483871  0.41483871 

125  83  43  30  16  10.269  0.002  0  24  0.41483871  0.41483871 

126  82  42  30  16  10.269  0.009  0  24  0.41483871  0.41483871 

127  82  43  30  16  10.269  0.004  0  24  0.41483871  0.41483871 

128  83  42  30  16  10.269  0.004  0  24  0.41483871  0.41483871 

129  84  43  30  16  10.269  0  0  24  0.41483871  0.41483871 

130  84  43  30  16  10.269  0.002  0  24  0.41483871  0.41483871 

131  84  44  30  16  10.269  0.003  0  24  0.41483871  0.41483871 

132  86  44  30  16  10.269  0.001  0  24  0.41483871  0.41483871 

133  86  43  30  16  10.269  0.005  0  24  0.41483871  0.41483871 

134  86  44  30  16  10.269  0.002  0  24  0.41483871  0.41483871 

135  87  45  30  16  10.269  0.001  0  24  0.41483871  0.41483871 

Page 152: Infiltration, Seepage, Fate, and Transport Modeling Report

136  87  45  30  16  10.269  0.006  0  24  0.41483871  0.41483871 

137  87  46  30  16  10.269  0.002  0  24  0.41483871  0.41483871 

138  87  46  30  16  10.269  0  0  24  0.41483871  0.41483871 

139  88  47  30  16  10.269  0.02  0  24  0.41483871  0.41483871 

140  88  47  30  16  10.269  0.026  0  24  0.41483871  0.41483871 

141  88  46  30  16  10.269  0.017  0  24  0.41483871  0.41483871 

142  88  46  30  16  10.269  0.007  0  24  0.41483871  0.41483871 

143  88  46  30  16  10.269  0  0  24  0.41483871  0.41483871 

144  88  47  30  16  10.269  0.01  0  24  0.41483871  0.41483871 

145  89  47  30  16  10.269  0.002  0  24  0.41483871  0.41483871 

146  88  46  30  16  10.269  0.006  0  24  0.41483871  0.41483871 

147  89  48  30  16  10.269  0.017  0  24  0.41483871  0.41483871 

148  90  47  30  16  10.269  0.004  0  24  0.41483871  0.41483871 

149  90  49  30  16  10.269  0.011  0  24  0.41483871  0.41483871 

150  89  49  30  16  10.269  0.029  0  24  0.41483871  0.41483871 

151  90  49  30  16  10.269  0.009  0  24  0.41483871  0.41483871 

152  91  50  31  18  10.269  0.002  0  24  0.47133333  0.47133333 

153  92  49  31  18  10.269  0.001  0  24  0.47133333  0.47133333 

154  92  49  31  18  10.269  0.004  0  24  0.47133333  0.47133333 

155  92  50  31  18  10.269  0.01  0  24  0.47133333  0.47133333 

156  92  51  31  18  10.269  0.012  0  24  0.47133333  0.47133333 

157  93  51  31  18  10.269  0.011  0  24  0.47133333  0.47133333 

158  93  51  31  18  10.269  0.004  0  24  0.47133333  0.47133333 

159  92  51  31  18  10.269  0.003  0  24  0.47133333  0.47133333 

160  93  51  31  18  10.269  0.006  0  24  0.47133333  0.47133333 

161  92  51  31  18  10.269  0.002  0  24  0.47133333  0.47133333 

162  93  51  31  18  10.269  0  0  24  0.47133333  0.47133333 

163  93  52  31  18  10.269  0.006  0  24  0.47133333  0.47133333 

164  94  52  31  18  10.269  0.007  0  24  0.47133333  0.47133333 

165  95  54  31  18  10.269  0.005  0  24  0.47133333  0.47133333 

166  96  54  31  18  10.269  0.003  0  24  0.47133333  0.47133333 

167  96  54  31  18  10.269  0.007  0  24  0.47133333  0.47133333 

168  96  55  31  18  10.269  0  0  24  0.47133333  0.47133333 

169  97  56  31  18  10.269  0.026  0  24  0.47133333  0.47133333 

170  98  56  31  18  10.269  0.043  0  24  0.47133333  0.47133333 

171  98  56  31  18  10.269  0.016  0  24  0.47133333  0.47133333 

172  98  56  31  18  10.269  0.048  0  24  0.47133333  0.47133333 

173  98  57  31  18  10.269  0.027  0  24  0.47133333  0.47133333 

174  98  57  31  18  10.269  0.021  0  24  0.47133333  0.47133333 

175  98  58  31  18  10.269  0.015  0  24  0.47133333  0.47133333 

176  98  58  31  18  10.269  0.014  0  24  0.47133333  0.47133333 

177  98  59  31  18  10.269  0.037  0  24  0.47133333  0.47133333 

178  98  60  31  18  10.269  0.019  0  24  0.47133333  0.47133333 

179  99  60  31  18  10.269  0.012  0  24  0.47133333  0.47133333 

180  98  61  31  18  10.269  0.067  0  24  0.47133333  0.47133333 

181  98  61  31  18  10.269  0.041  0  24  0.47133333  0.47133333 

182  98  63  57  36  8.802  0.011  0  24  0.45612903  0.45612903 

Page 153: Infiltration, Seepage, Fate, and Transport Modeling Report

183  98  62  57  36  8.802  0.039  0  24  0.45612903  0.45612903 

184  98  63  57  36  8.802  0.087  0  24  0.45612903  0.45612903 

185  97  62  57  36  8.802  0.113  0  24  0.45612903  0.45612903 

186  97  63  57  36  8.802  0.093  0  24  0.45612903  0.45612903 

187  97  63  57  36  8.802  0.146  0  24  0.45612903  0.45612903 

188  96  63  57  36  8.802  0.069  0  24  0.45612903  0.45612903 

189  96  63  57  36  8.802  0.075  0  24  0.45612903  0.45612903 

190  96  64  57  36  8.802  0.118  0  24  0.45612903  0.45612903 

191  95  64  57  36  8.802  0.114  0  24  0.45612903  0.45612903 

192  95  63  57  36  8.802  0.199  0  24  0.45612903  0.45612903 

193  95  64  57  36  8.802  0.114  0  24  0.45612903  0.45612903 

194  95  64  57  36  8.802  0.135  0  24  0.45612903  0.45612903 

195  94  64  57  36  8.802  0.071  0  24  0.45612903  0.45612903 

196  94  64  57  36  8.802  0.247  0  24  0.45612903  0.45612903 

197  94  65  57  36  8.802  0.137  0  24  0.45612903  0.45612903 

198  93  65  57  36  8.802  0.202  0  24  0.45612903  0.45612903 

199  92  64  57  36  8.802  0.136  0  24  0.45612903  0.45612903 

200  93  65  57  36  8.802  0.241  0  24  0.45612903  0.45612903 

201  93  64  57  36  8.802  0.231  0  24  0.45612903  0.45612903 

202  92  65  57  36  8.802  0.159  0  24  0.45612903  0.45612903 

203  92  64  57  36  8.802  0.182  0  24  0.45612903  0.45612903 

204  92  64  57  36  8.802  0.132  0  24  0.45612903  0.45612903 

205  93  64  57  36  8.802  0.125  0  24  0.45612903  0.45612903 

206  93  64  57  36  8.802  0.156  0  24  0.45612903  0.45612903 

207  93  64  57  36  8.802  0.207  0  24  0.45612903  0.45612903 

208  92  64  57  36  8.802  0.162  0  24  0.45612903  0.45612903 

209  91  64  57  36  8.802  0.221  0  24  0.45612903  0.45612903 

210  91  64  57  36  8.802  0.156  0  24  0.45612903  0.45612903 

211  90  64  57  36  8.802  0.197  0  24  0.45612903  0.45612903 

212  91  64  57  36  8.802  0.077  0  24  0.45612903  0.45612903 

213  91  64  68  44  7.335  0.119  0  24  0.41483871  0.41483871 

214  91  64  68  44  7.335  0.179  0  24  0.41483871  0.41483871 

215  91  64  68  44  7.335  0.128  0  24  0.41483871  0.41483871 

216  92  64  68  44  7.335  0.093  0  24  0.41483871  0.41483871 

217  91  63  68  44  7.335  0.164  0  24  0.41483871  0.41483871 

218  91  64  68  44  7.335  0.15  0  24  0.41483871  0.41483871 

219  91  63  68  44  7.335  0.069  0  24  0.41483871  0.41483871 

220  93  64  68  44  7.335  0.127  0  24  0.41483871  0.41483871 

221  92  64  68  44  7.335  0.165  0  24  0.41483871  0.41483871 

222  91  64  68  44  7.335  0.094  0  24  0.41483871  0.41483871 

223  91  63  68  44  7.335  0.183  0  24  0.41483871  0.41483871 

224  92  64  68  44  7.335  0.137  0  24  0.41483871  0.41483871 

225  92  63  68  44  7.335  0.209  0  24  0.41483871  0.41483871 

226  92  62  68  44  7.335  0.157  0  24  0.41483871  0.41483871 

227  90  63  68  44  7.335  0.191  0  24  0.41483871  0.41483871 

228  90  62  68  44  7.335  0.106  0  24  0.41483871  0.41483871 

229  92  62  68  44  7.335  0.142  0  24  0.41483871  0.41483871 

Page 154: Infiltration, Seepage, Fate, and Transport Modeling Report

230  91  62  68  44  7.335  0.248  0  24  0.41483871  0.41483871 

231  91  63  68  44  7.335  0.05  0  24  0.41483871  0.41483871 

232  91  62  68  44  7.335  0.157  0  24  0.41483871  0.41483871 

233  91  62  68  44  7.335  0.089  0  24  0.41483871  0.41483871 

234  92  62  68  44  7.335  0.074  0  24  0.41483871  0.41483871 

235  92  62  68  44  7.335  0.143  0  24  0.41483871  0.41483871 

236  92  62  68  44  7.335  0.163  0  24  0.41483871  0.41483871 

237  91  61  68  44  7.335  0.168  0  24  0.41483871  0.41483871 

238  92  61  68  44  7.335  0.107  0  24  0.41483871  0.41483871 

239  92  61  68  44  7.335  0.124  0  24  0.41483871  0.41483871 

240  92  61  68  44  7.335  0.031  0  24  0.41483871  0.41483871 

241  92  61  68  44  7.335  0.201  0  24  0.41483871  0.41483871 

242  92  60  68  44  7.335  0.076  0  24  0.41483871  0.41483871 

243  92  60  68  44  7.335  0.064  0  24  0.41483871  0.41483871 

244  92  60  58  35  7.335  0.031  0  24  0.32866667  0.32866667 

245  92  60  58  35  7.335  0.1  0  24  0.32866667  0.32866667 

246  91  60  58  35  7.335  0.066  0  24  0.32866667  0.32866667 

247  91  61  58  35  7.335  0.077  0  24  0.32866667  0.32866667 

248  91  60  58  35  7.335  0.07  0  24  0.32866667  0.32866667 

249  92  59  58  35  7.335  0.074  0  24  0.32866667  0.32866667 

250  92  58  58  35  7.335  0.084  0  24  0.32866667  0.32866667 

251  92  58  58  35  7.335  0.044  0  24  0.32866667  0.32866667 

252  92  58  58  35  7.335  0.035  0  24  0.32866667  0.32866667 

253  92  59  58  35  7.335  0.106  0  24  0.32866667  0.32866667 

254  91  58  58  35  7.335  0.041  0  24  0.32866667  0.32866667 

255  91  57  58  35  7.335  0.047  0  24  0.32866667  0.32866667 

256  91  57  58  35  7.335  0.097  0  24  0.32866667  0.32866667 

257  90  56  58  35  7.335  0.057  0  24  0.32866667  0.32866667 

258  90  55  58  35  7.335  0.117  0  24  0.32866667  0.32866667 

259  90  55  58  35  7.335  0.024  0  24  0.32866667  0.32866667 

260  90  55  58  35  7.335  0.002  0  24  0.32866667  0.32866667 

261  90  55  58  35  7.335  0.031  0  24  0.32866667  0.32866667 

262  89  55  58  35  7.335  0.043  0  24  0.32866667  0.32866667 

263  89  53  58  35  7.335  0.018  0  24  0.32866667  0.32866667 

264  90  53  58  35  7.335  0.016  0  24  0.32866667  0.32866667 

265  89  52  58  35  7.335  0.037  0  24  0.32866667  0.32866667 

266  89  52  58  35  7.335  0.09  0  24  0.32866667  0.32866667 

267  88  52  58  35  7.335  0.061  0  24  0.32866667  0.32866667 

268  89  52  58  35  7.335  0.014  0  24  0.32866667  0.32866667 

269  89  52  58  35  7.335  0.015  0  24  0.32866667  0.32866667 

270  89  51  58  35  7.335  0.007  0  24  0.32866667  0.32866667 

271  89  50  58  35  7.335  0.042  0  24  0.32866667  0.32866667 

272  89  49  58  35  7.335  0.048  0  24  0.32866667  0.32866667 

273  89  50  58  35  7.335  0.064  0  24  0.32866667  0.32866667 

274  89  50  53  31  7.335  0.065  0  24  0.24419355  0.24419355 

275  87  50  53  31  7.335  0.125  0  24  0.24419355  0.24419355 

276  86  50  53  31  7.335  0.111  0  24  0.24419355  0.24419355 

Page 155: Infiltration, Seepage, Fate, and Transport Modeling Report

277  85  50  53  31  7.335  0.036  0  24  0.24419355  0.24419355 

278  85  49  53  31  7.335  0.078  0  24  0.24419355  0.24419355 

279  87  48  53  31  7.335  0.015  0  24  0.24419355  0.24419355 

280  86  48  53  31  7.335  0.051  0  24  0.24419355  0.24419355 

281  85  47  53  31  7.335  0.063  0  24  0.24419355  0.24419355 

282  85  46  53  31  7.335  0.121  0  24  0.24419355  0.24419355 

283  85  47  53  31  7.335  0.028  0  24  0.24419355  0.24419355 

284  86  45  53  31  7.335  0.042  0  24  0.24419355  0.24419355 

285  85  44  53  31  7.335  0.034  0  24  0.24419355  0.24419355 

286  84  44  53  31  7.335  0.021  0  24  0.24419355  0.24419355 

287  84  45  53  31  7.335  0.001  0  24  0.24419355  0.24419355 

288  82  45  53  31  7.335  0.02  0  24  0.24419355  0.24419355 

289  82  44  53  31  7.335  0.01  0  24  0.24419355  0.24419355 

290  82  44  53  31  7.335  0.047  0  24  0.24419355  0.24419355 

291  82  43  53  31  7.335  0.02  0  24  0.24419355  0.24419355 

292  82  42  53  31  7.335  0.035  0  24  0.24419355  0.24419355 

293  81  43  53  31  7.335  0.065  0  24  0.24419355  0.24419355 

294  81  43  53  31  7.335  0.047  0  24  0.24419355  0.24419355 

295  80  42  53  31  7.335  0.05  0  24  0.24419355  0.24419355 

296  79  41  53  31  7.335  0.04  0  24  0.24419355  0.24419355 

297  80  40  53  31  7.335  0.011  0  24  0.24419355  0.24419355 

298  80  40  53  31  7.335  0.017  0  24  0.24419355  0.24419355 

299  80  39  53  31  7.335  0.016  0  24  0.24419355  0.24419355 

300  79  39  53  31  7.335  0.004  0  24  0.24419355  0.24419355 

301  78  38  53  31  7.335  0.044  0  24  0.24419355  0.24419355 

302  78  39  53  31  7.335  0.022  0  24  0.24419355  0.24419355 

303  77  37  53  31  7.335  0.025  0  24  0.24419355  0.24419355 

304  75  37  53  31  7.335  0.069  0  24  0.24419355  0.24419355 

305  75  36  53  30  8.802  0.006  0  24  0.157  0.157 

306  75  36  53  30  8.802  0.011  0  24  0.157  0.157 

307  75  36  53  30  8.802  0.015  0  24  0.157  0.157 

308  76  35  53  30  8.802  0.007  0  24  0.157  0.157 

309  76  34  53  30  8.802  0.005  0  24  0.157  0.157 

310  76  36  53  30  8.802  0.013  0  24  0.157  0.157 

311  76  36  53  30  8.802  0.018  0  24  0.157  0.157 

312  75  36  53  30  8.802  0.019  0  24  0.157  0.157 

313  74  35  53  30  8.802  0.03  0  24  0.157  0.157 

314  74  35  53  30  8.802  0.005  0  24  0.157  0.157 

315  75  36  53  30  8.802  0.019  0  24  0.157  0.157 

316  75  36  53  30  8.802  0.072  0  24  0.157  0.157 

317  74  36  53  30  8.802  0.042  0  24  0.157  0.157 

318  73  36  53  30  8.802  0.031  0  24  0.157  0.157 

319  71  35  53  30  8.802  0.024  0  24  0.157  0.157 

320  70  32  53  30  8.802  0.046  0  24  0.157  0.157 

321  69  32  53  30  8.802  0.041  0  24  0.157  0.157 

322  68  31  53  30  8.802  0.017  0  24  0.157  0.157 

323  68  30  53  30  8.802  0.022  0  24  0.157  0.157 

Page 156: Infiltration, Seepage, Fate, and Transport Modeling Report

324  69  29  53  30  8.802  0  0  24  0.157  0.157 

325  70  30  53  30  8.802  0.032  0  24  0.157  0.157 

326  70  30  53  30  8.802  0.012  0  24  0.157  0.157 

327  69  31  53  30  8.802  0.015  0  24  0.157  0.157 

328  70  30  53  30  8.802  0.041  0  24  0.157  0.157 

329  70  32  53  30  8.802  0.02  0  24  0.157  0.157 

330  69  31  53  30  8.802  0.04  0  24  0.157  0.157 

331  68  29  53  30  8.802  0.011  0  24  0.157  0.157 

332  67  28  53  30  8.802  0.009  0  24  0.157  0.157 

333  67  28  53  30  8.802  0.031  0  24  0.157  0.157 

334  66  28  53  30  8.802  0.012  0  24  0.157  0.157 

335  67  29  60  38  7.335  0.066  0  24  0.10129032  0.10129032 

336  68  29  60  38  7.335  0.022  0  24  0.10129032  0.10129032 

337  68  28  60  38  7.335  0.009  0  24  0.10129032  0.10129032 

338  68  29  60  38  7.335  0.058  0  24  0.10129032  0.10129032 

339  68  29  60  38  7.335  0.067  0  24  0.10129032  0.10129032 

340  66  28  60  38  7.335  0.06  0  24  0.10129032  0.10129032 

341  67  28  60  38  7.335  0.017  0  24  0.10129032  0.10129032 

342  66  28  60  38  7.335  0.042  0  24  0.10129032  0.10129032 

343  64  28  60  38  7.335  0.037  0  24  0.10129032  0.10129032 

344  64  28  60  38  7.335  0.064  0  24  0.10129032  0.10129032 

345  65  28  60  38  7.335  0.072  0  24  0.10129032  0.10129032 

346  64  28  60  38  7.335  0.04  0  24  0.10129032  0.10129032 

347  63  27  60  38  7.335  0.029  0  24  0.10129032  0.10129032 

348  64  26  60  38  7.335  0.031  0  24  0.10129032  0.10129032 

349  64  26  60  38  7.335  0.053  0  24  0.10129032  0.10129032 

350  64  27  60  38  7.335  0.053  0  24  0.10129032  0.10129032 

351  65  28  60  38  7.335  0.081  0  24  0.10129032  0.10129032 

352  66  29  60  38  7.335  0.092  0  24  0.10129032  0.10129032 

353  65  29  60  38  7.335  0.033  0  24  0.10129032  0.10129032 

354  65  28  60  38  7.335  0.049  0  24  0.10129032  0.10129032 

355  65  28  60  38  7.335  0.042  0  24  0.10129032  0.10129032 

356  64  26  60  38  7.335  0.045  0  24  0.10129032  0.10129032 

357  63  26  60  38  7.335  0.021  0  24  0.10129032  0.10129032 

358  62  26  60  38  7.335  0.041  0  24  0.10129032  0.10129032 

359  63  25  60  38  7.335  0.13  0  24  0.10129032  0.10129032 

360  63  27  60  38  7.335  0.027  0  24  0.10129032  0.10129032 

361  63  26  60  38  7.335  0.043  0  24  0.10129032  0.10129032 

362  63  27  60  38  7.335  0.059  0  24  0.10129032  0.10129032 

363  63  28  60  38  7.335  0.04  0  24  0.10129032  0.10129032 

364  62  27  60  38  7.335  0.029  0  24  0.10129032  0.10129032 

365  63  26  60  38  7.335  0.051  0  24  0.10129032  0.10129032 

Multi‐Day Storm Event Name: Multi‐Day Storm Event Latitude: 31 Distribution: Sinusoidal Distribution 

Page 157: Infiltration, Seepage, Fate, and Transport Modeling Report

Entry Modifier 

Max T Offset: 0 Min T Offset: 0 Max RH Offset: 0 Min RH Offset: 0 Wind Scale: 100 Precipitation Scale: 100 Start Precip Offset: 0 End Precip Offset: 0 PET Scale: 100 Net Radiation Scale: 100 

Climate Entries 

Day # Max T (°F) 

Min T (°F) 

Max RH (%) 

Min RH (%) 

Wind  Precipitation Precipitation 

Started Precipitation 

Ended PET 

1  53  36  60  38  7.3  0.3  0  24  0.1 

2  47  32  60  38  7.3  1.6  0  24  0.1 

3  45  35  60  38  7.3  1.8  0  24  0.1 

4  42  34  60  38  7.3  0.4  0  24  0.1 

5  43  32  60  38  7.3  0.8  0  24  0.1 

6  53  41  60  38  7.3  0.1  0  24  0.1 

7  57  38  60  38  7.3  0.8  0  24  0.1 

8  47  33  60  38  7.3  0.1  0  24  0.1 

24‐hour, 100‐year Storm Name: 24‐hour, 100‐year Storm Latitude: 31 Distribution: Sinusoidal Distribution 

Entry Modifier 

Max T Offset: 0 Min T Offset: 0 Max RH Offset: 0 Min RH Offset: 0 Wind Scale: 100 Precipitation Scale: 100 Start Precip Offset: 0 End Precip Offset: 0 PET Scale: 100 Net Radiation Scale: 100 

Page 158: Infiltration, Seepage, Fate, and Transport Modeling Report

Climate Entries 

Day # Max T (°F) 

Min T (°F) 

Max RH (%) 

Min RH (%) 

Wind  Precipitation Precipitation 

Started Precipitation 

Ended PET 

1  65  43  60  38  7.3  4.8  0  24  0.1 

2  65  43  60  38  7.3  0.1  0  24  0.1 

K Functions 

Glacial Till (Compacted), Ksat = 1.18e‐03 ft/hr Model: Data Point Function Function: X‐Conductivity vs. Pore‐Water Pressure 

Curve Fit to Data: 100 % Segment Curvature: 46 % 

K‐Saturation: 0.00118 Data Points: Matric Suction (psf), X‐Conductivity (ft/hr) 

Data Point: (0.005, 0.00118) Data Point: (0.01, 0.00118) Data Point: (0.050666, 0.00118) Data Point: (0.2567, 0.00118) Data Point: (1.3006, 0.00118) Data Point: (6.5895, 0.00118) Data Point: (24.444, 0.00118) Data Point: (33.386, 0.00118) Data Point: (169.15, 0.00118) Data Point: (857.03, 0.00043659) Data Point: (2330.4, 3.3793e‐005) Data Point: (4342.2, 2.2328e‐006) Data Point: (4636.3, 1.7977e‐006) Data Point: (6942.2, 6.4031e‐007) Data Point: (9248.1, 2.8627e‐007) Data Point: (11554, 1.4215e‐007) Data Point: (13860, 6.8668e‐008) Data Point: (16166, 3.2348e‐008) Data Point: (18472, 1.2477e‐008) Data Point: (20778, 4.5849e‐009) Data Point: (22000, 4.5849e‐009) 

Estimation Properties Hydraulic K Sat: 0 ft/hr Hyd. K‐Function Estimation Method: Van Genuchten Function Maximum: 1000 Minimum: 0.01 Num. Points: 20 Residual Water Content: 0 ft³/ft³ 

Page 159: Infiltration, Seepage, Fate, and Transport Modeling Report

Well‐Graded #3 (high clay), Ksat = 8.42e‐06 ft/hr Model: Data Point Function Function: X‐Conductivity vs. Pore‐Water Pressure 

Curve Fit to Data: 100 % Segment Curvature: 46 % 

K‐Saturation: 8.42e‐006 Data Points: Matric Suction (psf), X‐Conductivity (ft/hr) 

Data Point: (0.005, 8.42e‐006) Data Point: (0.01, 8.42e‐006) Data Point: (0.028381, 8.4189e‐006) Data Point: (0.080549, 8.4164e‐006) Data Point: (0.22861, 8.4109e‐006) Data Point: (0.64881, 8.3984e‐006) Data Point: (1.8414, 8.3705e‐006) Data Point: (5.2261, 8.3078e‐006) Data Point: (14.832, 8.1678e‐006) Data Point: (15.714, 8.1562e‐006) Data Point: (42.096, 7.857e‐006) Data Point: (119.47, 7.1792e‐006) Data Point: (339.08, 5.7708e‐006) Data Point: (962.35, 3.2787e‐006) Data Point: (1529.9, 1.9956e‐006) Data Point: (2731.3, 7.4428e‐007) Data Point: (3044.1, 5.8644e‐007) Data Point: (4558.3, 2.0754e‐007) Data Point: (6072.4, 8.7118e‐008) Data Point: (7586.6, 4.1843e‐008) Data Point: (7751.6, 3.8891e‐008) Data Point: (9100.8, 2.229e‐008) Data Point: (10615, 1.2866e‐008) Data Point: (12129, 7.9116e‐009) Data Point: (13643, 5.1188e‐009) Data Point: (15158, 3.4526e‐009) Data Point: (16672, 2.4107e‐009) Data Point: (18186, 1.733e‐009) Data Point: (19700, 1.2773e‐009) Data Point: (21214, 9.6176e‐010) Data Point: (22000, 8.3637e‐010) 

Estimation Properties Hydraulic K Sat: 0 ft/hr Hyd. K‐Function Estimation Method: Van Genuchten Function Maximum: 1000 Minimum: 0.01 Num. Points: 20 Residual Water Content: 0 ft³/ft³ 

Page 160: Infiltration, Seepage, Fate, and Transport Modeling Report

Uniform sand, Ksat = 1.2 ft/hr Model: Data Point Function Function: X‐Conductivity vs. Pore‐Water Pressure 

Curve Fit to Data: 100 % Segment Curvature: 46 % 

K‐Saturation: 1.195 Data Points: Matric Suction (psf), X‐Conductivity (ft/hr) 

Data Point: (0.005, 1.195) Data Point: (0.01, 1.195) Data Point: (0.050666, 1.195) Data Point: (0.2567, 1.195) Data Point: (1.3006, 1.195) Data Point: (6.5895, 1.195) Data Point: (24.444, 1.195) Data Point: (33.386, 1.195) Data Point: (169.15, 0.043088) Data Point: (857.03, 0.00011369) Data Point: (2330.4, 7.2714e‐006) Data Point: (4342.2, 1.5997e‐006) Data Point: (4636.3, 1.3647e‐006) Data Point: (6942.2, 5.1531e‐007) Data Point: (9248.1, 2.5207e‐007) Data Point: (11554, 1.4201e‐007) Data Point: (13860, 8.6635e‐008) Data Point: (16166, 7.5467e‐008) Data Point: (18472, 7.5467e‐008) Data Point: (20778, 7.5467e‐008) Data Point: (22000, 7.5467e‐008) 

Estimation Properties Hydraulic K Sat: 0 ft/hr Hyd. K‐Function Estimation Method: Van Genuchten Function Maximum: 1000 Minimum: 0.01 Num. Points: 20 Residual Water Content: 0 ft³/ft³ 

Pete's Coarse Ore Model: Data Point Function Function: X‐Conductivity vs. Pore‐Water Pressure 

Curve Fit to Data: 100 % Segment Curvature: 46 % 

K‐Saturation: 11.5 Data Points: Matric Suction (psf), X‐Conductivity (ft/hr) 

Data Point: (0.105, 11.5) Data Point: (0.209, 11.5) Data Point: (0.751, 11.5) Data Point: (2.7, 11.5) 

Page 161: Infiltration, Seepage, Fate, and Transport Modeling Report

Data Point: (9.69, 10.7) Data Point: (23.2, 6.93) Data Point: (34.8, 5.92) Data Point: (125, 1.49) Data Point: (450, 0.0316) Data Point: (1620, 0.000873) Data Point: (2210, 0.000179) Data Point: (4400, 2.21e‐005) Data Point: (5810, 2.21e‐005) Data Point: (6590, 2.21e‐005) Data Point: (8780, 2.21e‐005) Data Point: (11000, 2.21e‐005) Data Point: (13200, 2.21e‐005) Data Point: (15300, 2.21e‐005) Data Point: (17500, 2.21e‐005) Data Point: (19700, 2.21e‐005) Data Point: (20900, 2.21e‐005) 

Estimation Properties Hydraulic K Sat: 0 ft/hr Hyd. K‐Function Estimation Method: Van Genuchten Function Maximum: 1000 Minimum: 0.01 Num. Points: 20 Residual Water Content: 0 ft³/ft³ 

Andesite Rock Model: Data Point Function Function: X‐Conductivity vs. Pore‐Water Pressure 

Curve Fit to Data: 100 % Segment Curvature: 48 % 

K‐Saturation: 170 Data Points: Matric Suction (psf), X‐Conductivity (ft/hr) 

Data Point: (0.005, 170) Data Point: (0.01, 170) Data Point: (0.055505, 170) Data Point: (0.30808, 170) Data Point: (1.71, 170) Data Point: (9.4912, 2.3949) Data Point: (52.681, 0.010516) Data Point: (55.556, 0.0089604) Data Point: (292.4, 6.6243e‐005) Data Point: (1623, 6.3256e‐011) Data Point: (5296.3, 4.0245e‐024) Data Point: (9008.2, 4.0245e‐024) Data Point: (10537, 4.0245e‐024) Data Point: (15778, 4.0245e‐024) Data Point: (21019, 4.0245e‐024) Data Point: (26259, 4.0245e‐024) 

Page 162: Infiltration, Seepage, Fate, and Transport Modeling Report

Data Point: (31500, 4.0245e‐024) Data Point: (36741, 4.0245e‐024) Data Point: (41981, 4.0245e‐024) Data Point: (47222, 4.0245e‐024) Data Point: (50000, 4.0245e‐024) 

Estimation Properties Hydraulic K Sat: 0 ft/hr Hyd. K‐Function Estimation Method: Van Genuchten Function Maximum: 1000 Minimum: 0.01 Num. Points: 20 Residual Water Content: 0 ft³/ft³ 

Silt #2, Ksat = 1.18e‐02 ft/hr Model: Data Point Function Function: X‐Conductivity vs. Pore‐Water Pressure 

Curve Fit to Data: 100 % Segment Curvature: 46 % 

K‐Saturation: 0.0118 Data Points: Matric Suction (psf), X‐Conductivity (ft/hr) 

Data Point: (0.005, 0.0118) Data Point: (0.01, 0.0118) Data Point: (0.050666, 0.0118) Data Point: (0.2567, 0.0118) Data Point: (1.3006, 0.0118) Data Point: (6.5895, 0.0118) Data Point: (24.444, 0.0118) Data Point: (33.386, 0.0118) Data Point: (169.15, 0.0093876) Data Point: (857.03, 0.00028444) Data Point: (2330.4, 6.917e‐006) Data Point: (4342.2, 4.335e‐007) Data Point: (4636.3, 3.444e‐007) Data Point: (6942.2, 1.2285e‐007) Data Point: (9248.1, 6.3069e‐008) Data Point: (11554, 3.4728e‐008) Data Point: (13860, 1.9603e‐008) Data Point: (16166, 1.1243e‐008) Data Point: (18472, 1.1243e‐008) Data Point: (20778, 1.1243e‐008) Data Point: (22000, 1.1243e‐008) 

Estimation Properties Hydraulic K Sat: 0 ft/hr Hyd. K‐Function Estimation Method: Van Genuchten Function Maximum: 1000 Minimum: 0.01 Num. Points: 20 Residual Water Content: 0 ft³/ft³ 

Page 163: Infiltration, Seepage, Fate, and Transport Modeling Report

Leaf Area Index Boundary Functions 

Poor grass Model: Spline Data Point Function Function: Leaf Area Index vs. Days 

Curve Fit to Data: 100 % Segment Curvature: 46 % 

Y‐Intercept: 0 Data Points: Days, Leaf Area Index 

Data Point: (0, 0) Data Point: (12.586, 0) Data Point: (25.172, 0) Data Point: (37.759, 0.042672) Data Point: (50.345, 0.1119) Data Point: (62.931, 0.2082) Data Point: (75.517, 0.39372) Data Point: (88.103, 0.57924) Data Point: (100.69, 0.72935) Data Point: (113.28, 0.87317) Data Point: (125.86, 0.95782) Data Point: (138.45, 0.9746) Data Point: (151.03, 0.99) Data Point: (163.62, 0.99) Data Point: (176.21, 0.99) Data Point: (188.79, 0.99) Data Point: (201.38, 0.99) Data Point: (213.97, 0.98471) Data Point: (226.55, 0.96793) Data Point: (239.14, 0.95115) Data Point: (251.72, 0.92694) Data Point: (264.31, 0.90219) Data Point: (276.9, 0.83486) Data Point: (289.48, 0.73241) Data Point: (302.07, 0.62404) Data Point: (314.66, 0.48559) Data Point: (327.24, 0.34714) Data Point: (339.83, 0) Data Point: (352.41, 0) Data Point: (365, 0) 

Estimation Properties Sample Material: Poor Num. Points: 30 First Day of Growing Season: 0 Last Day of Growing Season: 0 Number of Years: 1 

Page 164: Infiltration, Seepage, Fate, and Transport Modeling Report

Plant Moisture Limiting Boundary Functions 

Wilting function Model: Spline Data Point Function Function: Limiting Factor vs. Matric Suction 

Curve Fit to Data: 100 % Segment Curvature: 46 % 

Y‐Intercept: 1 Data Points: Matric Suction (psf), Limiting Factor 

Data Point: (‐33000, 0) Data Point: (‐2200, 1) 

Root Depth Boundary Functions 

New Function Model: Spline Data Point Function Function: Root Depth vs. Days 

Curve Fit to Data: 100 % Segment Curvature: 100 % 

Y‐Intercept: ‐0.5 Data Points: Days, Root Depth (ft) 

Data Point: (1, ‐0.5) Data Point: (100, ‐0.5) Data Point: (200, ‐0.5) Data Point: (300, ‐0.5) Data Point: (365, ‐0.5) 

Vol. Water Content Functions 

Glacial Till (Compacted) Model: Fredlund‐Xing Function Function: Vol. Water Content vs. Pore‐Water Pressure 

A: 1259 psf N: 2.2973 M: 1.0662 Saturated Water Content: 0.23 ft³/ft³ Suction Limit: 2.0885e+007 Mv: 1e‐009 /psf 

Porosity: 0.23 

Well‐Graded #3 (high clay) Model: Fredlund‐Xing Function Function: Vol. Water Content vs. Pore‐Water Pressure 

A: 23272 psf 

Page 165: Infiltration, Seepage, Fate, and Transport Modeling Report

N: 0.81304 M: 1.4413 Saturated Water Content: 0.34001 ft³/ft³ Suction Limit: 2.0885e+007 Mv: 1e‐009 /psf 

Porosity: 0.34000981 

Uniform sand Model: Fredlund‐Xing Function Function: Vol. Water Content vs. Pore‐Water Pressure 

A: 102.15 psf N: 6.5065 M: 0.54096 Saturated Water Content: 0.35 ft³/ft³ Suction Limit: 2.0885e+007 Mv: 1e‐009 /psf 

Porosity: 0.35 

Pete's Coarse Ore Model: Data Point Function Function: Vol. Water Content vs. Pore‐Water Pressure 

Curve Fit to Data: 100 % Segment Curvature: 48 % Mv: 0 /psf 

Porosity: 0.41231 Data Points: Matric Suction (psf), Vol. Water Content (ft³/ft³) 

Data Point: (1.05, 0.41231) Data Point: (2.09, 0.411) Data Point: (10.4, 0.406) Data Point: (41.8, 0.391) Data Point: (125, 0.321) Data Point: (418, 0.171) Data Point: (1570, 0.0863) Data Point: (5220, 0.0513) 

Estimation Properties Vol. WC Estimation Method: Sample functions Sample Material: Clay Saturated Water Content: 0 ft³/ft³ Liquid Limit: 0 % Diameter at 10% passing: 0 Diameter at 60% passing: 0 Maximum: 1000 Minimum: 0.01 Num. Points: 20 

Andesite Rock Model: Data Point Function Function: Vol. Water Content vs. Pore‐Water Pressure 

Page 166: Infiltration, Seepage, Fate, and Transport Modeling Report

Curve Fit to Data: 100 % Segment Curvature: 48 % Mv: 0 /psf 

Porosity: 0.27 Data Points: Matric Suction (psf), Vol. Water Content (ft³/ft³) 

Data Point: (1, 0.27) Data Point: (2, 0.24865) Data Point: (4.7707, 0.22405) Data Point: (5.5556, 0.22045) Data Point: (11.38, 0.20798) Data Point: (27.144, 0.19815) Data Point: (64.748, 0.1926) Data Point: (154.45, 0.18908) Data Point: (368.4, 0.1861) Data Point: (529.63, 0.18548) Data Point: (878.76, 0.18466) Data Point: (1053.7, 0.18466) Data Point: (1577.8, 0.18466) Data Point: (2096.1, 0.18466) Data Point: (2101.9, 0.18466) Data Point: (2625.9, 0.18466) Data Point: (3150, 0.18466) Data Point: (3674.1, 0.18466) Data Point: (4198.1, 0.18466) Data Point: (4722.2, 0.18466) Data Point: (5000, 0.18466) 

Estimation Properties Vol. WC Estimation Method: Sample functions Sample Material: Clay Saturated Water Content: 0 ft³/ft³ Liquid Limit: 0 % Diameter at 10% passing: 0 Diameter at 60% passing: 0 Maximum: 1000 Minimum: 0.01 Num. Points: 20 

Silt #2 Model: Fredlund‐Xing Function Function: Vol. Water Content vs. Pore‐Water Pressure 

A: 492.7 psf N: 2.8872 M: 1.1969 Saturated Water Content: 0.44 ft³/ft³ Suction Limit: 2.0885e+007 Mv: 1e‐009 /psf 

Porosity: 0.44 

Page 167: Infiltration, Seepage, Fate, and Transport Modeling Report

Thermal K vs VolWC Functions 

Clay Model: Spline Data Point Function Function: Thermal Conductivity vs. Vol. Water Content 

Curve Fit to Data: 100 % Segment Curvature: 48 % 

Y‐Intercept: 0.6425 Data Points: Vol. Water Content (ft³/ft³), Thermal Conductivity (BTU/hr/ft/°F) 

Data Point: (0, 0.6425) Data Point: (0.021579, 0.73776) Data Point: (0.043158, 0.83302) Data Point: (0.064737, 0.88875) Data Point: (0.086316, 0.92828) Data Point: (0.10789, 0.95895) Data Point: (0.12947, 0.98401) Data Point: (0.15105, 1.0052) Data Point: (0.17263, 1.0235) Data Point: (0.19421, 1.0397) Data Point: (0.21579, 1.0542) Data Point: (0.23737, 1.0673) Data Point: (0.25895, 1.0793) Data Point: (0.28053, 1.0903) Data Point: (0.30211, 1.1005) Data Point: (0.32368, 1.1099) Data Point: (0.34526, 1.1188) Data Point: (0.36684, 1.1271) Data Point: (0.38842, 1.135) Data Point: (0.41, 1.1424) 

Estimation Properties MineralThermalK: 0 BTU/hr/ft/°F Maximum: 1 Minimum: 0 Num. Points: 20 

Silt Model: Spline Data Point Function Function: Thermal Conductivity vs. Vol. Water Content 

Curve Fit to Data: 100 % Segment Curvature: 48 % 

Y‐Intercept: 0.75017 Data Points: Vol. Water Content (ft³/ft³), Thermal Conductivity (BTU/hr/ft/°F) 

Data Point: (0, 0.75017) Data Point: (0.02, 0.86287) Data Point: (0.04, 0.97557) Data Point: (0.06, 1.0415) Data Point: (0.08, 1.0883) 

Page 168: Infiltration, Seepage, Fate, and Transport Modeling Report

Data Point: (0.1, 1.1246) Data Point: (0.12, 1.1542) Data Point: (0.14, 1.1793) Data Point: (0.16, 1.201) Data Point: (0.18, 1.2201) Data Point: (0.2, 1.2372) Data Point: (0.22, 1.2527) Data Point: (0.24, 1.2669) Data Point: (0.26, 1.2799) Data Point: (0.28, 1.292) Data Point: (0.3, 1.3032) Data Point: (0.32, 1.3137) Data Point: (0.34, 1.3235) Data Point: (0.36, 1.3328) Data Point: (0.38, 1.3416) 

Estimation Properties MineralThermalK: 0 BTU/hr/ft/°F Maximum: 1 Minimum: 0 Num. Points: 20 

Sand Model: Spline Data Point Function Function: Thermal Conductivity vs. Vol. Water Content 

Curve Fit to Data: 100 % Segment Curvature: 48 % 

Y‐Intercept: 1.2184 Data Points: Vol. Water Content (ft³/ft³), Thermal Conductivity (BTU/hr/ft/°F) 

Data Point: (0, 1.2184) Data Point: (0.015789, 1.4094) Data Point: (0.031579, 1.6004) Data Point: (0.047368, 1.7121) Data Point: (0.063158, 1.7914) Data Point: (0.078947, 1.8529) Data Point: (0.094737, 1.9031) Data Point: (0.11053, 1.9456) Data Point: (0.12632, 1.9823) Data Point: (0.14211, 2.0148) Data Point: (0.15789, 2.0438) Data Point: (0.17368, 2.0701) Data Point: (0.18947, 2.0941) Data Point: (0.20526, 2.1161) Data Point: (0.22105, 2.1365) Data Point: (0.23684, 2.1555) Data Point: (0.25263, 2.1733) Data Point: (0.26842, 2.19) Data Point: (0.28421, 2.2058) Data Point: (0.3, 2.2207) 

Page 169: Infiltration, Seepage, Fate, and Transport Modeling Report

Estimation Properties MineralThermalK: 0 BTU/hr/ft/°F Maximum: 1 Minimum: 0 Num. Points: 20 

Vol. Specific Heat Functions 

Clay (Btu/Ft3 F) Model: Spline Data Point Function Function: Volumetric Specific Heat Capacity vs. Vol. Water Content 

Curve Fit to Data: 100 % Segment Curvature: 46 % 

Y‐Intercept: 20.189 Data Points: Vol. Water Content (ft³/ft³), Volumetric Specific Heat Capacity (BTU/ft³/°F) 

Data Point: (0, 20.189) Data Point: (0.021579, 21.535) Data Point: (0.043158, 22.881) Data Point: (0.064737, 24.228) Data Point: (0.086316, 25.574) Data Point: (0.10789, 26.92) Data Point: (0.12947, 28.266) Data Point: (0.15105, 29.612) Data Point: (0.17263, 30.959) Data Point: (0.19421, 32.305) Data Point: (0.21579, 33.651) Data Point: (0.23737, 34.997) Data Point: (0.25895, 36.344) Data Point: (0.28053, 37.69) Data Point: (0.30211, 39.036) Data Point: (0.32368, 40.382) Data Point: (0.34526, 41.729) Data Point: (0.36684, 43.075) Data Point: (0.38842, 44.421) Data Point: (0.41, 45.767) 

Estimation Properties MassSpecHeat: 0 BTU/g/°F Maximum: 1 Minimum: 0 Num. Points: 20 

Silt (Btu/ft3 F) Model: Spline Data Point Function Function: Volumetric Specific Heat Capacity vs. Vol. Water Content 

Curve Fit to Data: 100 % Segment Curvature: 46 % 

Page 170: Infiltration, Seepage, Fate, and Transport Modeling Report

Y‐Intercept: 18.707 Data Points: Vol. Water Content (ft³/ft³), Volumetric Specific Heat Capacity (BTU/ft³/°F) 

Data Point: (0, 18.707) Data Point: (0.02, 19.955) Data Point: (0.04, 21.203) Data Point: (0.06, 22.45) Data Point: (0.08, 23.698) Data Point: (0.1, 24.946) Data Point: (0.12, 26.194) Data Point: (0.14, 27.441) Data Point: (0.16, 28.689) Data Point: (0.18, 29.937) Data Point: (0.2, 31.184) Data Point: (0.22, 32.432) Data Point: (0.24, 33.68) Data Point: (0.26, 34.928) Data Point: (0.28, 36.175) Data Point: (0.3, 37.423) Data Point: (0.32, 38.671) Data Point: (0.34, 39.918) Data Point: (0.36, 41.166) Data Point: (0.38, 42.414) 

Estimation Properties MassSpecHeat: 0 BTU/g/°F Maximum: 1 Minimum: 0 Num. Points: 20 

Sand (Btu/Ft3 F) Model: Spline Data Point Function Function: Volumetric Specific Heat Capacity vs. Vol. Water Content 

Curve Fit to Data: 100 % Segment Curvature: 46 % 

Y‐Intercept: 19.705 Data Points: Vol. Water Content (ft³/ft³), Volumetric Specific Heat Capacity (BTU/ft³/°F) 

Data Point: (0, 19.705) Data Point: (0.015789, 20.69) Data Point: (0.031579, 21.675) Data Point: (0.047368, 22.66) Data Point: (0.063158, 23.645) Data Point: (0.078947, 24.63) Data Point: (0.094737, 25.615) Data Point: (0.11053, 26.6) Data Point: (0.12632, 27.585) Data Point: (0.14211, 28.57) Data Point: (0.15789, 29.556) Data Point: (0.17368, 30.541) Data Point: (0.18947, 31.526) 

Page 171: Infiltration, Seepage, Fate, and Transport Modeling Report

Data Point: (0.20526, 32.511) Data Point: (0.22105, 33.496) Data Point: (0.23684, 34.481) Data Point: (0.25263, 35.466) Data Point: (0.26842, 36.451) Data Point: (0.28421, 37.436) Data Point: (0.3, 38.421) 

Estimation Properties MassSpecHeat: 0 BTU/g/°F Maximum: 1 Minimum: 0 Num. Points: 20 

Page 172: Infiltration, Seepage, Fate, and Transport Modeling Report

Transient Coupled VADOSE/W Report generated using GeoStudio 2007, version 7.13. Copyright © 1991‐2008 GEO‐SLOPE International Ltd. 

File Information Created By: Amy L. Hudson, REM File Name: WRD baseline_v11.gsz Comments: This model represents the waste rock dump. It has been constructed in three steps, which correspond to the construction of the facility. Each of the construction models is steady state, representing about 1/3 of construction time. The final steady state model in the sequence represents the final geometry of the facility. This becomes the parent model to the transient models using average site climate data. Each transient model represents one year of time. This series of models simulates the 1 foot soil cover. 

Project Settings Length(L) Units: feet Time(t) Units: Hours Force(F) Units: lbf Temp(T) Units: F Energy Units: BTU Latent Heat of Water: 8975 Phase Change Temperature: 32 Unit Weight of Water: 62.4 pcf View: 2D 

Analysis Settings 

Transient Coupled VADOSE/W Kind: VADOSE/W Method: Transient Coupled Settings 

Initial PWP: Parent Analysis Initial Thermal Conditions Source: Parent Analysis Gas Diffusion: Oxygen Initial Concentrations from: Parent Analysis Exclude cumulative values: No 

Control Ground Freezing Latent Heat Effects: No Vegetation: Yes Apply Runoff: Yes 

Convergence Maximum Number of Iterations: 100 Tolerance: 0.1 

Page 173: Infiltration, Seepage, Fate, and Transport Modeling Report

Maximum Change in K: 1 Rate of Change in K: 1.1 Minimum Change in K: 0.0001 Equation Solver: Parallel Direct Potential Seepage Max # of Reviews: 10 

Time Step Generation Method: Linear Use Adaptive Time Stepping: Yes Adaptive Step Settings 

Adaptive Method: Vector Normal Max % Change per Step: 2.5 Max. Courant Number: 2 Range Min Step: 0.01 Range Max Step: 1 

Materials 

Alluvial ground Model: Full Thermal Hydraulic 

K‐Function: Silt #2, Ksat = 1.18e‐02 ft/hr Vol. WC. Function: Silt #2 K‐Ratio: 1 K‐Direction: 0 ° 

Thermal Thermal K Fn (K vs VWC): Silt Vol Specific Heat Fn: Silt (Btu/ft3 F) 

Gas Gas Decay (Yrs.): 0 

Bedrock Model: Full Thermal Hydraulic 

K‐Function: Well‐Graded #3 (high clay), Ksat = 8.42e‐06 ft/hr Vol. WC. Function: Well‐Graded #3 (high clay) K‐Ratio: 1 K‐Direction: 0 ° 

Thermal Thermal K Fn (K vs VWC): Clay Vol Specific Heat Fn: Clay (Btu/Ft3 F) 

Gas Gas Decay (Yrs.): 0 

Bottom waste rock Model: Full Thermal Hydraulic 

Page 174: Infiltration, Seepage, Fate, and Transport Modeling Report

K‐Function: Uniform sand, Ksat = 1.2 ft/hr Vol. WC. Function: Uniform sand K‐Ratio: 1 K‐Direction: 0 ° 

Thermal Thermal K Fn (K vs VWC): Sand Vol Specific Heat Fn: Sand (Btu/Ft3 F) 

Gas Gas Decay (Yrs.): 0 

Top waste rock Model: Full Thermal Hydraulic 

K‐Function: Andesite Rock Vol. WC. Function: Andesite Rock K‐Ratio: 1 K‐Direction: 0 ° 

Thermal Thermal K Fn (K vs VWC): Sand Vol Specific Heat Fn: Sand (Btu/Ft3 F) 

Gas Gas Decay (Yrs.): 0 

Buttress Model: Full Thermal Hydraulic 

K‐Function: Andesite Rock Vol. WC. Function: Andesite Rock K‐Ratio: 1 K‐Direction: 0 ° 

Thermal Thermal K Fn (K vs VWC): Sand Vol Specific Heat Fn: Sand (Btu/Ft3 F) 

Gas Gas Decay (Yrs.): 0 

Middle waste rock Model: Full Thermal Hydraulic 

K‐Function: Pete's Coarse Ore Vol. WC. Function: Pete's Coarse Ore K‐Ratio: 1 K‐Direction: 0 ° 

Thermal Thermal K Fn (K vs VWC): Sand Vol Specific Heat Fn: Sand (Btu/Ft3 F) 

Gas Gas Decay (Yrs.): 0 

Page 175: Infiltration, Seepage, Fate, and Transport Modeling Report

Cover Model: Full Thermal Hydraulic 

K‐Function: Glacial Till (Compacted), Ksat = 1.18e‐03 ft/hr Vol. WC. Function: Glacial Till (Compacted) K‐Ratio: 1 K‐Direction: 0 ° 

Thermal Thermal K Fn (K vs VWC): Silt Vol Specific Heat Fn: Silt (Btu/ft3 F) 

Gas Gas Decay (Yrs.): 0 

Boundary Conditions 

GW surface Type: Head (H) 4600 

Side recharge Review: true Type: Unit Flux (q) 1e‐009 

Air temperature Type: Temperature (T) 75 

Oxygen concentration Type: Concentration (C) 0.0174 

Climate Data Sets 

Average annual conditions Name: Average annual conditions Latitude: 31 Distribution: Sinusoidal Distribution 

Entry Modifier 

Max T Offset: 0 Min T Offset: 0 Max RH Offset: 0 Min RH Offset: 0 Wind Scale: 100 Precipitation Scale: 100 Start Precip Offset: 0 End Precip Offset: 0 

Page 176: Infiltration, Seepage, Fate, and Transport Modeling Report

PET Scale: 100 Net Radiation Scale: 100 

Climate Entries 

Day # Max T (°F) 

Min T (°F) 

Max RH (%) 

Min RH (%) 

Wind  Precipitation Precipitation 

Started Precipitation 

Ended PET 

Net Radiation 

1  64  27  58  35  8.802  0.019  0  24  0.10129032  0.10129032 

2  63  26  58  35  8.802  0.061  0  24  0.10129032  0.10129032 

3  62  27  58  35  8.802  0.046  0  24  0.10129032  0.10129032 

4  62  26  58  35  8.802  0.05  0  24  0.10129032  0.10129032 

5  62  27  58  35  8.802  0.028  0  24  0.10129032  0.10129032 

6  62  27  58  35  8.802  0.11  0  24  0.10129032  0.10129032 

7  62  28  58  35  8.802  0.039  0  24  0.10129032  0.10129032 

8  64  28  58  35  8.802  0.062  0  24  0.10129032  0.10129032 

9  65  27  58  35  8.802  0.033  0  24  0.10129032  0.10129032 

10  65  27  58  35  8.802  0.024  0  24  0.10129032  0.10129032 

11  64  28  58  35  8.802  0.045  0  24  0.10129032  0.10129032 

12  64  27  58  35  8.802  0.033  0  24  0.10129032  0.10129032 

13  64  27  58  35  8.802  0.036  0  24  0.10129032  0.10129032 

14  64  27  58  35  8.802  0.041  0  24  0.10129032  0.10129032 

15  65  27  58  35  8.802  0.016  0  24  0.10129032  0.10129032 

16  65  28  58  35  8.802  0.016  0  24  0.10129032  0.10129032 

17  65  28  58  35  8.802  0.038  0  24  0.10129032  0.10129032 

18  64  27  58  35  8.802  0.059  0  24  0.10129032  0.10129032 

19  66  27  58  35  8.802  0.05  0  24  0.10129032  0.10129032 

20  64  27  58  35  8.802  0.032  0  24  0.10129032  0.10129032 

21  63  27  58  35  8.802  0.024  0  24  0.10129032  0.10129032 

22  64  27  58  35  8.802  0.029  0  24  0.10129032  0.10129032 

23  64  28  58  35  8.802  0.011  0  24  0.10129032  0.10129032 

24  64  27  58  35  8.802  0.027  0  24  0.10129032  0.10129032 

25  66  28  58  35  8.802  0.033  0  24  0.10129032  0.10129032 

26  67  27  58  35  8.802  0.022  0  24  0.10129032  0.10129032 

27  66  28  58  35  8.802  0.029  0  24  0.10129032  0.10129032 

28  65  28  58  35  8.802  0.03  0  24  0.10129032  0.10129032 

29  64  27  58  35  8.802  0.013  0  24  0.10129032  0.10129032 

30  65  28  58  35  8.802  0.05  0  24  0.10129032  0.10129032 

31  65  27  58  35  8.802  0.04  0  24  0.10129032  0.10129032 

32  64  27  53  30  8.802  0.021  0  24  0.15275862  0.15275862 

33  65  27  53  30  8.802  0.011  0  24  0.15275862  0.15275862 

34  65  26  53  30  8.802  0.014  0  24  0.15275862  0.15275862 

35  65  28  53  30  8.802  0.028  0  24  0.15275862  0.15275862 

36  66  30  53  30  8.802  0.052  0  24  0.15275862  0.15275862 

37  66  29  53  30  8.802  0.013  0  24  0.15275862  0.15275862 

38  67  29  53  30  8.802  0.026  0  24  0.15275862  0.15275862 

39  67  29  53  30  8.802  0.046  0  24  0.15275862  0.15275862 

40  66  31  53  30  8.802  0.07  0  24  0.15275862  0.15275862 

Page 177: Infiltration, Seepage, Fate, and Transport Modeling Report

41  65  29  53  30  8.802  0.037  0  24  0.15275862  0.15275862 

42  66  29  53  30  8.802  0.053  0  24  0.15275862  0.15275862 

43  65  31  53  30  8.802  0.052  0  24  0.15275862  0.15275862 

44  67  31  53  30  8.802  0.031  0  24  0.15275862  0.15275862 

45  67  31  53  30  8.802  0.051  0  24  0.15275862  0.15275862 

46  66  30  53  30  8.802  0.035  0  24  0.15275862  0.15275862 

47  67  30  53  30  8.802  0.03  0  24  0.15275862  0.15275862 

48  68  30  53  30  8.802  0.017  0  24  0.15275862  0.15275862 

49  68  30  53  30  8.802  0.023  0  24  0.15275862  0.15275862 

50  67  31  53  30  8.802  0.009  0  24  0.15275862  0.15275862 

51  66  30  53  30  8.802  0.021  0  24  0.15275862  0.15275862 

52  65  29  53  30  8.802  0.047  0  24  0.15275862  0.15275862 

53  66  29  53  30  8.802  0.045  0  24  0.15275862  0.15275862 

54  67  28  53  30  8.802  0.008  0  24  0.15275862  0.15275862 

55  68  29  53  30  8.802  0.06  0  24  0.15275862  0.15275862 

56  68  30  53  30  8.802  0.028  0  24  0.15275862  0.15275862 

57  68  31  53  30  8.802  0.029  0  24  0.15275862  0.15275862 

58  69  30  53  30  8.802  0.013  0  24  0.15275862  0.15275862 

59  68  31  53  30  8.802  0.024  0  24  0.15275862  0.15275862 

60  68  31  45  24  10.269  0.047  0  24  0.23032258  0.23032258 

61  68  33  45  24  10.269  0.034  0  24  0.23032258  0.23032258 

62  66  31  45  24  10.269  0.082  0  24  0.23032258  0.23032258 

63  66  30  45  24  10.269  0.066  0  24  0.23032258  0.23032258 

64  67  31  45  24  10.269  0.018  0  24  0.23032258  0.23032258 

65  68  31  45  24  10.269  0.037  0  24  0.23032258  0.23032258 

66  69  31  45  24  10.269  0.046  0  24  0.23032258  0.23032258 

67  69  32  45  24  10.269  0.035  0  24  0.23032258  0.23032258 

68  72  33  45  24  10.269  0.011  0  24  0.23032258  0.23032258 

69  72  34  45  24  10.269  0.022  0  24  0.23032258  0.23032258 

70  70  34  45  24  10.269  0.038  0  24  0.23032258  0.23032258 

71  69  33  45  24  10.269  0.018  0  24  0.23032258  0.23032258 

72  69  31  45  24  10.269  0.054  0  24  0.23032258  0.23032258 

73  69  32  45  24  10.269  0.019  0  24  0.23032258  0.23032258 

74  71  32  45  24  10.269  0.012  0  24  0.23032258  0.23032258 

75  71  33  45  24  10.269  0.017  0  24  0.23032258  0.23032258 

76  71  34  45  24  10.269  0.007  0  24  0.23032258  0.23032258 

77  72  35  45  24  10.269  0.029  0  24  0.23032258  0.23032258 

78  71  34  45  24  10.269  0.011  0  24  0.23032258  0.23032258 

79  73  34  45  24  10.269  0.044  0  24  0.23032258  0.23032258 

80  73  34  45  24  10.269  0.045  0  24  0.23032258  0.23032258 

81  73  36  45  24  10.269  0.018  0  24  0.23032258  0.23032258 

82  73  35  45  24  10.269  0.029  0  24  0.23032258  0.23032258 

83  73  33  45  24  10.269  0.025  0  24  0.23032258  0.23032258 

84  73  34  45  24  10.269  0.012  0  24  0.23032258  0.23032258 

85  74  36  45  24  10.269  0.018  0  24  0.23032258  0.23032258 

86  72  36  45  24  10.269  0.053  0  24  0.23032258  0.23032258 

87  72  37  45  24  10.269  0.03  0  24  0.23032258  0.23032258 

Page 178: Infiltration, Seepage, Fate, and Transport Modeling Report

88  72  37  45  24  10.269  0.021  0  24  0.23032258  0.23032258 

89  72  36  45  24  10.269  0.004  0  24  0.23032258  0.23032258 

90  75  36  45  24  10.269  0.001  0  24  0.23032258  0.23032258 

91  75  36  37  21  11.736  0.023  0  24  0.31433333  0.31433333 

92  74  36  37  21  11.736  0.034  0  24  0.31433333  0.31433333 

93  73  35  37  21  11.736  0.008  0  24  0.31433333  0.31433333 

94  73  36  37  21  11.736  0.028  0  24  0.31433333  0.31433333 

95  75  37  37  21  11.736  0.006  0  24  0.31433333  0.31433333 

96  77  38  37  21  11.736  0.028  0  24  0.31433333  0.31433333 

97  77  38  37  21  11.736  0.02  0  24  0.31433333  0.31433333 

98  76  37  37  21  11.736  0.011  0  24  0.31433333  0.31433333 

99  77  37  37  21  11.736  0.004  0  24  0.31433333  0.31433333 

100  79  38  37  21  11.736  0.011  0  24  0.31433333  0.31433333 

101  78  38  37  21  11.736  0.004  0  24  0.31433333  0.31433333 

102  78  38  37  21  11.736  0.002  0  24  0.31433333  0.31433333 

103  77  38  37  21  11.736  0.004  0  24  0.31433333  0.31433333 

104  79  38  37  21  11.736  0.006  0  24  0.31433333  0.31433333 

105  80  38  37  21  11.736  0.009  0  24  0.31433333  0.31433333 

106  79  39  37  21  11.736  0.031  0  24  0.31433333  0.31433333 

107  79  40  37  21  11.736  0.031  0  24  0.31433333  0.31433333 

108  79  40  37  21  11.736  0  0  24  0.31433333  0.31433333 

109  79  39  37  21  11.736  0.023  0  24  0.31433333  0.31433333 

110  78  38  37  21  11.736  0.001  0  24  0.31433333  0.31433333 

111  80  40  37  21  11.736  0.004  0  24  0.31433333  0.31433333 

112  80  39  37  21  11.736  0.018  0  24  0.31433333  0.31433333 

113  79  39  37  21  11.736  0.002  0  24  0.31433333  0.31433333 

114  80  39  37  21  11.736  0  0  24  0.31433333  0.31433333 

115  81  40  37  21  11.736  0.005  0  24  0.31433333  0.31433333 

116  81  41  37  21  11.736  0.009  0  24  0.31433333  0.31433333 

117  80  40  37  21  11.736  0.016  0  24  0.31433333  0.31433333 

118  81  40  37  21  11.736  0.029  0  24  0.31433333  0.31433333 

119  81  42  37  21  11.736  0.013  0  24  0.31433333  0.31433333 

120  81  40  37  21  11.736  0.009  0  24  0.31433333  0.31433333 

121  82  41  30  16  10.269  0.006  0  24  0.41483871  0.41483871 

122  81  41  30  16  10.269  0.017  0  24  0.41483871  0.41483871 

123  82  42  30  16  10.269  0  0  24  0.41483871  0.41483871 

124  83  42  30  16  10.269  0  0  24  0.41483871  0.41483871 

125  83  43  30  16  10.269  0.002  0  24  0.41483871  0.41483871 

126  82  42  30  16  10.269  0.009  0  24  0.41483871  0.41483871 

127  82  43  30  16  10.269  0.004  0  24  0.41483871  0.41483871 

128  83  42  30  16  10.269  0.004  0  24  0.41483871  0.41483871 

129  84  43  30  16  10.269  0  0  24  0.41483871  0.41483871 

130  84  43  30  16  10.269  0.002  0  24  0.41483871  0.41483871 

131  84  44  30  16  10.269  0.003  0  24  0.41483871  0.41483871 

132  86  44  30  16  10.269  0.001  0  24  0.41483871  0.41483871 

133  86  43  30  16  10.269  0.005  0  24  0.41483871  0.41483871 

134  86  44  30  16  10.269  0.002  0  24  0.41483871  0.41483871 

Page 179: Infiltration, Seepage, Fate, and Transport Modeling Report

135  87  45  30  16  10.269  0.001  0  24  0.41483871  0.41483871 

136  87  45  30  16  10.269  0.006  0  24  0.41483871  0.41483871 

137  87  46  30  16  10.269  0.002  0  24  0.41483871  0.41483871 

138  87  46  30  16  10.269  0  0  24  0.41483871  0.41483871 

139  88  47  30  16  10.269  0.02  0  24  0.41483871  0.41483871 

140  88  47  30  16  10.269  0.026  0  24  0.41483871  0.41483871 

141  88  46  30  16  10.269  0.017  0  24  0.41483871  0.41483871 

142  88  46  30  16  10.269  0.007  0  24  0.41483871  0.41483871 

143  88  46  30  16  10.269  0  0  24  0.41483871  0.41483871 

144  88  47  30  16  10.269  0.01  0  24  0.41483871  0.41483871 

145  89  47  30  16  10.269  0.002  0  24  0.41483871  0.41483871 

146  88  46  30  16  10.269  0.006  0  24  0.41483871  0.41483871 

147  89  48  30  16  10.269  0.017  0  24  0.41483871  0.41483871 

148  90  47  30  16  10.269  0.004  0  24  0.41483871  0.41483871 

149  90  49  30  16  10.269  0.011  0  24  0.41483871  0.41483871 

150  89  49  30  16  10.269  0.029  0  24  0.41483871  0.41483871 

151  90  49  30  16  10.269  0.009  0  24  0.41483871  0.41483871 

152  91  50  31  18  10.269  0.002  0  24  0.47133333  0.47133333 

153  92  49  31  18  10.269  0.001  0  24  0.47133333  0.47133333 

154  92  49  31  18  10.269  0.004  0  24  0.47133333  0.47133333 

155  92  50  31  18  10.269  0.01  0  24  0.47133333  0.47133333 

156  92  51  31  18  10.269  0.012  0  24  0.47133333  0.47133333 

157  93  51  31  18  10.269  0.011  0  24  0.47133333  0.47133333 

158  93  51  31  18  10.269  0.004  0  24  0.47133333  0.47133333 

159  92  51  31  18  10.269  0.003  0  24  0.47133333  0.47133333 

160  93  51  31  18  10.269  0.006  0  24  0.47133333  0.47133333 

161  92  51  31  18  10.269  0.002  0  24  0.47133333  0.47133333 

162  93  51  31  18  10.269  0  0  24  0.47133333  0.47133333 

163  93  52  31  18  10.269  0.006  0  24  0.47133333  0.47133333 

164  94  52  31  18  10.269  0.007  0  24  0.47133333  0.47133333 

165  95  54  31  18  10.269  0.005  0  24  0.47133333  0.47133333 

166  96  54  31  18  10.269  0.003  0  24  0.47133333  0.47133333 

167  96  54  31  18  10.269  0.007  0  24  0.47133333  0.47133333 

168  96  55  31  18  10.269  0  0  24  0.47133333  0.47133333 

169  97  56  31  18  10.269  0.026  0  24  0.47133333  0.47133333 

170  98  56  31  18  10.269  0.043  0  24  0.47133333  0.47133333 

171  98  56  31  18  10.269  0.016  0  24  0.47133333  0.47133333 

172  98  56  31  18  10.269  0.048  0  24  0.47133333  0.47133333 

173  98  57  31  18  10.269  0.027  0  24  0.47133333  0.47133333 

174  98  57  31  18  10.269  0.021  0  24  0.47133333  0.47133333 

175  98  58  31  18  10.269  0.015  0  24  0.47133333  0.47133333 

176  98  58  31  18  10.269  0.014  0  24  0.47133333  0.47133333 

177  98  59  31  18  10.269  0.037  0  24  0.47133333  0.47133333 

178  98  60  31  18  10.269  0.019  0  24  0.47133333  0.47133333 

179  99  60  31  18  10.269  0.012  0  24  0.47133333  0.47133333 

180  98  61  31  18  10.269  0.067  0  24  0.47133333  0.47133333 

181  98  61  31  18  10.269  0.041  0  24  0.47133333  0.47133333 

Page 180: Infiltration, Seepage, Fate, and Transport Modeling Report

182  98  63  57  36  8.802  0.011  0  24  0.45612903  0.45612903 

183  98  62  57  36  8.802  0.039  0  24  0.45612903  0.45612903 

184  98  63  57  36  8.802  0.087  0  24  0.45612903  0.45612903 

185  97  62  57  36  8.802  0.113  0  24  0.45612903  0.45612903 

186  97  63  57  36  8.802  0.093  0  24  0.45612903  0.45612903 

187  97  63  57  36  8.802  0.146  0  24  0.45612903  0.45612903 

188  96  63  57  36  8.802  0.069  0  24  0.45612903  0.45612903 

189  96  63  57  36  8.802  0.075  0  24  0.45612903  0.45612903 

190  96  64  57  36  8.802  0.118  0  24  0.45612903  0.45612903 

191  95  64  57  36  8.802  0.114  0  24  0.45612903  0.45612903 

192  95  63  57  36  8.802  0.199  0  24  0.45612903  0.45612903 

193  95  64  57  36  8.802  0.114  0  24  0.45612903  0.45612903 

194  95  64  57  36  8.802  0.135  0  24  0.45612903  0.45612903 

195  94  64  57  36  8.802  0.071  0  24  0.45612903  0.45612903 

196  94  64  57  36  8.802  0.247  0  24  0.45612903  0.45612903 

197  94  65  57  36  8.802  0.137  0  24  0.45612903  0.45612903 

198  93  65  57  36  8.802  0.202  0  24  0.45612903  0.45612903 

199  92  64  57  36  8.802  0.136  0  24  0.45612903  0.45612903 

200  93  65  57  36  8.802  0.241  0  24  0.45612903  0.45612903 

201  93  64  57  36  8.802  0.231  0  24  0.45612903  0.45612903 

202  92  65  57  36  8.802  0.159  0  24  0.45612903  0.45612903 

203  92  64  57  36  8.802  0.182  0  24  0.45612903  0.45612903 

204  92  64  57  36  8.802  0.132  0  24  0.45612903  0.45612903 

205  93  64  57  36  8.802  0.125  0  24  0.45612903  0.45612903 

206  93  64  57  36  8.802  0.156  0  24  0.45612903  0.45612903 

207  93  64  57  36  8.802  0.207  0  24  0.45612903  0.45612903 

208  92  64  57  36  8.802  0.162  0  24  0.45612903  0.45612903 

209  91  64  57  36  8.802  0.221  0  24  0.45612903  0.45612903 

210  91  64  57  36  8.802  0.156  0  24  0.45612903  0.45612903 

211  90  64  57  36  8.802  0.197  0  24  0.45612903  0.45612903 

212  91  64  57  36  8.802  0.077  0  24  0.45612903  0.45612903 

213  91  64  68  44  7.335  0.119  0  24  0.41483871  0.41483871 

214  91  64  68  44  7.335  0.179  0  24  0.41483871  0.41483871 

215  91  64  68  44  7.335  0.128  0  24  0.41483871  0.41483871 

216  92  64  68  44  7.335  0.093  0  24  0.41483871  0.41483871 

217  91  63  68  44  7.335  0.164  0  24  0.41483871  0.41483871 

218  91  64  68  44  7.335  0.15  0  24  0.41483871  0.41483871 

219  91  63  68  44  7.335  0.069  0  24  0.41483871  0.41483871 

220  93  64  68  44  7.335  0.127  0  24  0.41483871  0.41483871 

221  92  64  68  44  7.335  0.165  0  24  0.41483871  0.41483871 

222  91  64  68  44  7.335  0.094  0  24  0.41483871  0.41483871 

223  91  63  68  44  7.335  0.183  0  24  0.41483871  0.41483871 

224  92  64  68  44  7.335  0.137  0  24  0.41483871  0.41483871 

225  92  63  68  44  7.335  0.209  0  24  0.41483871  0.41483871 

226  92  62  68  44  7.335  0.157  0  24  0.41483871  0.41483871 

227  90  63  68  44  7.335  0.191  0  24  0.41483871  0.41483871 

228  90  62  68  44  7.335  0.106  0  24  0.41483871  0.41483871 

Page 181: Infiltration, Seepage, Fate, and Transport Modeling Report

229  92  62  68  44  7.335  0.142  0  24  0.41483871  0.41483871 

230  91  62  68  44  7.335  0.248  0  24  0.41483871  0.41483871 

231  91  63  68  44  7.335  0.05  0  24  0.41483871  0.41483871 

232  91  62  68  44  7.335  0.157  0  24  0.41483871  0.41483871 

233  91  62  68  44  7.335  0.089  0  24  0.41483871  0.41483871 

234  92  62  68  44  7.335  0.074  0  24  0.41483871  0.41483871 

235  92  62  68  44  7.335  0.143  0  24  0.41483871  0.41483871 

236  92  62  68  44  7.335  0.163  0  24  0.41483871  0.41483871 

237  91  61  68  44  7.335  0.168  0  24  0.41483871  0.41483871 

238  92  61  68  44  7.335  0.107  0  24  0.41483871  0.41483871 

239  92  61  68  44  7.335  0.124  0  24  0.41483871  0.41483871 

240  92  61  68  44  7.335  0.031  0  24  0.41483871  0.41483871 

241  92  61  68  44  7.335  0.201  0  24  0.41483871  0.41483871 

242  92  60  68  44  7.335  0.076  0  24  0.41483871  0.41483871 

243  92  60  68  44  7.335  0.064  0  24  0.41483871  0.41483871 

244  92  60  58  35  7.335  0.031  0  24  0.32866667  0.32866667 

245  92  60  58  35  7.335  0.1  0  24  0.32866667  0.32866667 

246  91  60  58  35  7.335  0.066  0  24  0.32866667  0.32866667 

247  91  61  58  35  7.335  0.077  0  24  0.32866667  0.32866667 

248  91  60  58  35  7.335  0.07  0  24  0.32866667  0.32866667 

249  92  59  58  35  7.335  0.074  0  24  0.32866667  0.32866667 

250  92  58  58  35  7.335  0.084  0  24  0.32866667  0.32866667 

251  92  58  58  35  7.335  0.044  0  24  0.32866667  0.32866667 

252  92  58  58  35  7.335  0.035  0  24  0.32866667  0.32866667 

253  92  59  58  35  7.335  0.106  0  24  0.32866667  0.32866667 

254  91  58  58  35  7.335  0.041  0  24  0.32866667  0.32866667 

255  91  57  58  35  7.335  0.047  0  24  0.32866667  0.32866667 

256  91  57  58  35  7.335  0.097  0  24  0.32866667  0.32866667 

257  90  56  58  35  7.335  0.057  0  24  0.32866667  0.32866667 

258  90  55  58  35  7.335  0.117  0  24  0.32866667  0.32866667 

259  90  55  58  35  7.335  0.024  0  24  0.32866667  0.32866667 

260  90  55  58  35  7.335  0.002  0  24  0.32866667  0.32866667 

261  90  55  58  35  7.335  0.031  0  24  0.32866667  0.32866667 

262  89  55  58  35  7.335  0.043  0  24  0.32866667  0.32866667 

263  89  53  58  35  7.335  0.018  0  24  0.32866667  0.32866667 

264  90  53  58  35  7.335  0.016  0  24  0.32866667  0.32866667 

265  89  52  58  35  7.335  0.037  0  24  0.32866667  0.32866667 

266  89  52  58  35  7.335  0.09  0  24  0.32866667  0.32866667 

267  88  52  58  35  7.335  0.061  0  24  0.32866667  0.32866667 

268  89  52  58  35  7.335  0.014  0  24  0.32866667  0.32866667 

269  89  52  58  35  7.335  0.015  0  24  0.32866667  0.32866667 

270  89  51  58  35  7.335  0.007  0  24  0.32866667  0.32866667 

271  89  50  58  35  7.335  0.042  0  24  0.32866667  0.32866667 

272  89  49  58  35  7.335  0.048  0  24  0.32866667  0.32866667 

273  89  50  58  35  7.335  0.064  0  24  0.32866667  0.32866667 

274  89  50  53  31  7.335  0.065  0  24  0.24419355  0.24419355 

275  87  50  53  31  7.335  0.125  0  24  0.24419355  0.24419355 

Page 182: Infiltration, Seepage, Fate, and Transport Modeling Report

276  86  50  53  31  7.335  0.111  0  24  0.24419355  0.24419355 

277  85  50  53  31  7.335  0.036  0  24  0.24419355  0.24419355 

278  85  49  53  31  7.335  0.078  0  24  0.24419355  0.24419355 

279  87  48  53  31  7.335  0.015  0  24  0.24419355  0.24419355 

280  86  48  53  31  7.335  0.051  0  24  0.24419355  0.24419355 

281  85  47  53  31  7.335  0.063  0  24  0.24419355  0.24419355 

282  85  46  53  31  7.335  0.121  0  24  0.24419355  0.24419355 

283  85  47  53  31  7.335  0.028  0  24  0.24419355  0.24419355 

284  86  45  53  31  7.335  0.042  0  24  0.24419355  0.24419355 

285  85  44  53  31  7.335  0.034  0  24  0.24419355  0.24419355 

286  84  44  53  31  7.335  0.021  0  24  0.24419355  0.24419355 

287  84  45  53  31  7.335  0.001  0  24  0.24419355  0.24419355 

288  82  45  53  31  7.335  0.02  0  24  0.24419355  0.24419355 

289  82  44  53  31  7.335  0.01  0  24  0.24419355  0.24419355 

290  82  44  53  31  7.335  0.047  0  24  0.24419355  0.24419355 

291  82  43  53  31  7.335  0.02  0  24  0.24419355  0.24419355 

292  82  42  53  31  7.335  0.035  0  24  0.24419355  0.24419355 

293  81  43  53  31  7.335  0.065  0  24  0.24419355  0.24419355 

294  81  43  53  31  7.335  0.047  0  24  0.24419355  0.24419355 

295  80  42  53  31  7.335  0.05  0  24  0.24419355  0.24419355 

296  79  41  53  31  7.335  0.04  0  24  0.24419355  0.24419355 

297  80  40  53  31  7.335  0.011  0  24  0.24419355  0.24419355 

298  80  40  53  31  7.335  0.017  0  24  0.24419355  0.24419355 

299  80  39  53  31  7.335  0.016  0  24  0.24419355  0.24419355 

300  79  39  53  31  7.335  0.004  0  24  0.24419355  0.24419355 

301  78  38  53  31  7.335  0.044  0  24  0.24419355  0.24419355 

302  78  39  53  31  7.335  0.022  0  24  0.24419355  0.24419355 

303  77  37  53  31  7.335  0.025  0  24  0.24419355  0.24419355 

304  75  37  53  31  7.335  0.069  0  24  0.24419355  0.24419355 

305  75  36  53  30  8.802  0.006  0  24  0.157  0.157 

306  75  36  53  30  8.802  0.011  0  24  0.157  0.157 

307  75  36  53  30  8.802  0.015  0  24  0.157  0.157 

308  76  35  53  30  8.802  0.007  0  24  0.157  0.157 

309  76  34  53  30  8.802  0.005  0  24  0.157  0.157 

310  76  36  53  30  8.802  0.013  0  24  0.157  0.157 

311  76  36  53  30  8.802  0.018  0  24  0.157  0.157 

312  75  36  53  30  8.802  0.019  0  24  0.157  0.157 

313  74  35  53  30  8.802  0.03  0  24  0.157  0.157 

314  74  35  53  30  8.802  0.005  0  24  0.157  0.157 

315  75  36  53  30  8.802  0.019  0  24  0.157  0.157 

316  75  36  53  30  8.802  0.072  0  24  0.157  0.157 

317  74  36  53  30  8.802  0.042  0  24  0.157  0.157 

318  73  36  53  30  8.802  0.031  0  24  0.157  0.157 

319  71  35  53  30  8.802  0.024  0  24  0.157  0.157 

320  70  32  53  30  8.802  0.046  0  24  0.157  0.157 

321  69  32  53  30  8.802  0.041  0  24  0.157  0.157 

322  68  31  53  30  8.802  0.017  0  24  0.157  0.157 

Page 183: Infiltration, Seepage, Fate, and Transport Modeling Report

323  68  30  53  30  8.802  0.022  0  24  0.157  0.157 

324  69  29  53  30  8.802  0  0  24  0.157  0.157 

325  70  30  53  30  8.802  0.032  0  24  0.157  0.157 

326  70  30  53  30  8.802  0.012  0  24  0.157  0.157 

327  69  31  53  30  8.802  0.015  0  24  0.157  0.157 

328  70  30  53  30  8.802  0.041  0  24  0.157  0.157 

329  70  32  53  30  8.802  0.02  0  24  0.157  0.157 

330  69  31  53  30  8.802  0.04  0  24  0.157  0.157 

331  68  29  53  30  8.802  0.011  0  24  0.157  0.157 

332  67  28  53  30  8.802  0.009  0  24  0.157  0.157 

333  67  28  53  30  8.802  0.031  0  24  0.157  0.157 

334  66  28  53  30  8.802  0.012  0  24  0.157  0.157 

335  67  29  60  38  7.335  0.066  0  24  0.10129032  0.10129032 

336  68  29  60  38  7.335  0.022  0  24  0.10129032  0.10129032 

337  68  28  60  38  7.335  0.009  0  24  0.10129032  0.10129032 

338  68  29  60  38  7.335  0.058  0  24  0.10129032  0.10129032 

339  68  29  60  38  7.335  0.067  0  24  0.10129032  0.10129032 

340  66  28  60  38  7.335  0.06  0  24  0.10129032  0.10129032 

341  67  28  60  38  7.335  0.017  0  24  0.10129032  0.10129032 

342  66  28  60  38  7.335  0.042  0  24  0.10129032  0.10129032 

343  64  28  60  38  7.335  0.037  0  24  0.10129032  0.10129032 

344  64  28  60  38  7.335  0.064  0  24  0.10129032  0.10129032 

345  65  28  60  38  7.335  0.072  0  24  0.10129032  0.10129032 

346  64  28  60  38  7.335  0.04  0  24  0.10129032  0.10129032 

347  63  27  60  38  7.335  0.029  0  24  0.10129032  0.10129032 

348  64  26  60  38  7.335  0.031  0  24  0.10129032  0.10129032 

349  64  26  60  38  7.335  0.053  0  24  0.10129032  0.10129032 

350  64  27  60  38  7.335  0.053  0  24  0.10129032  0.10129032 

351  65  28  60  38  7.335  0.081  0  24  0.10129032  0.10129032 

352  66  29  60  38  7.335  0.092  0  24  0.10129032  0.10129032 

353  65  29  60  38  7.335  0.033  0  24  0.10129032  0.10129032 

354  65  28  60  38  7.335  0.049  0  24  0.10129032  0.10129032 

355  65  28  60  38  7.335  0.042  0  24  0.10129032  0.10129032 

356  64  26  60  38  7.335  0.045  0  24  0.10129032  0.10129032 

357  63  26  60  38  7.335  0.021  0  24  0.10129032  0.10129032 

358  62  26  60  38  7.335  0.041  0  24  0.10129032  0.10129032 

359  63  25  60  38  7.335  0.13  0  24  0.10129032  0.10129032 

360  63  27  60  38  7.335  0.027  0  24  0.10129032  0.10129032 

361  63  26  60  38  7.335  0.043  0  24  0.10129032  0.10129032 

362  63  27  60  38  7.335  0.059  0  24  0.10129032  0.10129032 

363  63  28  60  38  7.335  0.04  0  24  0.10129032  0.10129032 

364  62  27  60  38  7.335  0.029  0  24  0.10129032  0.10129032 

365  63  26  60  38  7.335  0.051  0  24  0.10129032  0.10129032 

Multi‐Day Storm Event Name: Multi‐Day Storm Event Latitude: 31 

Page 184: Infiltration, Seepage, Fate, and Transport Modeling Report

Distribution: Sinusoidal Distribution 

Entry Modifier 

Max T Offset: 0 Min T Offset: 0 Max RH Offset: 0 Min RH Offset: 0 Wind Scale: 100 Precipitation Scale: 100 Start Precip Offset: 0 End Precip Offset: 0 PET Scale: 100 Net Radiation Scale: 100 

Climate Entries 

Day # Max T (°F) 

Min T (°F) 

Max RH (%) 

Min RH (%) 

Wind  Precipitation Precipitation 

Started Precipitation 

Ended PET 

1  53  36  60  38  7.3  0.3  0  24  0.1 

2  47  32  60  38  7.3  1.6  0  24  0.1 

3  45  35  60  38  7.3  1.8  0  24  0.1 

4  42  34  60  38  7.3  0.4  0  24  0.1 

5  43  32  60  38  7.3  0.8  0  24  0.1 

6  53  41  60  38  7.3  0.1  0  24  0.1 

7  57  38  60  38  7.3  0.8  0  24  0.1 

8  47  33  60  38  7.3  0.1  0  24  0.1 

24‐hour, 100‐year Storm Name: 24‐hour, 100‐year Storm Latitude: 31 Distribution: Sinusoidal Distribution 

Entry Modifier 

Max T Offset: 0 Min T Offset: 0 Max RH Offset: 0 Min RH Offset: 0 Wind Scale: 100 Precipitation Scale: 100 Start Precip Offset: 0 End Precip Offset: 0 PET Scale: 100 Net Radiation Scale: 100 

Page 185: Infiltration, Seepage, Fate, and Transport Modeling Report

Climate Entries 

Day # Max T (°F) 

Min T (°F) 

Max RH (%) 

Min RH (%) 

Wind  Precipitation Precipitation 

Started Precipitation 

Ended PET 

1  65  43  60  38  7.3  4.8  0  24  0.1 

2  65  43  60  38  7.3  0.1  0  24  0.1 

K Functions 

Glacial Till (Compacted), Ksat = 1.18e‐03 ft/hr Model: Data Point Function Function: X‐Conductivity vs. Pore‐Water Pressure 

Curve Fit to Data: 100 % Segment Curvature: 46 % 

K‐Saturation: 0.00118 Data Points: Matric Suction (psf), X‐Conductivity (ft/hr) 

Data Point: (0.005, 0.00118) Data Point: (0.01, 0.00118) Data Point: (0.050666, 0.00118) Data Point: (0.2567, 0.00118) Data Point: (1.3006, 0.00118) Data Point: (6.5895, 0.00118) Data Point: (24.444, 0.00118) Data Point: (33.386, 0.00118) Data Point: (169.15, 0.00118) Data Point: (857.03, 0.00043659) Data Point: (2330.4, 3.3793e‐005) Data Point: (4342.2, 2.2328e‐006) Data Point: (4636.3, 1.7977e‐006) Data Point: (6942.2, 6.4031e‐007) Data Point: (9248.1, 2.8627e‐007) Data Point: (11554, 1.4215e‐007) Data Point: (13860, 6.8668e‐008) Data Point: (16166, 3.2348e‐008) Data Point: (18472, 1.2477e‐008) Data Point: (20778, 4.5849e‐009) Data Point: (22000, 4.5849e‐009) 

Estimation Properties Hydraulic K Sat: 0 ft/hr Hyd. K‐Function Estimation Method: Van Genuchten Function Maximum: 1000 Minimum: 0.01 Num. Points: 20 Residual Water Content: 0 ft³/ft³ 

Page 186: Infiltration, Seepage, Fate, and Transport Modeling Report

Well‐Graded #3 (high clay), Ksat = 8.42e‐06 ft/hr Model: Data Point Function Function: X‐Conductivity vs. Pore‐Water Pressure 

Curve Fit to Data: 100 % Segment Curvature: 46 % 

K‐Saturation: 8.42e‐006 Data Points: Matric Suction (psf), X‐Conductivity (ft/hr) 

Data Point: (0.005, 8.42e‐006) Data Point: (0.01, 8.42e‐006) Data Point: (0.028381, 8.4189e‐006) Data Point: (0.080549, 8.4164e‐006) Data Point: (0.22861, 8.4109e‐006) Data Point: (0.64881, 8.3984e‐006) Data Point: (1.8414, 8.3705e‐006) Data Point: (5.2261, 8.3078e‐006) Data Point: (14.832, 8.1678e‐006) Data Point: (15.714, 8.1562e‐006) Data Point: (42.096, 7.857e‐006) Data Point: (119.47, 7.1792e‐006) Data Point: (339.08, 5.7708e‐006) Data Point: (962.35, 3.2787e‐006) Data Point: (1529.9, 1.9956e‐006) Data Point: (2731.3, 7.4428e‐007) Data Point: (3044.1, 5.8644e‐007) Data Point: (4558.3, 2.0754e‐007) Data Point: (6072.4, 8.7118e‐008) Data Point: (7586.6, 4.1843e‐008) Data Point: (7751.6, 3.8891e‐008) Data Point: (9100.8, 2.229e‐008) Data Point: (10615, 1.2866e‐008) Data Point: (12129, 7.9116e‐009) Data Point: (13643, 5.1188e‐009) Data Point: (15158, 3.4526e‐009) Data Point: (16672, 2.4107e‐009) Data Point: (18186, 1.733e‐009) Data Point: (19700, 1.2773e‐009) Data Point: (21214, 9.6176e‐010) Data Point: (22000, 8.3637e‐010) 

Estimation Properties Hydraulic K Sat: 0 ft/hr Hyd. K‐Function Estimation Method: Van Genuchten Function Maximum: 1000 Minimum: 0.01 Num. Points: 20 Residual Water Content: 0 ft³/ft³ 

Page 187: Infiltration, Seepage, Fate, and Transport Modeling Report

Uniform sand, Ksat = 1.2 ft/hr Model: Data Point Function Function: X‐Conductivity vs. Pore‐Water Pressure 

Curve Fit to Data: 100 % Segment Curvature: 46 % 

K‐Saturation: 1.195 Data Points: Matric Suction (psf), X‐Conductivity (ft/hr) 

Data Point: (0.005, 1.195) Data Point: (0.01, 1.195) Data Point: (0.050666, 1.195) Data Point: (0.2567, 1.195) Data Point: (1.3006, 1.195) Data Point: (6.5895, 1.195) Data Point: (24.444, 1.195) Data Point: (33.386, 1.195) Data Point: (169.15, 0.043088) Data Point: (857.03, 0.00011369) Data Point: (2330.4, 7.2714e‐006) Data Point: (4342.2, 1.5997e‐006) Data Point: (4636.3, 1.3647e‐006) Data Point: (6942.2, 5.1531e‐007) Data Point: (9248.1, 2.5207e‐007) Data Point: (11554, 1.4201e‐007) Data Point: (13860, 8.6635e‐008) Data Point: (16166, 7.5467e‐008) Data Point: (18472, 7.5467e‐008) Data Point: (20778, 7.5467e‐008) Data Point: (22000, 7.5467e‐008) 

Estimation Properties Hydraulic K Sat: 0 ft/hr Hyd. K‐Function Estimation Method: Van Genuchten Function Maximum: 1000 Minimum: 0.01 Num. Points: 20 Residual Water Content: 0 ft³/ft³ 

Pete's Coarse Ore Model: Data Point Function Function: X‐Conductivity vs. Pore‐Water Pressure 

Curve Fit to Data: 100 % Segment Curvature: 46 % 

K‐Saturation: 11.5 Data Points: Matric Suction (psf), X‐Conductivity (ft/hr) 

Data Point: (0.105, 11.5) Data Point: (0.209, 11.5) Data Point: (0.751, 11.5) Data Point: (2.7, 11.5) 

Page 188: Infiltration, Seepage, Fate, and Transport Modeling Report

Data Point: (9.69, 10.7) Data Point: (23.2, 6.93) Data Point: (34.8, 5.92) Data Point: (125, 1.49) Data Point: (450, 0.0316) Data Point: (1620, 0.000873) Data Point: (2210, 0.000179) Data Point: (4400, 2.21e‐005) Data Point: (5810, 2.21e‐005) Data Point: (6590, 2.21e‐005) Data Point: (8780, 2.21e‐005) Data Point: (11000, 2.21e‐005) Data Point: (13200, 2.21e‐005) Data Point: (15300, 2.21e‐005) Data Point: (17500, 2.21e‐005) Data Point: (19700, 2.21e‐005) Data Point: (20900, 2.21e‐005) 

Estimation Properties Hydraulic K Sat: 0 ft/hr Hyd. K‐Function Estimation Method: Van Genuchten Function Maximum: 1000 Minimum: 0.01 Num. Points: 20 Residual Water Content: 0 ft³/ft³ 

Andesite Rock Model: Data Point Function Function: X‐Conductivity vs. Pore‐Water Pressure 

Curve Fit to Data: 100 % Segment Curvature: 48 % 

K‐Saturation: 170 Data Points: Matric Suction (psf), X‐Conductivity (ft/hr) 

Data Point: (0.005, 170) Data Point: (0.01, 170) Data Point: (0.055505, 170) Data Point: (0.30808, 170) Data Point: (1.71, 170) Data Point: (9.4912, 2.3949) Data Point: (52.681, 0.010516) Data Point: (55.556, 0.0089604) Data Point: (292.4, 6.6243e‐005) Data Point: (1623, 6.3256e‐011) Data Point: (5296.3, 4.0245e‐024) Data Point: (9008.2, 4.0245e‐024) Data Point: (10537, 4.0245e‐024) Data Point: (15778, 4.0245e‐024) Data Point: (21019, 4.0245e‐024) Data Point: (26259, 4.0245e‐024) 

Page 189: Infiltration, Seepage, Fate, and Transport Modeling Report

Data Point: (31500, 4.0245e‐024) Data Point: (36741, 4.0245e‐024) Data Point: (41981, 4.0245e‐024) Data Point: (47222, 4.0245e‐024) Data Point: (50000, 4.0245e‐024) 

Estimation Properties Hydraulic K Sat: 0 ft/hr Hyd. K‐Function Estimation Method: Van Genuchten Function Maximum: 1000 Minimum: 0.01 Num. Points: 20 Residual Water Content: 0 ft³/ft³ 

Silt #2, Ksat = 1.18e‐02 ft/hr Model: Data Point Function Function: X‐Conductivity vs. Pore‐Water Pressure 

Curve Fit to Data: 100 % Segment Curvature: 46 % 

K‐Saturation: 0.0118 Data Points: Matric Suction (psf), X‐Conductivity (ft/hr) 

Data Point: (0.005, 0.0118) Data Point: (0.01, 0.0118) Data Point: (0.050666, 0.0118) Data Point: (0.2567, 0.0118) Data Point: (1.3006, 0.0118) Data Point: (6.5895, 0.0118) Data Point: (24.444, 0.0118) Data Point: (33.386, 0.0118) Data Point: (169.15, 0.0093876) Data Point: (857.03, 0.00028444) Data Point: (2330.4, 6.917e‐006) Data Point: (4342.2, 4.335e‐007) Data Point: (4636.3, 3.444e‐007) Data Point: (6942.2, 1.2285e‐007) Data Point: (9248.1, 6.3069e‐008) Data Point: (11554, 3.4728e‐008) Data Point: (13860, 1.9603e‐008) Data Point: (16166, 1.1243e‐008) Data Point: (18472, 1.1243e‐008) Data Point: (20778, 1.1243e‐008) Data Point: (22000, 1.1243e‐008) 

Estimation Properties Hydraulic K Sat: 0 ft/hr Hyd. K‐Function Estimation Method: Van Genuchten Function Maximum: 1000 Minimum: 0.01 Num. Points: 20 Residual Water Content: 0 ft³/ft³ 

Page 190: Infiltration, Seepage, Fate, and Transport Modeling Report

Leaf Area Index Boundary Functions 

Poor grass Model: Spline Data Point Function Function: Leaf Area Index vs. Days 

Curve Fit to Data: 100 % Segment Curvature: 46 % 

Y‐Intercept: 0 Data Points: Days, Leaf Area Index 

Data Point: (0, 0) Data Point: (12.586, 0) Data Point: (25.172, 0) Data Point: (37.759, 0.042672) Data Point: (50.345, 0.1119) Data Point: (62.931, 0.2082) Data Point: (75.517, 0.39372) Data Point: (88.103, 0.57924) Data Point: (100.69, 0.72935) Data Point: (113.28, 0.87317) Data Point: (125.86, 0.95782) Data Point: (138.45, 0.9746) Data Point: (151.03, 0.99) Data Point: (163.62, 0.99) Data Point: (176.21, 0.99) Data Point: (188.79, 0.99) Data Point: (201.38, 0.99) Data Point: (213.97, 0.98471) Data Point: (226.55, 0.96793) Data Point: (239.14, 0.95115) Data Point: (251.72, 0.92694) Data Point: (264.31, 0.90219) Data Point: (276.9, 0.83486) Data Point: (289.48, 0.73241) Data Point: (302.07, 0.62404) Data Point: (314.66, 0.48559) Data Point: (327.24, 0.34714) Data Point: (339.83, 0) Data Point: (352.41, 0) Data Point: (365, 0) 

Estimation Properties Sample Material: Poor Num. Points: 30 First Day of Growing Season: 0 Last Day of Growing Season: 0 Number of Years: 1 

Page 191: Infiltration, Seepage, Fate, and Transport Modeling Report

Plant Moisture Limiting Boundary Functions 

Wilting function Model: Spline Data Point Function Function: Limiting Factor vs. Matric Suction 

Curve Fit to Data: 100 % Segment Curvature: 46 % 

Y‐Intercept: 1 Data Points: Matric Suction (psf), Limiting Factor 

Data Point: (‐33000, 0) Data Point: (‐2200, 1) 

Root Depth Boundary Functions 

New Function Model: Spline Data Point Function Function: Root Depth vs. Days 

Curve Fit to Data: 100 % Segment Curvature: 100 % 

Y‐Intercept: ‐0.5 Data Points: Days, Root Depth (ft) 

Data Point: (1, ‐0.5) Data Point: (100, ‐0.5) Data Point: (200, ‐0.5) Data Point: (300, ‐0.5) Data Point: (365, ‐0.5) 

Vol. Water Content Functions 

Glacial Till (Compacted) Model: Fredlund‐Xing Function Function: Vol. Water Content vs. Pore‐Water Pressure 

A: 1259 psf N: 2.2973 M: 1.0662 Saturated Water Content: 0.23 ft³/ft³ Suction Limit: 2.0885e+007 Mv: 1e‐009 /psf 

Porosity: 0.23 

Well‐Graded #3 (high clay) Model: Fredlund‐Xing Function Function: Vol. Water Content vs. Pore‐Water Pressure 

A: 23272 psf 

Page 192: Infiltration, Seepage, Fate, and Transport Modeling Report

N: 0.81304 M: 1.4413 Saturated Water Content: 0.34001 ft³/ft³ Suction Limit: 2.0885e+007 Mv: 1e‐009 /psf 

Porosity: 0.34000981 

Uniform sand Model: Fredlund‐Xing Function Function: Vol. Water Content vs. Pore‐Water Pressure 

A: 102.15 psf N: 6.5065 M: 0.54096 Saturated Water Content: 0.35 ft³/ft³ Suction Limit: 2.0885e+007 Mv: 1e‐009 /psf 

Porosity: 0.35 

Pete's Coarse Ore Model: Data Point Function Function: Vol. Water Content vs. Pore‐Water Pressure 

Curve Fit to Data: 100 % Segment Curvature: 48 % Mv: 0 /psf 

Porosity: 0.41231 Data Points: Matric Suction (psf), Vol. Water Content (ft³/ft³) 

Data Point: (1.05, 0.41231) Data Point: (2.09, 0.411) Data Point: (10.4, 0.406) Data Point: (41.8, 0.391) Data Point: (125, 0.321) Data Point: (418, 0.171) Data Point: (1570, 0.0863) Data Point: (5220, 0.0513) 

Estimation Properties Vol. WC Estimation Method: Sample functions Sample Material: Clay Saturated Water Content: 0 ft³/ft³ Liquid Limit: 0 % Diameter at 10% passing: 0 Diameter at 60% passing: 0 Maximum: 1000 Minimum: 0.01 Num. Points: 20 

Andesite Rock Model: Data Point Function Function: Vol. Water Content vs. Pore‐Water Pressure 

Page 193: Infiltration, Seepage, Fate, and Transport Modeling Report

Curve Fit to Data: 100 % Segment Curvature: 48 % Mv: 0 /psf 

Porosity: 0.27 Data Points: Matric Suction (psf), Vol. Water Content (ft³/ft³) 

Data Point: (1, 0.27) Data Point: (2, 0.24865) Data Point: (4.7707, 0.22405) Data Point: (5.5556, 0.22045) Data Point: (11.38, 0.20798) Data Point: (27.144, 0.19815) Data Point: (64.748, 0.1926) Data Point: (154.45, 0.18908) Data Point: (368.4, 0.1861) Data Point: (529.63, 0.18548) Data Point: (878.76, 0.18466) Data Point: (1053.7, 0.18466) Data Point: (1577.8, 0.18466) Data Point: (2096.1, 0.18466) Data Point: (2101.9, 0.18466) Data Point: (2625.9, 0.18466) Data Point: (3150, 0.18466) Data Point: (3674.1, 0.18466) Data Point: (4198.1, 0.18466) Data Point: (4722.2, 0.18466) Data Point: (5000, 0.18466) 

Estimation Properties Vol. WC Estimation Method: Sample functions Sample Material: Clay Saturated Water Content: 0 ft³/ft³ Liquid Limit: 0 % Diameter at 10% passing: 0 Diameter at 60% passing: 0 Maximum: 1000 Minimum: 0.01 Num. Points: 20 

Silt #2 Model: Fredlund‐Xing Function Function: Vol. Water Content vs. Pore‐Water Pressure 

A: 492.7 psf N: 2.8872 M: 1.1969 Saturated Water Content: 0.44 ft³/ft³ Suction Limit: 2.0885e+007 Mv: 1e‐009 /psf 

Porosity: 0.44 

Page 194: Infiltration, Seepage, Fate, and Transport Modeling Report

Thermal K vs VolWC Functions 

Clay Model: Spline Data Point Function Function: Thermal Conductivity vs. Vol. Water Content 

Curve Fit to Data: 100 % Segment Curvature: 48 % 

Y‐Intercept: 0.6425 Data Points: Vol. Water Content (ft³/ft³), Thermal Conductivity (BTU/hr/ft/°F) 

Data Point: (0, 0.6425) Data Point: (0.021579, 0.73776) Data Point: (0.043158, 0.83302) Data Point: (0.064737, 0.88875) Data Point: (0.086316, 0.92828) Data Point: (0.10789, 0.95895) Data Point: (0.12947, 0.98401) Data Point: (0.15105, 1.0052) Data Point: (0.17263, 1.0235) Data Point: (0.19421, 1.0397) Data Point: (0.21579, 1.0542) Data Point: (0.23737, 1.0673) Data Point: (0.25895, 1.0793) Data Point: (0.28053, 1.0903) Data Point: (0.30211, 1.1005) Data Point: (0.32368, 1.1099) Data Point: (0.34526, 1.1188) Data Point: (0.36684, 1.1271) Data Point: (0.38842, 1.135) Data Point: (0.41, 1.1424) 

Estimation Properties MineralThermalK: 0 BTU/hr/ft/°F Maximum: 1 Minimum: 0 Num. Points: 20 

Silt Model: Spline Data Point Function Function: Thermal Conductivity vs. Vol. Water Content 

Curve Fit to Data: 100 % Segment Curvature: 48 % 

Y‐Intercept: 0.75017 Data Points: Vol. Water Content (ft³/ft³), Thermal Conductivity (BTU/hr/ft/°F) 

Data Point: (0, 0.75017) Data Point: (0.02, 0.86287) Data Point: (0.04, 0.97557) Data Point: (0.06, 1.0415) Data Point: (0.08, 1.0883) 

Page 195: Infiltration, Seepage, Fate, and Transport Modeling Report

Data Point: (0.1, 1.1246) Data Point: (0.12, 1.1542) Data Point: (0.14, 1.1793) Data Point: (0.16, 1.201) Data Point: (0.18, 1.2201) Data Point: (0.2, 1.2372) Data Point: (0.22, 1.2527) Data Point: (0.24, 1.2669) Data Point: (0.26, 1.2799) Data Point: (0.28, 1.292) Data Point: (0.3, 1.3032) Data Point: (0.32, 1.3137) Data Point: (0.34, 1.3235) Data Point: (0.36, 1.3328) Data Point: (0.38, 1.3416) 

Estimation Properties MineralThermalK: 0 BTU/hr/ft/°F Maximum: 1 Minimum: 0 Num. Points: 20 

Sand Model: Spline Data Point Function Function: Thermal Conductivity vs. Vol. Water Content 

Curve Fit to Data: 100 % Segment Curvature: 48 % 

Y‐Intercept: 1.2184 Data Points: Vol. Water Content (ft³/ft³), Thermal Conductivity (BTU/hr/ft/°F) 

Data Point: (0, 1.2184) Data Point: (0.015789, 1.4094) Data Point: (0.031579, 1.6004) Data Point: (0.047368, 1.7121) Data Point: (0.063158, 1.7914) Data Point: (0.078947, 1.8529) Data Point: (0.094737, 1.9031) Data Point: (0.11053, 1.9456) Data Point: (0.12632, 1.9823) Data Point: (0.14211, 2.0148) Data Point: (0.15789, 2.0438) Data Point: (0.17368, 2.0701) Data Point: (0.18947, 2.0941) Data Point: (0.20526, 2.1161) Data Point: (0.22105, 2.1365) Data Point: (0.23684, 2.1555) Data Point: (0.25263, 2.1733) Data Point: (0.26842, 2.19) Data Point: (0.28421, 2.2058) Data Point: (0.3, 2.2207) 

Page 196: Infiltration, Seepage, Fate, and Transport Modeling Report

Estimation Properties MineralThermalK: 0 BTU/hr/ft/°F Maximum: 1 Minimum: 0 Num. Points: 20 

Vol. Specific Heat Functions 

Clay (Btu/Ft3 F) Model: Spline Data Point Function Function: Volumetric Specific Heat Capacity vs. Vol. Water Content 

Curve Fit to Data: 100 % Segment Curvature: 46 % 

Y‐Intercept: 20.189 Data Points: Vol. Water Content (ft³/ft³), Volumetric Specific Heat Capacity (BTU/ft³/°F) 

Data Point: (0, 20.189) Data Point: (0.021579, 21.535) Data Point: (0.043158, 22.881) Data Point: (0.064737, 24.228) Data Point: (0.086316, 25.574) Data Point: (0.10789, 26.92) Data Point: (0.12947, 28.266) Data Point: (0.15105, 29.612) Data Point: (0.17263, 30.959) Data Point: (0.19421, 32.305) Data Point: (0.21579, 33.651) Data Point: (0.23737, 34.997) Data Point: (0.25895, 36.344) Data Point: (0.28053, 37.69) Data Point: (0.30211, 39.036) Data Point: (0.32368, 40.382) Data Point: (0.34526, 41.729) Data Point: (0.36684, 43.075) Data Point: (0.38842, 44.421) Data Point: (0.41, 45.767) 

Estimation Properties MassSpecHeat: 0 BTU/g/°F Maximum: 1 Minimum: 0 Num. Points: 20 

Silt (Btu/ft3 F) Model: Spline Data Point Function Function: Volumetric Specific Heat Capacity vs. Vol. Water Content 

Curve Fit to Data: 100 % Segment Curvature: 46 % 

Page 197: Infiltration, Seepage, Fate, and Transport Modeling Report

Y‐Intercept: 18.707 Data Points: Vol. Water Content (ft³/ft³), Volumetric Specific Heat Capacity (BTU/ft³/°F) 

Data Point: (0, 18.707) Data Point: (0.02, 19.955) Data Point: (0.04, 21.203) Data Point: (0.06, 22.45) Data Point: (0.08, 23.698) Data Point: (0.1, 24.946) Data Point: (0.12, 26.194) Data Point: (0.14, 27.441) Data Point: (0.16, 28.689) Data Point: (0.18, 29.937) Data Point: (0.2, 31.184) Data Point: (0.22, 32.432) Data Point: (0.24, 33.68) Data Point: (0.26, 34.928) Data Point: (0.28, 36.175) Data Point: (0.3, 37.423) Data Point: (0.32, 38.671) Data Point: (0.34, 39.918) Data Point: (0.36, 41.166) Data Point: (0.38, 42.414) 

Estimation Properties MassSpecHeat: 0 BTU/g/°F Maximum: 1 Minimum: 0 Num. Points: 20 

Sand (Btu/Ft3 F) Model: Spline Data Point Function Function: Volumetric Specific Heat Capacity vs. Vol. Water Content 

Curve Fit to Data: 100 % Segment Curvature: 46 % 

Y‐Intercept: 19.705 Data Points: Vol. Water Content (ft³/ft³), Volumetric Specific Heat Capacity (BTU/ft³/°F) 

Data Point: (0, 19.705) Data Point: (0.015789, 20.69) Data Point: (0.031579, 21.675) Data Point: (0.047368, 22.66) Data Point: (0.063158, 23.645) Data Point: (0.078947, 24.63) Data Point: (0.094737, 25.615) Data Point: (0.11053, 26.6) Data Point: (0.12632, 27.585) Data Point: (0.14211, 28.57) Data Point: (0.15789, 29.556) Data Point: (0.17368, 30.541) Data Point: (0.18947, 31.526) 

Page 198: Infiltration, Seepage, Fate, and Transport Modeling Report

Data Point: (0.20526, 32.511) Data Point: (0.22105, 33.496) Data Point: (0.23684, 34.481) Data Point: (0.25263, 35.466) Data Point: (0.26842, 36.451) Data Point: (0.28421, 37.436) Data Point: (0.3, 38.421) 

Estimation Properties MassSpecHeat: 0 BTU/g/°F Maximum: 1 Minimum: 0 Num. Points: 20 

Page 199: Infiltration, Seepage, Fate, and Transport Modeling Report

Transient Coupled VADOSE/W (2) Report generated using GeoStudio 2007, version 7.15. Copyright © 1991‐2009 GEO‐SLOPE International Ltd. 

File Information Created By: Amy Hudson File Name: Expanded Phase I Heap Model_v12.gsz Comments: This model is a series of steady state and transient models that progress through the phases of operations. This model includes simulation of average annual conditions, 100‐year, 24‐hour storm, and multiday storm. 

Project Settings Length(L) Units: feet Time(t) Units: Hours Force(F) Units: lbf Temp(T) Units: F Energy Units: BTU Latent Heat of Water: 8975 Phase Change Temperature: 32 Unit Weight of Water: 62.4 pcf View: 2D 

Analysis Settings 

Transient Coupled VADOSE/W (2) Kind: VADOSE/W Method: Transient Coupled Settings 

Initial PWP: Parent Analysis Initial Thermal Conditions Source: Parent Analysis Exclude cumulative values: No 

Control Ground Freezing Latent Heat Effects: No Vegetation: No Apply Runoff: Yes 

Convergence Maximum Number of Iterations: 500 Tolerance: 0.01 Maximum Change in K: 0.1 Rate of Change in K: 1.02 Minimum Change in K: 1e‐005 Equation Solver: Parallel Direct Potential Seepage Max # of Reviews: 10 

Time Step Generation Method: Linear Use Adaptive Time Stepping: Yes Adaptive Step Settings 

Adaptive Method: Vector Normal 

Page 200: Infiltration, Seepage, Fate, and Transport Modeling Report

Max % Change per Step: 2.5 Max. Courant Number: 2 Range Min Step: 0.01 Range Max Step: 1 

Materials 

Bedrock Model: Full Thermal Hydraulic 

K‐Function: Well‐Graded #3 (high clay), Ksat = 8.42e‐06 ft/hr Vol. WC. Function: Well‐Graded #3 (high clay) K‐Ratio: 1 K‐Direction: 0 ° 

Thermal Thermal K Fn (K vs VWC): Clay Vol Specific Heat Fn: Clay (Btu/Ft3 F) 

Gas Gas Decay (Yrs.): 0 

Alluvium Model: Full Thermal Hydraulic 

K‐Function: Silt #2, Ksat = 1.18e‐02 ft/hr Vol. WC. Function: Silt #2 K‐Ratio: 1 K‐Direction: 0 ° 

Thermal Thermal K Fn (K vs VWC): Silt Vol Specific Heat Fn: Silt (Btu/ft3 F) 

Gas Gas Decay (Yrs.): 0 

Spent Ore Model: Full Thermal Hydraulic 

K‐Function: Andesite Rock Vol. WC. Function: Ore K‐Ratio: 1 K‐Direction: 0 ° 

Thermal Thermal K Fn (K vs VWC): Sand Vol Specific Heat Fn: Sand (Btu/Ft3 F) 

Gas Gas Decay (Yrs.): 0 

Boundary Conditions 

Groundwater Type: Head (H) 4600 

Page 201: Infiltration, Seepage, Fate, and Transport Modeling Report

Emitters Review: true Type: Unit Flux (q) 1e‐009 

Air Temperature Type: Temperature (T) 75 

Oxygen Concentration Type: Concentration (C) 7 

Climate Data Sets 

Average annual conditions Name: Average annual conditions Latitude: 31 Distribution: Sinusoidal Distribution 

Entry Modifier 

Max T Offset: 0 Min T Offset: 0 Max RH Offset: 0 Min RH Offset: 0 Wind Scale: 100 Precipitation Scale: 100 Start Precip Offset: 0 End Precip Offset: 0 PET Scale: 100 Net Radiation Scale: 100 

Climate Entries 

Day # Max T (°F) 

Min T (°F) Max RH (%) 

Min RH (%) 

Wind  Precipitation Precipitation 

Started Precipitation 

Ended PET  Net Radiation 

1  64  27  58  35  8.802  0.019  0  24  0.10129032  0.10129032 

2  63  26  58  35  8.802  0.061  0  24  0.10129032  0.10129032 

3  62  27  58  35  8.802  0.046  0  24  0.10129032  0.10129032 

4  62  26  58  35  8.802  0.05  0  24  0.10129032  0.10129032 

5  62  27  58  35  8.802  0.028  0  24  0.10129032  0.10129032 

6  62  27  58  35  8.802  0.11  0  24  0.10129032  0.10129032 

7  62  28  58  35  8.802  0.039  0  24  0.10129032  0.10129032 

8  64  28  58  35  8.802  0.062  0  24  0.10129032  0.10129032 

9  65  27  58  35  8.802  0.033  0  24  0.10129032  0.10129032 

10  65  27  58  35  8.802  0.024  0  24  0.10129032  0.10129032 

11  64  28  58  35  8.802  0.045  0  24  0.10129032  0.10129032 

12  64  27  58  35  8.802  0.033  0  24  0.10129032  0.10129032 

13  64  27  58  35  8.802  0.036  0  24  0.10129032  0.10129032 

14  64  27  58  35  8.802  0.041  0  24  0.10129032  0.10129032 

15  65  27  58  35  8.802  0.016  0  24  0.10129032  0.10129032 

16  65  28  58  35  8.802  0.016  0  24  0.10129032  0.10129032 

17  65  28  58  35  8.802  0.038  0  24  0.10129032  0.10129032 

18  64  27  58  35  8.802  0.059  0  24  0.10129032  0.10129032 

Page 202: Infiltration, Seepage, Fate, and Transport Modeling Report

19  66  27  58  35  8.802  0.05  0  24  0.10129032  0.10129032 

20  64  27  58  35  8.802  0.032  0  24  0.10129032  0.10129032 

21  63  27  58  35  8.802  0.024  0  24  0.10129032  0.10129032 

22  64  27  58  35  8.802  0.029  0  24  0.10129032  0.10129032 

23  64  28  58  35  8.802  0.011  0  24  0.10129032  0.10129032 

24  64  27  58  35  8.802  0.027  0  24  0.10129032  0.10129032 

25  66  28  58  35  8.802  0.033  0  24  0.10129032  0.10129032 

26  67  27  58  35  8.802  0.022  0  24  0.10129032  0.10129032 

27  66  28  58  35  8.802  0.029  0  24  0.10129032  0.10129032 

28  65  28  58  35  8.802  0.03  0  24  0.10129032  0.10129032 

29  64  27  58  35  8.802  0.013  0  24  0.10129032  0.10129032 

30  65  28  58  35  8.802  0.05  0  24  0.10129032  0.10129032 

31  65  27  58  35  8.802  0.04  0  24  0.10129032  0.10129032 

32  64  27  53  30  8.802  0.021  0  24  0.15275862  0.15275862 

33  65  27  53  30  8.802  0.011  0  24  0.15275862  0.15275862 

34  65  26  53  30  8.802  0.014  0  24  0.15275862  0.15275862 

35  65  28  53  30  8.802  0.028  0  24  0.15275862  0.15275862 

36  66  30  53  30  8.802  0.052  0  24  0.15275862  0.15275862 

37  66  29  53  30  8.802  0.013  0  24  0.15275862  0.15275862 

38  67  29  53  30  8.802  0.026  0  24  0.15275862  0.15275862 

39  67  29  53  30  8.802  0.046  0  24  0.15275862  0.15275862 

40  66  31  53  30  8.802  0.07  0  24  0.15275862  0.15275862 

41  65  29  53  30  8.802  0.037  0  24  0.15275862  0.15275862 

42  66  29  53  30  8.802  0.053  0  24  0.15275862  0.15275862 

43  65  31  53  30  8.802  0.052  0  24  0.15275862  0.15275862 

44  67  31  53  30  8.802  0.031  0  24  0.15275862  0.15275862 

45  67  31  53  30  8.802  0.051  0  24  0.15275862  0.15275862 

46  66  30  53  30  8.802  0.035  0  24  0.15275862  0.15275862 

47  67  30  53  30  8.802  0.03  0  24  0.15275862  0.15275862 

48  68  30  53  30  8.802  0.017  0  24  0.15275862  0.15275862 

49  68  30  53  30  8.802  0.023  0  24  0.15275862  0.15275862 

50  67  31  53  30  8.802  0.009  0  24  0.15275862  0.15275862 

51  66  30  53  30  8.802  0.021  0  24  0.15275862  0.15275862 

52  65  29  53  30  8.802  0.047  0  24  0.15275862  0.15275862 

53  66  29  53  30  8.802  0.045  0  24  0.15275862  0.15275862 

54  67  28  53  30  8.802  0.008  0  24  0.15275862  0.15275862 

55  68  29  53  30  8.802  0.06  0  24  0.15275862  0.15275862 

56  68  30  53  30  8.802  0.028  0  24  0.15275862  0.15275862 

57  68  31  53  30  8.802  0.029  0  24  0.15275862  0.15275862 

58  69  30  53  30  8.802  0.013  0  24  0.15275862  0.15275862 

59  68  31  53  30  8.802  0.024  0  24  0.15275862  0.15275862 

60  68  31  45  24  10.269  0.047  0  24  0.23032258  0.23032258 

61  68  33  45  24  10.269  0.034  0  24  0.23032258  0.23032258 

62  66  31  45  24  10.269  0.082  0  24  0.23032258  0.23032258 

63  66  30  45  24  10.269  0.066  0  24  0.23032258  0.23032258 

64  67  31  45  24  10.269  0.018  0  24  0.23032258  0.23032258 

65  68  31  45  24  10.269  0.037  0  24  0.23032258  0.23032258 

66  69  31  45  24  10.269  0.046  0  24  0.23032258  0.23032258 

67  69  32  45  24  10.269  0.035  0  24  0.23032258  0.23032258 

68  72  33  45  24  10.269  0.011  0  24  0.23032258  0.23032258 

69  72  34  45  24  10.269  0.022  0  24  0.23032258  0.23032258 

70  70  34  45  24  10.269  0.038  0  24  0.23032258  0.23032258 

Page 203: Infiltration, Seepage, Fate, and Transport Modeling Report

71  69  33  45  24  10.269  0.018  0  24  0.23032258  0.23032258 

72  69  31  45  24  10.269  0.054  0  24  0.23032258  0.23032258 

73  69  32  45  24  10.269  0.019  0  24  0.23032258  0.23032258 

74  71  32  45  24  10.269  0.012  0  24  0.23032258  0.23032258 

75  71  33  45  24  10.269  0.017  0  24  0.23032258  0.23032258 

76  71  34  45  24  10.269  0.007  0  24  0.23032258  0.23032258 

77  72  35  45  24  10.269  0.029  0  24  0.23032258  0.23032258 

78  71  34  45  24  10.269  0.011  0  24  0.23032258  0.23032258 

79  73  34  45  24  10.269  0.044  0  24  0.23032258  0.23032258 

80  73  34  45  24  10.269  0.045  0  24  0.23032258  0.23032258 

81  73  36  45  24  10.269  0.018  0  24  0.23032258  0.23032258 

82  73  35  45  24  10.269  0.029  0  24  0.23032258  0.23032258 

83  73  33  45  24  10.269  0.025  0  24  0.23032258  0.23032258 

84  73  34  45  24  10.269  0.012  0  24  0.23032258  0.23032258 

85  74  36  45  24  10.269  0.018  0  24  0.23032258  0.23032258 

86  72  36  45  24  10.269  0.053  0  24  0.23032258  0.23032258 

87  72  37  45  24  10.269  0.03  0  24  0.23032258  0.23032258 

88  72  37  45  24  10.269  0.021  0  24  0.23032258  0.23032258 

89  72  36  45  24  10.269  0.004  0  24  0.23032258  0.23032258 

90  75  36  45  24  10.269  0.001  0  24  0.23032258  0.23032258 

91  75  36  37  21  11.736  0.023  0  24  0.31433333  0.31433333 

92  74  36  37  21  11.736  0.034  0  24  0.31433333  0.31433333 

93  73  35  37  21  11.736  0.008  0  24  0.31433333  0.31433333 

94  73  36  37  21  11.736  0.028  0  24  0.31433333  0.31433333 

95  75  37  37  21  11.736  0.006  0  24  0.31433333  0.31433333 

96  77  38  37  21  11.736  0.028  0  24  0.31433333  0.31433333 

97  77  38  37  21  11.736  0.02  0  24  0.31433333  0.31433333 

98  76  37  37  21  11.736  0.011  0  24  0.31433333  0.31433333 

99  77  37  37  21  11.736  0.004  0  24  0.31433333  0.31433333 

100  79  38  37  21  11.736  0.011  0  24  0.31433333  0.31433333 

101  78  38  37  21  11.736  0.004  0  24  0.31433333  0.31433333 

102  78  38  37  21  11.736  0.002  0  24  0.31433333  0.31433333 

103  77  38  37  21  11.736  0.004  0  24  0.31433333  0.31433333 

104  79  38  37  21  11.736  0.006  0  24  0.31433333  0.31433333 

105  80  38  37  21  11.736  0.009  0  24  0.31433333  0.31433333 

106  79  39  37  21  11.736  0.031  0  24  0.31433333  0.31433333 

107  79  40  37  21  11.736  0.031  0  24  0.31433333  0.31433333 

108  79  40  37  21  11.736  0  0  24  0.31433333  0.31433333 

109  79  39  37  21  11.736  0.023  0  24  0.31433333  0.31433333 

110  78  38  37  21  11.736  0.001  0  24  0.31433333  0.31433333 

111  80  40  37  21  11.736  0.004  0  24  0.31433333  0.31433333 

112  80  39  37  21  11.736  0.018  0  24  0.31433333  0.31433333 

113  79  39  37  21  11.736  0.002  0  24  0.31433333  0.31433333 

114  80  39  37  21  11.736  0  0  24  0.31433333  0.31433333 

115  81  40  37  21  11.736  0.005  0  24  0.31433333  0.31433333 

116  81  41  37  21  11.736  0.009  0  24  0.31433333  0.31433333 

117  80  40  37  21  11.736  0.016  0  24  0.31433333  0.31433333 

118  81  40  37  21  11.736  0.029  0  24  0.31433333  0.31433333 

119  81  42  37  21  11.736  0.013  0  24  0.31433333  0.31433333 

120  81  40  37  21  11.736  0.009  0  24  0.31433333  0.31433333 

121  82  41  30  16  10.269  0.006  0  24  0.41483871  0.41483871 

122  81  41  30  16  10.269  0.017  0  24  0.41483871  0.41483871 

Page 204: Infiltration, Seepage, Fate, and Transport Modeling Report

123  82  42  30  16  10.269  0  0  24  0.41483871  0.41483871 

124  83  42  30  16  10.269  0  0  24  0.41483871  0.41483871 

125  83  43  30  16  10.269  0.002  0  24  0.41483871  0.41483871 

126  82  42  30  16  10.269  0.009  0  24  0.41483871  0.41483871 

127  82  43  30  16  10.269  0.004  0  24  0.41483871  0.41483871 

128  83  42  30  16  10.269  0.004  0  24  0.41483871  0.41483871 

129  84  43  30  16  10.269  0  0  24  0.41483871  0.41483871 

130  84  43  30  16  10.269  0.002  0  24  0.41483871  0.41483871 

131  84  44  30  16  10.269  0.003  0  24  0.41483871  0.41483871 

132  86  44  30  16  10.269  0.001  0  24  0.41483871  0.41483871 

133  86  43  30  16  10.269  0.005  0  24  0.41483871  0.41483871 

134  86  44  30  16  10.269  0.002  0  24  0.41483871  0.41483871 

135  87  45  30  16  10.269  0.001  0  24  0.41483871  0.41483871 

136  87  45  30  16  10.269  0.006  0  24  0.41483871  0.41483871 

137  87  46  30  16  10.269  0.002  0  24  0.41483871  0.41483871 

138  87  46  30  16  10.269  0  0  24  0.41483871  0.41483871 

139  88  47  30  16  10.269  0.02  0  24  0.41483871  0.41483871 

140  88  47  30  16  10.269  0.026  0  24  0.41483871  0.41483871 

141  88  46  30  16  10.269  0.017  0  24  0.41483871  0.41483871 

142  88  46  30  16  10.269  0.007  0  24  0.41483871  0.41483871 

143  88  46  30  16  10.269  0  0  24  0.41483871  0.41483871 

144  88  47  30  16  10.269  0.01  0  24  0.41483871  0.41483871 

145  89  47  30  16  10.269  0.002  0  24  0.41483871  0.41483871 

146  88  46  30  16  10.269  0.006  0  24  0.41483871  0.41483871 

147  89  48  30  16  10.269  0.017  0  24  0.41483871  0.41483871 

148  90  47  30  16  10.269  0.004  0  24  0.41483871  0.41483871 

149  90  49  30  16  10.269  0.011  0  24  0.41483871  0.41483871 

150  89  49  30  16  10.269  0.029  0  24  0.41483871  0.41483871 

151  90  49  30  16  10.269  0.009  0  24  0.41483871  0.41483871 

152  91  50  31  18  10.269  0.002  0  24  0.47133333  0.47133333 

153  92  49  31  18  10.269  0.001  0  24  0.47133333  0.47133333 

154  92  49  31  18  10.269  0.004  0  24  0.47133333  0.47133333 

155  92  50  31  18  10.269  0.01  0  24  0.47133333  0.47133333 

156  92  51  31  18  10.269  0.012  0  24  0.47133333  0.47133333 

157  93  51  31  18  10.269  0.011  0  24  0.47133333  0.47133333 

158  93  51  31  18  10.269  0.004  0  24  0.47133333  0.47133333 

159  92  51  31  18  10.269  0.003  0  24  0.47133333  0.47133333 

160  93  51  31  18  10.269  0.006  0  24  0.47133333  0.47133333 

161  92  51  31  18  10.269  0.002  0  24  0.47133333  0.47133333 

162  93  51  31  18  10.269  0  0  24  0.47133333  0.47133333 

163  93  52  31  18  10.269  0.006  0  24  0.47133333  0.47133333 

164  94  52  31  18  10.269  0.007  0  24  0.47133333  0.47133333 

165  95  54  31  18  10.269  0.005  0  24  0.47133333  0.47133333 

166  96  54  31  18  10.269  0.003  0  24  0.47133333  0.47133333 

167  96  54  31  18  10.269  0.007  0  24  0.47133333  0.47133333 

168  96  55  31  18  10.269  0  0  24  0.47133333  0.47133333 

169  97  56  31  18  10.269  0.026  0  24  0.47133333  0.47133333 

170  98  56  31  18  10.269  0.043  0  24  0.47133333  0.47133333 

171  98  56  31  18  10.269  0.016  0  24  0.47133333  0.47133333 

172  98  56  31  18  10.269  0.048  0  24  0.47133333  0.47133333 

173  98  57  31  18  10.269  0.027  0  24  0.47133333  0.47133333 

174  98  57  31  18  10.269  0.021  0  24  0.47133333  0.47133333 

Page 205: Infiltration, Seepage, Fate, and Transport Modeling Report

175  98  58  31  18  10.269  0.015  0  24  0.47133333  0.47133333 

176  98  58  31  18  10.269  0.014  0  24  0.47133333  0.47133333 

177  98  59  31  18  10.269  0.037  0  24  0.47133333  0.47133333 

178  98  60  31  18  10.269  0.019  0  24  0.47133333  0.47133333 

179  99  60  31  18  10.269  0.012  0  24  0.47133333  0.47133333 

180  98  61  31  18  10.269  0.067  0  24  0.47133333  0.47133333 

181  98  61  31  18  10.269  0.041  0  24  0.47133333  0.47133333 

182  98  63  57  36  8.802  0.011  0  24  0.45612903  0.45612903 

183  98  62  57  36  8.802  0.039  0  24  0.45612903  0.45612903 

184  98  63  57  36  8.802  0.087  0  24  0.45612903  0.45612903 

185  97  62  57  36  8.802  0.113  0  24  0.45612903  0.45612903 

186  97  63  57  36  8.802  0.093  0  24  0.45612903  0.45612903 

187  97  63  57  36  8.802  0.146  0  24  0.45612903  0.45612903 

188  96  63  57  36  8.802  0.069  0  24  0.45612903  0.45612903 

189  96  63  57  36  8.802  0.075  0  24  0.45612903  0.45612903 

190  96  64  57  36  8.802  0.118  0  24  0.45612903  0.45612903 

191  95  64  57  36  8.802  0.114  0  24  0.45612903  0.45612903 

192  95  63  57  36  8.802  0.199  0  24  0.45612903  0.45612903 

193  95  64  57  36  8.802  0.114  0  24  0.45612903  0.45612903 

194  95  64  57  36  8.802  0.135  0  24  0.45612903  0.45612903 

195  94  64  57  36  8.802  0.071  0  24  0.45612903  0.45612903 

196  94  64  57  36  8.802  0.247  0  24  0.45612903  0.45612903 

197  94  65  57  36  8.802  0.137  0  24  0.45612903  0.45612903 

198  93  65  57  36  8.802  0.202  0  24  0.45612903  0.45612903 

199  92  64  57  36  8.802  0.136  0  24  0.45612903  0.45612903 

200  93  65  57  36  8.802  0.241  0  24  0.45612903  0.45612903 

201  93  64  57  36  8.802  0.231  0  24  0.45612903  0.45612903 

202  92  65  57  36  8.802  0.159  0  24  0.45612903  0.45612903 

203  92  64  57  36  8.802  0.182  0  24  0.45612903  0.45612903 

204  92  64  57  36  8.802  0.132  0  24  0.45612903  0.45612903 

205  93  64  57  36  8.802  0.125  0  24  0.45612903  0.45612903 

206  93  64  57  36  8.802  0.156  0  24  0.45612903  0.45612903 

207  93  64  57  36  8.802  0.207  0  24  0.45612903  0.45612903 

208  92  64  57  36  8.802  0.162  0  24  0.45612903  0.45612903 

209  91  64  57  36  8.802  0.221  0  24  0.45612903  0.45612903 

210  91  64  57  36  8.802  0.156  0  24  0.45612903  0.45612903 

211  90  64  57  36  8.802  0.197  0  24  0.45612903  0.45612903 

212  91  64  57  36  8.802  0.077  0  24  0.45612903  0.45612903 

213  91  64  68  44  7.335  0.119  0  24  0.41483871  0.41483871 

214  91  64  68  44  7.335  0.179  0  24  0.41483871  0.41483871 

215  91  64  68  44  7.335  0.128  0  24  0.41483871  0.41483871 

216  92  64  68  44  7.335  0.093  0  24  0.41483871  0.41483871 

217  91  63  68  44  7.335  0.164  0  24  0.41483871  0.41483871 

218  91  64  68  44  7.335  0.15  0  24  0.41483871  0.41483871 

219  91  63  68  44  7.335  0.069  0  24  0.41483871  0.41483871 

220  93  64  68  44  7.335  0.127  0  24  0.41483871  0.41483871 

221  92  64  68  44  7.335  0.165  0  24  0.41483871  0.41483871 

222  91  64  68  44  7.335  0.094  0  24  0.41483871  0.41483871 

223  91  63  68  44  7.335  0.183  0  24  0.41483871  0.41483871 

224  92  64  68  44  7.335  0.137  0  24  0.41483871  0.41483871 

225  92  63  68  44  7.335  0.209  0  24  0.41483871  0.41483871 

226  92  62  68  44  7.335  0.157  0  24  0.41483871  0.41483871 

Page 206: Infiltration, Seepage, Fate, and Transport Modeling Report

227  90  63  68  44  7.335  0.191  0  24  0.41483871  0.41483871 

228  90  62  68  44  7.335  0.106  0  24  0.41483871  0.41483871 

229  92  62  68  44  7.335  0.142  0  24  0.41483871  0.41483871 

230  91  62  68  44  7.335  0.248  0  24  0.41483871  0.41483871 

231  91  63  68  44  7.335  0.05  0  24  0.41483871  0.41483871 

232  91  62  68  44  7.335  0.157  0  24  0.41483871  0.41483871 

233  91  62  68  44  7.335  0.089  0  24  0.41483871  0.41483871 

234  92  62  68  44  7.335  0.074  0  24  0.41483871  0.41483871 

235  92  62  68  44  7.335  0.143  0  24  0.41483871  0.41483871 

236  92  62  68  44  7.335  0.163  0  24  0.41483871  0.41483871 

237  91  61  68  44  7.335  0.168  0  24  0.41483871  0.41483871 

238  92  61  68  44  7.335  0.107  0  24  0.41483871  0.41483871 

239  92  61  68  44  7.335  0.124  0  24  0.41483871  0.41483871 

240  92  61  68  44  7.335  0.031  0  24  0.41483871  0.41483871 

241  92  61  68  44  7.335  0.201  0  24  0.41483871  0.41483871 

242  92  60  68  44  7.335  0.076  0  24  0.41483871  0.41483871 

243  92  60  68  44  7.335  0.064  0  24  0.41483871  0.41483871 

244  92  60  58  35  7.335  0.031  0  24  0.32866667  0.32866667 

245  92  60  58  35  7.335  0.1  0  24  0.32866667  0.32866667 

246  91  60  58  35  7.335  0.066  0  24  0.32866667  0.32866667 

247  91  61  58  35  7.335  0.077  0  24  0.32866667  0.32866667 

248  91  60  58  35  7.335  0.07  0  24  0.32866667  0.32866667 

249  92  59  58  35  7.335  0.074  0  24  0.32866667  0.32866667 

250  92  58  58  35  7.335  0.084  0  24  0.32866667  0.32866667 

251  92  58  58  35  7.335  0.044  0  24  0.32866667  0.32866667 

252  92  58  58  35  7.335  0.035  0  24  0.32866667  0.32866667 

253  92  59  58  35  7.335  0.106  0  24  0.32866667  0.32866667 

254  91  58  58  35  7.335  0.041  0  24  0.32866667  0.32866667 

255  91  57  58  35  7.335  0.047  0  24  0.32866667  0.32866667 

256  91  57  58  35  7.335  0.097  0  24  0.32866667  0.32866667 

257  90  56  58  35  7.335  0.057  0  24  0.32866667  0.32866667 

258  90  55  58  35  7.335  0.117  0  24  0.32866667  0.32866667 

259  90  55  58  35  7.335  0.024  0  24  0.32866667  0.32866667 

260  90  55  58  35  7.335  0.002  0  24  0.32866667  0.32866667 

261  90  55  58  35  7.335  0.031  0  24  0.32866667  0.32866667 

262  89  55  58  35  7.335  0.043  0  24  0.32866667  0.32866667 

263  89  53  58  35  7.335  0.018  0  24  0.32866667  0.32866667 

264  90  53  58  35  7.335  0.016  0  24  0.32866667  0.32866667 

265  89  52  58  35  7.335  0.037  0  24  0.32866667  0.32866667 

266  89  52  58  35  7.335  0.09  0  24  0.32866667  0.32866667 

267  88  52  58  35  7.335  0.061  0  24  0.32866667  0.32866667 

268  89  52  58  35  7.335  0.014  0  24  0.32866667  0.32866667 

269  89  52  58  35  7.335  0.015  0  24  0.32866667  0.32866667 

270  89  51  58  35  7.335  0.007  0  24  0.32866667  0.32866667 

271  89  50  58  35  7.335  0.042  0  24  0.32866667  0.32866667 

272  89  49  58  35  7.335  0.048  0  24  0.32866667  0.32866667 

273  89  50  58  35  7.335  0.064  0  24  0.32866667  0.32866667 

274  89  50  53  31  7.335  0.065  0  24  0.24419355  0.24419355 

275  87  50  53  31  7.335  0.125  0  24  0.24419355  0.24419355 

276  86  50  53  31  7.335  0.111  0  24  0.24419355  0.24419355 

277  85  50  53  31  7.335  0.036  0  24  0.24419355  0.24419355 

278  85  49  53  31  7.335  0.078  0  24  0.24419355  0.24419355 

Page 207: Infiltration, Seepage, Fate, and Transport Modeling Report

279  87  48  53  31  7.335  0.015  0  24  0.24419355  0.24419355 

280  86  48  53  31  7.335  0.051  0  24  0.24419355  0.24419355 

281  85  47  53  31  7.335  0.063  0  24  0.24419355  0.24419355 

282  85  46  53  31  7.335  0.121  0  24  0.24419355  0.24419355 

283  85  47  53  31  7.335  0.028  0  24  0.24419355  0.24419355 

284  86  45  53  31  7.335  0.042  0  24  0.24419355  0.24419355 

285  85  44  53  31  7.335  0.034  0  24  0.24419355  0.24419355 

286  84  44  53  31  7.335  0.021  0  24  0.24419355  0.24419355 

287  84  45  53  31  7.335  0.001  0  24  0.24419355  0.24419355 

288  82  45  53  31  7.335  0.02  0  24  0.24419355  0.24419355 

289  82  44  53  31  7.335  0.01  0  24  0.24419355  0.24419355 

290  82  44  53  31  7.335  0.047  0  24  0.24419355  0.24419355 

291  82  43  53  31  7.335  0.02  0  24  0.24419355  0.24419355 

292  82  42  53  31  7.335  0.035  0  24  0.24419355  0.24419355 

293  81  43  53  31  7.335  0.065  0  24  0.24419355  0.24419355 

294  81  43  53  31  7.335  0.047  0  24  0.24419355  0.24419355 

295  80  42  53  31  7.335  0.05  0  24  0.24419355  0.24419355 

296  79  41  53  31  7.335  0.04  0  24  0.24419355  0.24419355 

297  80  40  53  31  7.335  0.011  0  24  0.24419355  0.24419355 

298  80  40  53  31  7.335  0.017  0  24  0.24419355  0.24419355 

299  80  39  53  31  7.335  0.016  0  24  0.24419355  0.24419355 

300  79  39  53  31  7.335  0.004  0  24  0.24419355  0.24419355 

301  78  38  53  31  7.335  0.044  0  24  0.24419355  0.24419355 

302  78  39  53  31  7.335  0.022  0  24  0.24419355  0.24419355 

303  77  37  53  31  7.335  0.025  0  24  0.24419355  0.24419355 

304  75  37  53  31  7.335  0.069  0  24  0.24419355  0.24419355 

305  75  36  53  30  8.802  0.006  0  24  0.157  0.157 

306  75  36  53  30  8.802  0.011  0  24  0.157  0.157 

307  75  36  53  30  8.802  0.015  0  24  0.157  0.157 

308  76  35  53  30  8.802  0.007  0  24  0.157  0.157 

309  76  34  53  30  8.802  0.005  0  24  0.157  0.157 

310  76  36  53  30  8.802  0.013  0  24  0.157  0.157 

311  76  36  53  30  8.802  0.018  0  24  0.157  0.157 

312  75  36  53  30  8.802  0.019  0  24  0.157  0.157 

313  74  35  53  30  8.802  0.03  0  24  0.157  0.157 

314  74  35  53  30  8.802  0.005  0  24  0.157  0.157 

315  75  36  53  30  8.802  0.019  0  24  0.157  0.157 

316  75  36  53  30  8.802  0.072  0  24  0.157  0.157 

317  74  36  53  30  8.802  0.042  0  24  0.157  0.157 

318  73  36  53  30  8.802  0.031  0  24  0.157  0.157 

319  71  35  53  30  8.802  0.024  0  24  0.157  0.157 

320  70  32  53  30  8.802  0.046  0  24  0.157  0.157 

321  69  32  53  30  8.802  0.041  0  24  0.157  0.157 

322  68  31  53  30  8.802  0.017  0  24  0.157  0.157 

323  68  30  53  30  8.802  0.022  0  24  0.157  0.157 

324  69  29  53  30  8.802  0  0  24  0.157  0.157 

325  70  30  53  30  8.802  0.032  0  24  0.157  0.157 

326  70  30  53  30  8.802  0.012  0  24  0.157  0.157 

327  69  31  53  30  8.802  0.015  0  24  0.157  0.157 

328  70  30  53  30  8.802  0.041  0  24  0.157  0.157 

329  70  32  53  30  8.802  0.02  0  24  0.157  0.157 

330  69  31  53  30  8.802  0.04  0  24  0.157  0.157 

Page 208: Infiltration, Seepage, Fate, and Transport Modeling Report

331  68  29  53  30  8.802  0.011  0  24  0.157  0.157 

332  67  28  53  30  8.802  0.009  0  24  0.157  0.157 

333  67  28  53  30  8.802  0.031  0  24  0.157  0.157 

334  66  28  53  30  8.802  0.012  0  24  0.157  0.157 

335  67  29  60  38  7.335  0.066  0  24  0.10129032  0.10129032 

336  68  29  60  38  7.335  0.022  0  24  0.10129032  0.10129032 

337  68  28  60  38  7.335  0.009  0  24  0.10129032  0.10129032 

338  68  29  60  38  7.335  0.058  0  24  0.10129032  0.10129032 

339  68  29  60  38  7.335  0.067  0  24  0.10129032  0.10129032 

340  66  28  60  38  7.335  0.06  0  24  0.10129032  0.10129032 

341  67  28  60  38  7.335  0.017  0  24  0.10129032  0.10129032 

342  66  28  60  38  7.335  0.042  0  24  0.10129032  0.10129032 

343  64  28  60  38  7.335  0.037  0  24  0.10129032  0.10129032 

344  64  28  60  38  7.335  0.064  0  24  0.10129032  0.10129032 

345  65  28  60  38  7.335  0.072  0  24  0.10129032  0.10129032 

346  64  28  60  38  7.335  0.04  0  24  0.10129032  0.10129032 

347  63  27  60  38  7.335  0.029  0  24  0.10129032  0.10129032 

348  64  26  60  38  7.335  0.031  0  24  0.10129032  0.10129032 

349  64  26  60  38  7.335  0.053  0  24  0.10129032  0.10129032 

350  64  27  60  38  7.335  0.053  0  24  0.10129032  0.10129032 

351  65  28  60  38  7.335  0.081  0  24  0.10129032  0.10129032 

352  66  29  60  38  7.335  0.092  0  24  0.10129032  0.10129032 

353  65  29  60  38  7.335  0.033  0  24  0.10129032  0.10129032 

354  65  28  60  38  7.335  0.049  0  24  0.10129032  0.10129032 

355  65  28  60  38  7.335  0.042  0  24  0.10129032  0.10129032 

356  64  26  60  38  7.335  0.045  0  24  0.10129032  0.10129032 

357  63  26  60  38  7.335  0.021  0  24  0.10129032  0.10129032 

358  62  26  60  38  7.335  0.041  0  24  0.10129032  0.10129032 

359  63  25  60  38  7.335  0.13  0  24  0.10129032  0.10129032 

360  63  27  60  38  7.335  0.027  0  24  0.10129032  0.10129032 

361  63  26  60  38  7.335  0.043  0  24  0.10129032  0.10129032 

362  63  27  60  38  7.335  0.059  0  24  0.10129032  0.10129032 

363  63  28  60  38  7.335  0.04  0  24  0.10129032  0.10129032 

364  62  27  60  38  7.335  0.029  0  24  0.10129032  0.10129032 

365  63  26  60  38  7.335  0.051  0  24  0.10129032  0.10129032 

Multi‐Day Storm Event Name: Monsoon Storm Event Latitude: 31 Distribution: Sinusoidal Distribution 

Entry Modifier 

Max T Offset: 0 Min T Offset: 0 Max RH Offset: 0 Min RH Offset: 0 Wind Scale: 100 Precipitation Scale: 100 Start Precip Offset: 0 End Precip Offset: 0 PET Scale: 100 Net Radiation Scale: 100 

Page 209: Infiltration, Seepage, Fate, and Transport Modeling Report

Climate Entries 

Day # Max T (°F) 

Min T (°F) 

Max RH (%) 

Min RH (%) 

Wind  Precipitation Precipitation 

Started Precipitation 

Ended PET 

1  53  36  60  38  7.3  0.3  0  24  0.1 

2  47  32  60  38  7.3  1.6  0  24  0.1 

3  45  35  60  38  7.3  1.8  0  24  0.1 

4  42  34  60  38  7.3  0.4  0  24  0.1 

5  43  32  60  38  7.3  0.8  0  24  0.1 

6  53  41  60  38  7.3  0.1  0  24  0.1 

7  57  38  60  38  7.3  0.8  0  24  0.1 

8  47  33  60  38  7.3  0.1  0  24  0.1 

24‐hour, 100‐year Storm Name: 24‐hour, 100‐year Storm Latitude: 31 Distribution: Sinusoidal Distribution 

Entry Modifier 

Max T Offset: 0 Min T Offset: 0 Max RH Offset: 0 Min RH Offset: 0 Wind Scale: 100 Precipitation Scale: 100 Start Precip Offset: 0 End Precip Offset: 0 PET Scale: 100 Net Radiation Scale: 100 

Climate Entries 

Day # Max T (°F) 

Min T (°F) 

Max RH (%) 

Min RH (%) 

Wind  Precipitation Precipitation 

Started Precipitation 

Ended PET 

1  65  43  60  38  7.3  4.8  0  24  0.1 

2  65  43  60  38  7.3  0.1  0  24  0.1 

K Functions 

Well‐Graded #3 (high clay), Ksat = 8.42e‐06 ft/hr Model: Data Point Function Function: X‐Conductivity vs. Pore‐Water Pressure 

Curve Fit to Data: 100 % Segment Curvature: 46 % 

K‐Saturation: 8.42e‐006 

Page 210: Infiltration, Seepage, Fate, and Transport Modeling Report

Data Points: Matric Suction (psf), X‐Conductivity (ft/hr) Data Point: (0.005, 8.42e‐006) Data Point: (0.01, 8.42e‐006) Data Point: (0.028381, 8.4189e‐006) Data Point: (0.080549, 8.4164e‐006) Data Point: (0.22861, 8.4109e‐006) Data Point: (0.64881, 8.3984e‐006) Data Point: (1.8414, 8.3705e‐006) Data Point: (5.2261, 8.3078e‐006) Data Point: (14.832, 8.1678e‐006) Data Point: (15.714, 8.1562e‐006) Data Point: (42.096, 7.857e‐006) Data Point: (119.47, 7.1792e‐006) Data Point: (339.08, 5.7708e‐006) Data Point: (962.35, 3.2787e‐006) Data Point: (1529.9, 1.9956e‐006) Data Point: (2731.3, 7.4428e‐007) Data Point: (3044.1, 5.8644e‐007) Data Point: (4558.3, 2.0754e‐007) Data Point: (6072.4, 8.7118e‐008) Data Point: (7586.6, 4.1843e‐008) Data Point: (7751.6, 3.8891e‐008) Data Point: (9100.8, 2.229e‐008) Data Point: (10615, 1.2866e‐008) Data Point: (12129, 7.9116e‐009) Data Point: (13643, 5.1188e‐009) Data Point: (15158, 3.4526e‐009) Data Point: (16672, 2.4107e‐009) Data Point: (18186, 1.733e‐009) Data Point: (19700, 1.2773e‐009) Data Point: (21214, 9.6176e‐010) Data Point: (22000, 8.3637e‐010) 

Estimation Properties Hydraulic K Sat: 0 ft/hr Hyd. K‐Function Estimation Method: Van Genuchten Function Maximum: 1000 Minimum: 0.01 Num. Points: 20 Residual Water Content: 0 ft³/ft³ 

Uniform sand, Ksat = 1.2 ft/hr Model: Data Point Function Function: X‐Conductivity vs. Pore‐Water Pressure 

Curve Fit to Data: 100 % Segment Curvature: 46 % 

K‐Saturation: 1.195 Data Points: Matric Suction (psf), X‐Conductivity (ft/hr) 

Data Point: (0.005, 1.195) Data Point: (0.01, 1.195) Data Point: (0.050666, 1.195) Data Point: (0.2567, 1.195) Data Point: (1.3006, 1.195) Data Point: (6.5895, 1.195) 

Page 211: Infiltration, Seepage, Fate, and Transport Modeling Report

Data Point: (24.444, 1.195) Data Point: (33.386, 1.195) Data Point: (169.15, 0.043088) Data Point: (857.03, 0.00011369) Data Point: (2330.4, 7.2714e‐006) Data Point: (4342.2, 1.5997e‐006) Data Point: (4636.3, 1.3647e‐006) Data Point: (6942.2, 5.1531e‐007) Data Point: (9248.1, 2.5207e‐007) Data Point: (11554, 1.4201e‐007) Data Point: (13860, 8.6635e‐008) Data Point: (16166, 7.5467e‐008) Data Point: (18472, 7.5467e‐008) Data Point: (20778, 7.5467e‐008) Data Point: (22000, 7.5467e‐008) 

Estimation Properties Hydraulic K Sat: 0 ft/hr Hyd. K‐Function Estimation Method: Van Genuchten Function Maximum: 1000 Minimum: 0.01 Num. Points: 20 Residual Water Content: 0 ft³/ft³ 

Andesite Rock Model: Data Point Function Function: X‐Conductivity vs. Pore‐Water Pressure 

Curve Fit to Data: 100 % Segment Curvature: 48 % 

K‐Saturation: 170 Data Points: Matric Suction (psf), X‐Conductivity (ft/hr) 

Data Point: (0.005, 170) Data Point: (0.01, 170) Data Point: (0.055505, 170) Data Point: (0.30808, 170) Data Point: (1.71, 170) Data Point: (9.4912, 2.3949) Data Point: (52.681, 0.010516) Data Point: (55.556, 0.0089604) Data Point: (292.4, 6.6243e‐005) 

Estimation Properties Hydraulic K Sat: 0 ft/hr Hyd. K‐Function Estimation Method: Van Genuchten Function Maximum: 1000 Minimum: 0.01 Num. Points: 20 Residual Water Content: 0 ft³/ft³ 

Silt #2, Ksat = 1.18e‐02 ft/hr Model: Data Point Function Function: X‐Conductivity vs. Pore‐Water Pressure 

Curve Fit to Data: 100 % Segment Curvature: 46 % 

K‐Saturation: 0.0118 

Page 212: Infiltration, Seepage, Fate, and Transport Modeling Report

Data Points: Matric Suction (psf), X‐Conductivity (ft/hr) Data Point: (0.005, 0.0118) Data Point: (0.01, 0.0118) Data Point: (0.050666, 0.0118) Data Point: (0.2567, 0.0118) Data Point: (1.3006, 0.0118) Data Point: (6.5895, 0.0118) Data Point: (24.444, 0.0118) Data Point: (33.386, 0.0118) Data Point: (169.15, 0.0093876) Data Point: (857.03, 0.00028444) Data Point: (2330.4, 6.917e‐006) Data Point: (4342.2, 4.335e‐007) Data Point: (4636.3, 3.444e‐007) Data Point: (6942.2, 1.2285e‐007) Data Point: (9248.1, 6.3069e‐008) Data Point: (11554, 3.4728e‐008) Data Point: (13860, 1.9603e‐008) Data Point: (16166, 1.1243e‐008) Data Point: (18472, 1.1243e‐008) Data Point: (20778, 1.1243e‐008) Data Point: (22000, 1.1243e‐008) 

Estimation Properties Hydraulic K Sat: 0 ft/hr Hyd. K‐Function Estimation Method: Van Genuchten Function Maximum: 1000 Minimum: 0.01 Num. Points: 20 Residual Water Content: 0 ft³/ft³ 

Vol. Water Content Functions 

Well‐Graded #3 (high clay) Model: Fredlund‐Xing Function Function: Vol. Water Content vs. Pore‐Water Pressure 

A: 23272 psf N: 0.81304 M: 1.4413 Saturated Water Content: 0.34001 ft³/ft³ Suction Limit: 2.0885e+007 Mv: 1e‐009 /psf 

Porosity: 0.34000981 

Uniform sand Model: Fredlund‐Xing Function Function: Vol. Water Content vs. Pore‐Water Pressure 

A: 102.15 psf N: 6.5065 M: 0.54096 Saturated Water Content: 0.35 ft³/ft³ Suction Limit: 2.0885e+007 Mv: 1e‐009 /psf 

Page 213: Infiltration, Seepage, Fate, and Transport Modeling Report

Porosity: 0.35 

Ore Model: Data Point Function Function: Vol. Water Content vs. Pore‐Water Pressure 

Curve Fit to Data: 100 % Segment Curvature: 46 % Mv: 1e‐007 /psf 

Porosity: 0.30437391 Data Points: Matric Suction (psf), Vol. Water Content (ft³/ft³) 

Data Point: (6.25, 0.30444) Data Point: (12.5, 0.3) Data Point: (36.3, 0.291) Data Point: (55.4, 0.275) Data Point: (84.5, 0.228) Data Point: (98, 0.198) Data Point: (131, 0.171) Data Point: (168, 0.154) Data Point: (290, 0.125) Data Point: (696, 0.0983) Data Point: (2040, 0.0794) Data Point: (7840, 0.0652) Data Point: (37800, 0.052) 

Estimation Properties Vol. WC Estimation Method: Sample functions Sample Material: Clay Saturated Water Content: 0 ft³/ft³ Liquid Limit: 0 % Diameter at 10% passing: 0 Diameter at 60% passing: 0 Maximum: 1000 Minimum: 0.01 Num. Points: 20 

Silt #2 Model: Fredlund‐Xing Function Function: Vol. Water Content vs. Pore‐Water Pressure 

A: 492.7 psf N: 2.8872 M: 1.1969 Saturated Water Content: 0.44 ft³/ft³ Suction Limit: 2.0885e+007 Mv: 1e‐009 /psf 

Porosity: 0.44 

Thermal K vs VolWC Functions 

Clay Model: Spline Data Point Function Function: Thermal Conductivity vs. Vol. Water Content 

Curve Fit to Data: 100 % Segment Curvature: 48 % 

Page 214: Infiltration, Seepage, Fate, and Transport Modeling Report

Y‐Intercept: 0.6425 Data Points: Vol. Water Content (ft³/ft³), Thermal Conductivity (BTU/hr/ft/°F) 

Data Point: (0, 0.6425) Data Point: (0.021579, 0.73776) Data Point: (0.043158, 0.83302) Data Point: (0.064737, 0.88875) Data Point: (0.086316, 0.92828) Data Point: (0.10789, 0.95895) Data Point: (0.12947, 0.98401) Data Point: (0.15105, 1.0052) Data Point: (0.17263, 1.0235) Data Point: (0.19421, 1.0397) Data Point: (0.21579, 1.0542) Data Point: (0.23737, 1.0673) Data Point: (0.25895, 1.0793) Data Point: (0.28053, 1.0903) Data Point: (0.30211, 1.1005) Data Point: (0.32368, 1.1099) Data Point: (0.34526, 1.1188) Data Point: (0.36684, 1.1271) Data Point: (0.38842, 1.135) Data Point: (0.41, 1.1424) 

Estimation Properties MineralThermalK: 0 BTU/hr/ft/°F Maximum: 1 Minimum: 0 Num. Points: 20 

Sand Model: Spline Data Point Function Function: Thermal Conductivity vs. Vol. Water Content 

Curve Fit to Data: 100 % Segment Curvature: 48 % 

Y‐Intercept: 1.2184 Data Points: Vol. Water Content (ft³/ft³), Thermal Conductivity (BTU/hr/ft/°F) 

Data Point: (0, 1.2184) Data Point: (0.015789, 1.4094) Data Point: (0.031579, 1.6004) Data Point: (0.047368, 1.7121) Data Point: (0.063158, 1.7914) Data Point: (0.078947, 1.8529) Data Point: (0.094737, 1.9031) Data Point: (0.11053, 1.9456) Data Point: (0.12632, 1.9823) Data Point: (0.14211, 2.0148) Data Point: (0.15789, 2.0438) Data Point: (0.17368, 2.0701) Data Point: (0.18947, 2.0941) Data Point: (0.20526, 2.1161) Data Point: (0.22105, 2.1365) Data Point: (0.23684, 2.1555) Data Point: (0.25263, 2.1733) Data Point: (0.26842, 2.19) 

Page 215: Infiltration, Seepage, Fate, and Transport Modeling Report

Silt Model: Spline Data Point Function Function: Thermal Conductivity vs. Vol. Water Content 

Curve Fit to Data: 100 % Segment Curvature: 48 % 

Y‐Intercept: 0.75017 Data Points: Vol. Water Content (ft³/ft³), Thermal Conductivity (BTU/hr/ft/°F) 

Data Point: (0, 0.75017) Data Point: (0.02, 0.86287) Data Point: (0.04, 0.97557) Data Point: (0.06, 1.0415) Data Point: (0.08, 1.0883) Data Point: (0.1, 1.1246) Data Point: (0.12, 1.1542) Data Point: (0.14, 1.1793) Data Point: (0.16, 1.201) Data Point: (0.18, 1.2201) Data Point: (0.2, 1.2372) Data Point: (0.22, 1.2527) Data Point: (0.24, 1.2669) Data Point: (0.26, 1.2799) Data Point: (0.28, 1.292) Data Point: (0.3, 1.3032) Data Point: (0.32, 1.3137) Data Point: (0.34, 1.3235) Data Point: (0.36, 1.3328) Data Point: (0.38, 1.3416) 

Estimation Properties MineralThermalK: 0 BTU/hr/ft/°F Maximum: 1 Minimum: 0 Num. Points: 20 Data Point: (0.28421, 2.2058) Data Point: (0.3, 2.2207) 

Estimation Properties MineralThermalK: 0 BTU/hr/ft/°F Maximum: 1 Minimum: 0 Num. Points: 20 

Vol. Specific Heat Functions 

Clay (Btu/Ft3 F) Model: Spline Data Point Function Function: Volumetric Specific Heat Capacity vs. Vol. Water Content 

Curve Fit to Data: 100 % Segment Curvature: 46 % 

Y‐Intercept: 20.189 Data Points: Vol. Water Content (ft³/ft³), Volumetric Specific Heat Capacity (BTU/ft³/°F) 

Data Point: (0, 20.189) Data Point: (0.021579, 21.535) 

Page 216: Infiltration, Seepage, Fate, and Transport Modeling Report

Data Point: (0.043158, 22.881) Data Point: (0.064737, 24.228) Data Point: (0.086316, 25.574) Data Point: (0.10789, 26.92) Data Point: (0.12947, 28.266) Data Point: (0.15105, 29.612) Data Point: (0.17263, 30.959) Data Point: (0.19421, 32.305) Data Point: (0.21579, 33.651) Data Point: (0.23737, 34.997) Data Point: (0.25895, 36.344) Data Point: (0.28053, 37.69) Data Point: (0.30211, 39.036) Data Point: (0.32368, 40.382) Data Point: (0.34526, 41.729) Data Point: (0.36684, 43.075) Data Point: (0.38842, 44.421) Data Point: (0.41, 45.767) 

Estimation Properties MassSpecHeat: 0 BTU/g/°F Maximum: 1 Minimum: 0 Num. Points: 20 

Silt (Btu/ft3 F) Model: Spline Data Point Function Function: Volumetric Specific Heat Capacity vs. Vol. Water Content 

Curve Fit to Data: 100 % Segment Curvature: 46 % 

Y‐Intercept: 18.707 Data Points: Vol. Water Content (ft³/ft³), Volumetric Specific Heat Capacity (BTU/ft³/°F) 

Data Point: (0, 18.707) Data Point: (0.02, 19.955) Data Point: (0.04, 21.203) Data Point: (0.06, 22.45) Data Point: (0.08, 23.698) Data Point: (0.1, 24.946) Data Point: (0.12, 26.194) Data Point: (0.14, 27.441) Data Point: (0.16, 28.689) Data Point: (0.18, 29.937) Data Point: (0.2, 31.184) Data Point: (0.22, 32.432) Data Point: (0.24, 33.68) Data Point: (0.26, 34.928) Data Point: (0.28, 36.175) Data Point: (0.3, 37.423) Data Point: (0.32, 38.671) Data Point: (0.34, 39.918) Data Point: (0.36, 41.166) Data Point: (0.38, 42.414) 

Estimation Properties MassSpecHeat: 0 BTU/g/°F 

Page 217: Infiltration, Seepage, Fate, and Transport Modeling Report

Maximum: 1 Minimum: 0 Num. Points: 20 

Sand (Btu/Ft3 F) Model: Spline Data Point Function Function: Volumetric Specific Heat Capacity vs. Vol. Water Content 

Curve Fit to Data: 100 % Segment Curvature: 46 % 

Y‐Intercept: 19.705 Data Points: Vol. Water Content (ft³/ft³), Volumetric Specific Heat Capacity (BTU/ft³/°F) 

Data Point: (0, 19.705) Data Point: (0.015789, 20.69) Data Point: (0.031579, 21.675) Data Point: (0.047368, 22.66) Data Point: (0.063158, 23.645) Data Point: (0.078947, 24.63) Data Point: (0.094737, 25.615) Data Point: (0.11053, 26.6) Data Point: (0.12632, 27.585) Data Point: (0.14211, 28.57) Data Point: (0.15789, 29.556) Data Point: (0.17368, 30.541) Data Point: (0.18947, 31.526) Data Point: (0.20526, 32.511) Data Point: (0.22105, 33.496) Data Point: (0.23684, 34.481) Data Point: (0.25263, 35.466) Data Point: (0.26842, 36.451) Data Point: (0.28421, 37.436) Data Point: (0.3, 38.421) 

Estimation Properties MassSpecHeat: 0 BTU/g/°F Maximum: 1 Minimum: 0 Num. Points: 20 

Page 218: Infiltration, Seepage, Fate, and Transport Modeling Report

Transient Coupled VADOSE/W Report generated using GeoStudio 2007, version 7.15. Copyright © 1991‐2009 GEO‐SLOPE International Ltd. 

File Information Created By: Amy Hudson File Name: Expanded Phase I Heap Model_with cover_v1.gsz Comments: This is a model of the closure conditions of the heap leach pad.  Closure design was based on the current reclamation plan and regrading of the waste rock surface.  This model includes simulation of average annual conditions, 100‐year, 24‐hour storm, and multiday storm. 

Project Settings Length(L) Units: feet Time(t) Units: Hours Force(F) Units: lbf Temp(T) Units: F Energy Units: BTU Latent Heat of Water: 8975 Phase Change Temperature: 32 Unit Weight of Water: 62.4 pcf View: 2D 

Analysis Settings 

Transient Coupled VADOSE/W Kind: VADOSE/W Method: Transient Coupled Settings 

Initial PWP: Parent Analysis Initial Thermal Conditions Source: Parent Analysis Exclude cumulative values: No 

Control Ground Freezing Latent Heat Effects: No Vegetation: No Apply Runoff: Yes 

Convergence Maximum Number of Iterations: 500 Tolerance: 0.01 Maximum Change in K: 0.1 Rate of Change in K: 1.02 Minimum Change in K: 1e‐005 Equation Solver: Parallel Direct 

Page 219: Infiltration, Seepage, Fate, and Transport Modeling Report

Potential Seepage Max # of Reviews: 10 Time 

Step Generation Method: Linear Use Adaptive Time Stepping: Yes Adaptive Step Settings 

Adaptive Method: Vector Normal Max % Change per Step: 2.5 Max. Courant Number: 2 Range Min Step: 0.01 Range Max Step: 1 

Materials 

Alluvium Model: Full Thermal Hydraulic 

K‐Function: Silt #2, Ksat = 1.18e‐02 ft/hr Vol. WC. Function: Silt #2 K‐Ratio: 1 K‐Direction: 0 ° 

Thermal Thermal K Fn (K vs VWC): Silt Vol Specific Heat Fn: Silt (Btu/ft3 F) 

Gas Gas Decay (Yrs.): 0 

Bedrock Model: Full Thermal Hydraulic 

K‐Function: Well‐Graded #3 (high clay), Ksat = 8.42e‐06 ft/hr Vol. WC. Function: Well‐Graded #3 (high clay) K‐Ratio: 1 K‐Direction: 0 ° 

Thermal Thermal K Fn (K vs VWC): Clay Vol Specific Heat Fn: Clay (Btu/Ft3 F) 

Gas Gas Decay (Yrs.): 0 

Heap Material Model: Full Thermal Hydraulic 

K‐Function: Andesite Rock Vol. WC. Function: Ore K‐Ratio: 1 K‐Direction: 0 ° 

Page 220: Infiltration, Seepage, Fate, and Transport Modeling Report

Thermal Thermal K Fn (K vs VWC): Sand Vol Specific Heat Fn: Sand (Btu/Ft3 F) 

Gas Gas Decay (Yrs.): 0 

Waste Rock Model: Full Thermal Hydraulic 

K‐Function: Andesite Rock Vol. WC. Function: Ore K‐Ratio: 1 K‐Direction: 0 ° 

Thermal Thermal K Fn (K vs VWC): Sand Vol Specific Heat Fn: Sand (Btu/Ft3 F) 

Gas Gas Decay (Yrs.): 0 

Boundary Conditions 

groundwater Type: Head (H) 4600 

Average conditions Climate Data Set: Average annual conditions Leaf Area Index Function: Poor grass Leaf Area Index Scale: 100 % Plant Moisture Limiting Function: Wilting function Root Depth Function: New Function Root Depth Type: Triangle 

Climate Data Sets 

Average annual conditions Name: Average annual conditions Latitude: 31 Distribution: Sinusoidal Distribution 

Entry Modifier 

Max T Offset: 0 Min T Offset: 0 Max RH Offset: 0 Min RH Offset: 0 

Page 221: Infiltration, Seepage, Fate, and Transport Modeling Report

Wind Scale: 100 Precipitation Scale: 100 Start Precip Offset: 0 End Precip Offset: 0 PET Scale: 100 Net Radiation Scale: 100 

Climate Entries 

Day # Max T (°F) 

Min T (°F) 

Max RH (%) 

Min RH (%) 

Wind  Precipitation Precipitation 

Started Precipitation 

Ended PET 

Net Radiation 

1  64  27  58  35  8.802  0.019  0  24  0.10129032  0.10129032 

2  63  26  58  35  8.802  0.061  0  24  0.10129032  0.10129032 

3  62  27  58  35  8.802  0.046  0  24  0.10129032  0.10129032 

4  62  26  58  35  8.802  0.05  0  24  0.10129032  0.10129032 

5  62  27  58  35  8.802  0.028  0  24  0.10129032  0.10129032 

6  62  27  58  35  8.802  0.11  0  24  0.10129032  0.10129032 

7  62  28  58  35  8.802  0.039  0  24  0.10129032  0.10129032 

8  64  28  58  35  8.802  0.062  0  24  0.10129032  0.10129032 

9  65  27  58  35  8.802  0.033  0  24  0.10129032  0.10129032 

10  65  27  58  35  8.802  0.024  0  24  0.10129032  0.10129032 

11  64  28  58  35  8.802  0.045  0  24  0.10129032  0.10129032 

12  64  27  58  35  8.802  0.033  0  24  0.10129032  0.10129032 

13  64  27  58  35  8.802  0.036  0  24  0.10129032  0.10129032 

14  64  27  58  35  8.802  0.041  0  24  0.10129032  0.10129032 

15  65  27  58  35  8.802  0.016  0  24  0.10129032  0.10129032 

16  65  28  58  35  8.802  0.016  0  24  0.10129032  0.10129032 

17  65  28  58  35  8.802  0.038  0  24  0.10129032  0.10129032 

18  64  27  58  35  8.802  0.059  0  24  0.10129032  0.10129032 

19  66  27  58  35  8.802  0.05  0  24  0.10129032  0.10129032 

20  64  27  58  35  8.802  0.032  0  24  0.10129032  0.10129032 

21  63  27  58  35  8.802  0.024  0  24  0.10129032  0.10129032 

22  64  27  58  35  8.802  0.029  0  24  0.10129032  0.10129032 

23  64  28  58  35  8.802  0.011  0  24  0.10129032  0.10129032 

24  64  27  58  35  8.802  0.027  0  24  0.10129032  0.10129032 

25  66  28  58  35  8.802  0.033  0  24  0.10129032  0.10129032 

26  67  27  58  35  8.802  0.022  0  24  0.10129032  0.10129032 

27  66  28  58  35  8.802  0.029  0  24  0.10129032  0.10129032 

28  65  28  58  35  8.802  0.03  0  24  0.10129032  0.10129032 

29  64  27  58  35  8.802  0.013  0  24  0.10129032  0.10129032 

30  65  28  58  35  8.802  0.05  0  24  0.10129032  0.10129032 

31  65  27  58  35  8.802  0.04  0  24  0.10129032  0.10129032 

32  64  27  53  30  8.802  0.021  0  24  0.15275862  0.15275862 

33  65  27  53  30  8.802  0.011  0  24  0.15275862  0.15275862 

34  65  26  53  30  8.802  0.014  0  24  0.15275862  0.15275862 

35  65  28  53  30  8.802  0.028  0  24  0.15275862  0.15275862 

36  66  30  53  30  8.802  0.052  0  24  0.15275862  0.15275862 

Page 222: Infiltration, Seepage, Fate, and Transport Modeling Report

37  66  29  53  30  8.802  0.013  0  24  0.15275862  0.15275862 

38  67  29  53  30  8.802  0.026  0  24  0.15275862  0.15275862 

39  67  29  53  30  8.802  0.046  0  24  0.15275862  0.15275862 

40  66  31  53  30  8.802  0.07  0  24  0.15275862  0.15275862 

41  65  29  53  30  8.802  0.037  0  24  0.15275862  0.15275862 

42  66  29  53  30  8.802  0.053  0  24  0.15275862  0.15275862 

43  65  31  53  30  8.802  0.052  0  24  0.15275862  0.15275862 

44  67  31  53  30  8.802  0.031  0  24  0.15275862  0.15275862 

45  67  31  53  30  8.802  0.051  0  24  0.15275862  0.15275862 

46  66  30  53  30  8.802  0.035  0  24  0.15275862  0.15275862 

47  67  30  53  30  8.802  0.03  0  24  0.15275862  0.15275862 

48  68  30  53  30  8.802  0.017  0  24  0.15275862  0.15275862 

49  68  30  53  30  8.802  0.023  0  24  0.15275862  0.15275862 

50  67  31  53  30  8.802  0.009  0  24  0.15275862  0.15275862 

51  66  30  53  30  8.802  0.021  0  24  0.15275862  0.15275862 

52  65  29  53  30  8.802  0.047  0  24  0.15275862  0.15275862 

53  66  29  53  30  8.802  0.045  0  24  0.15275862  0.15275862 

54  67  28  53  30  8.802  0.008  0  24  0.15275862  0.15275862 

55  68  29  53  30  8.802  0.06  0  24  0.15275862  0.15275862 

56  68  30  53  30  8.802  0.028  0  24  0.15275862  0.15275862 

57  68  31  53  30  8.802  0.029  0  24  0.15275862  0.15275862 

58  69  30  53  30  8.802  0.013  0  24  0.15275862  0.15275862 

59  68  31  53  30  8.802  0.024  0  24  0.15275862  0.15275862 

60  68  31  45  24  10.269  0.047  0  24  0.23032258  0.23032258 

61  68  33  45  24  10.269  0.034  0  24  0.23032258  0.23032258 

62  66  31  45  24  10.269  0.082  0  24  0.23032258  0.23032258 

63  66  30  45  24  10.269  0.066  0  24  0.23032258  0.23032258 

64  67  31  45  24  10.269  0.018  0  24  0.23032258  0.23032258 

65  68  31  45  24  10.269  0.037  0  24  0.23032258  0.23032258 

66  69  31  45  24  10.269  0.046  0  24  0.23032258  0.23032258 

67  69  32  45  24  10.269  0.035  0  24  0.23032258  0.23032258 

68  72  33  45  24  10.269  0.011  0  24  0.23032258  0.23032258 

69  72  34  45  24  10.269  0.022  0  24  0.23032258  0.23032258 

70  70  34  45  24  10.269  0.038  0  24  0.23032258  0.23032258 

71  69  33  45  24  10.269  0.018  0  24  0.23032258  0.23032258 

72  69  31  45  24  10.269  0.054  0  24  0.23032258  0.23032258 

73  69  32  45  24  10.269  0.019  0  24  0.23032258  0.23032258 

74  71  32  45  24  10.269  0.012  0  24  0.23032258  0.23032258 

75  71  33  45  24  10.269  0.017  0  24  0.23032258  0.23032258 

76  71  34  45  24  10.269  0.007  0  24  0.23032258  0.23032258 

77  72  35  45  24  10.269  0.029  0  24  0.23032258  0.23032258 

78  71  34  45  24  10.269  0.011  0  24  0.23032258  0.23032258 

79  73  34  45  24  10.269  0.044  0  24  0.23032258  0.23032258 

80  73  34  45  24  10.269  0.045  0  24  0.23032258  0.23032258 

81  73  36  45  24  10.269  0.018  0  24  0.23032258  0.23032258 

82  73  35  45  24  10.269  0.029  0  24  0.23032258  0.23032258 

83  73  33  45  24  10.269  0.025  0  24  0.23032258  0.23032258 

Page 223: Infiltration, Seepage, Fate, and Transport Modeling Report

84  73  34  45  24  10.269  0.012  0  24  0.23032258  0.23032258 

85  74  36  45  24  10.269  0.018  0  24  0.23032258  0.23032258 

86  72  36  45  24  10.269  0.053  0  24  0.23032258  0.23032258 

87  72  37  45  24  10.269  0.03  0  24  0.23032258  0.23032258 

88  72  37  45  24  10.269  0.021  0  24  0.23032258  0.23032258 

89  72  36  45  24  10.269  0.004  0  24  0.23032258  0.23032258 

90  75  36  45  24  10.269  0.001  0  24  0.23032258  0.23032258 

91  75  36  37  21  11.736  0.023  0  24  0.31433333  0.31433333 

92  74  36  37  21  11.736  0.034  0  24  0.31433333  0.31433333 

93  73  35  37  21  11.736  0.008  0  24  0.31433333  0.31433333 

94  73  36  37  21  11.736  0.028  0  24  0.31433333  0.31433333 

95  75  37  37  21  11.736  0.006  0  24  0.31433333  0.31433333 

96  77  38  37  21  11.736  0.028  0  24  0.31433333  0.31433333 

97  77  38  37  21  11.736  0.02  0  24  0.31433333  0.31433333 

98  76  37  37  21  11.736  0.011  0  24  0.31433333  0.31433333 

99  77  37  37  21  11.736  0.004  0  24  0.31433333  0.31433333 

100  79  38  37  21  11.736  0.011  0  24  0.31433333  0.31433333 

101  78  38  37  21  11.736  0.004  0  24  0.31433333  0.31433333 

102  78  38  37  21  11.736  0.002  0  24  0.31433333  0.31433333 

103  77  38  37  21  11.736  0.004  0  24  0.31433333  0.31433333 

104  79  38  37  21  11.736  0.006  0  24  0.31433333  0.31433333 

105  80  38  37  21  11.736  0.009  0  24  0.31433333  0.31433333 

106  79  39  37  21  11.736  0.031  0  24  0.31433333  0.31433333 

107  79  40  37  21  11.736  0.031  0  24  0.31433333  0.31433333 

108  79  40  37  21  11.736  0  0  24  0.31433333  0.31433333 

109  79  39  37  21  11.736  0.023  0  24  0.31433333  0.31433333 

110  78  38  37  21  11.736  0.001  0  24  0.31433333  0.31433333 

111  80  40  37  21  11.736  0.004  0  24  0.31433333  0.31433333 

112  80  39  37  21  11.736  0.018  0  24  0.31433333  0.31433333 

113  79  39  37  21  11.736  0.002  0  24  0.31433333  0.31433333 

114  80  39  37  21  11.736  0  0  24  0.31433333  0.31433333 

115  81  40  37  21  11.736  0.005  0  24  0.31433333  0.31433333 

116  81  41  37  21  11.736  0.009  0  24  0.31433333  0.31433333 

117  80  40  37  21  11.736  0.016  0  24  0.31433333  0.31433333 

118  81  40  37  21  11.736  0.029  0  24  0.31433333  0.31433333 

119  81  42  37  21  11.736  0.013  0  24  0.31433333  0.31433333 

120  81  40  37  21  11.736  0.009  0  24  0.31433333  0.31433333 

121  82  41  30  16  10.269  0.006  0  24  0.41483871  0.41483871 

122  81  41  30  16  10.269  0.017  0  24  0.41483871  0.41483871 

123  82  42  30  16  10.269  0  0  24  0.41483871  0.41483871 

124  83  42  30  16  10.269  0  0  24  0.41483871  0.41483871 

125  83  43  30  16  10.269  0.002  0  24  0.41483871  0.41483871 

126  82  42  30  16  10.269  0.009  0  24  0.41483871  0.41483871 

127  82  43  30  16  10.269  0.004  0  24  0.41483871  0.41483871 

128  83  42  30  16  10.269  0.004  0  24  0.41483871  0.41483871 

129  84  43  30  16  10.269  0  0  24  0.41483871  0.41483871 

130  84  43  30  16  10.269  0.002  0  24  0.41483871  0.41483871 

Page 224: Infiltration, Seepage, Fate, and Transport Modeling Report

131  84  44  30  16  10.269  0.003  0  24  0.41483871  0.41483871 

132  86  44  30  16  10.269  0.001  0  24  0.41483871  0.41483871 

133  86  43  30  16  10.269  0.005  0  24  0.41483871  0.41483871 

134  86  44  30  16  10.269  0.002  0  24  0.41483871  0.41483871 

135  87  45  30  16  10.269  0.001  0  24  0.41483871  0.41483871 

136  87  45  30  16  10.269  0.006  0  24  0.41483871  0.41483871 

137  87  46  30  16  10.269  0.002  0  24  0.41483871  0.41483871 

138  87  46  30  16  10.269  0  0  24  0.41483871  0.41483871 

139  88  47  30  16  10.269  0.02  0  24  0.41483871  0.41483871 

140  88  47  30  16  10.269  0.026  0  24  0.41483871  0.41483871 

141  88  46  30  16  10.269  0.017  0  24  0.41483871  0.41483871 

142  88  46  30  16  10.269  0.007  0  24  0.41483871  0.41483871 

143  88  46  30  16  10.269  0  0  24  0.41483871  0.41483871 

144  88  47  30  16  10.269  0.01  0  24  0.41483871  0.41483871 

145  89  47  30  16  10.269  0.002  0  24  0.41483871  0.41483871 

146  88  46  30  16  10.269  0.006  0  24  0.41483871  0.41483871 

147  89  48  30  16  10.269  0.017  0  24  0.41483871  0.41483871 

148  90  47  30  16  10.269  0.004  0  24  0.41483871  0.41483871 

149  90  49  30  16  10.269  0.011  0  24  0.41483871  0.41483871 

150  89  49  30  16  10.269  0.029  0  24  0.41483871  0.41483871 

151  90  49  30  16  10.269  0.009  0  24  0.41483871  0.41483871 

152  91  50  31  18  10.269  0.002  0  24  0.47133333  0.47133333 

153  92  49  31  18  10.269  0.001  0  24  0.47133333  0.47133333 

154  92  49  31  18  10.269  0.004  0  24  0.47133333  0.47133333 

155  92  50  31  18  10.269  0.01  0  24  0.47133333  0.47133333 

156  92  51  31  18  10.269  0.012  0  24  0.47133333  0.47133333 

157  93  51  31  18  10.269  0.011  0  24  0.47133333  0.47133333 

158  93  51  31  18  10.269  0.004  0  24  0.47133333  0.47133333 

159  92  51  31  18  10.269  0.003  0  24  0.47133333  0.47133333 

160  93  51  31  18  10.269  0.006  0  24  0.47133333  0.47133333 

161  92  51  31  18  10.269  0.002  0  24  0.47133333  0.47133333 

162  93  51  31  18  10.269  0  0  24  0.47133333  0.47133333 

163  93  52  31  18  10.269  0.006  0  24  0.47133333  0.47133333 

164  94  52  31  18  10.269  0.007  0  24  0.47133333  0.47133333 

165  95  54  31  18  10.269  0.005  0  24  0.47133333  0.47133333 

166  96  54  31  18  10.269  0.003  0  24  0.47133333  0.47133333 

167  96  54  31  18  10.269  0.007  0  24  0.47133333  0.47133333 

168  96  55  31  18  10.269  0  0  24  0.47133333  0.47133333 

169  97  56  31  18  10.269  0.026  0  24  0.47133333  0.47133333 

170  98  56  31  18  10.269  0.043  0  24  0.47133333  0.47133333 

171  98  56  31  18  10.269  0.016  0  24  0.47133333  0.47133333 

172  98  56  31  18  10.269  0.048  0  24  0.47133333  0.47133333 

173  98  57  31  18  10.269  0.027  0  24  0.47133333  0.47133333 

174  98  57  31  18  10.269  0.021  0  24  0.47133333  0.47133333 

175  98  58  31  18  10.269  0.015  0  24  0.47133333  0.47133333 

176  98  58  31  18  10.269  0.014  0  24  0.47133333  0.47133333 

177  98  59  31  18  10.269  0.037  0  24  0.47133333  0.47133333 

Page 225: Infiltration, Seepage, Fate, and Transport Modeling Report

178  98  60  31  18  10.269  0.019  0  24  0.47133333  0.47133333 

179  99  60  31  18  10.269  0.012  0  24  0.47133333  0.47133333 

180  98  61  31  18  10.269  0.067  0  24  0.47133333  0.47133333 

181  98  61  31  18  10.269  0.041  0  24  0.47133333  0.47133333 

182  98  63  57  36  8.802  0.011  0  24  0.45612903  0.45612903 

183  98  62  57  36  8.802  0.039  0  24  0.45612903  0.45612903 

184  98  63  57  36  8.802  0.087  0  24  0.45612903  0.45612903 

185  97  62  57  36  8.802  0.113  0  24  0.45612903  0.45612903 

186  97  63  57  36  8.802  0.093  0  24  0.45612903  0.45612903 

187  97  63  57  36  8.802  0.146  0  24  0.45612903  0.45612903 

188  96  63  57  36  8.802  0.069  0  24  0.45612903  0.45612903 

189  96  63  57  36  8.802  0.075  0  24  0.45612903  0.45612903 

190  96  64  57  36  8.802  0.118  0  24  0.45612903  0.45612903 

191  95  64  57  36  8.802  0.114  0  24  0.45612903  0.45612903 

192  95  63  57  36  8.802  0.199  0  24  0.45612903  0.45612903 

193  95  64  57  36  8.802  0.114  0  24  0.45612903  0.45612903 

194  95  64  57  36  8.802  0.135  0  24  0.45612903  0.45612903 

195  94  64  57  36  8.802  0.071  0  24  0.45612903  0.45612903 

196  94  64  57  36  8.802  0.247  0  24  0.45612903  0.45612903 

197  94  65  57  36  8.802  0.137  0  24  0.45612903  0.45612903 

198  93  65  57  36  8.802  0.202  0  24  0.45612903  0.45612903 

199  92  64  57  36  8.802  0.136  0  24  0.45612903  0.45612903 

200  93  65  57  36  8.802  0.241  0  24  0.45612903  0.45612903 

201  93  64  57  36  8.802  0.231  0  24  0.45612903  0.45612903 

202  92  65  57  36  8.802  0.159  0  24  0.45612903  0.45612903 

203  92  64  57  36  8.802  0.182  0  24  0.45612903  0.45612903 

204  92  64  57  36  8.802  0.132  0  24  0.45612903  0.45612903 

205  93  64  57  36  8.802  0.125  0  24  0.45612903  0.45612903 

206  93  64  57  36  8.802  0.156  0  24  0.45612903  0.45612903 

207  93  64  57  36  8.802  0.207  0  24  0.45612903  0.45612903 

208  92  64  57  36  8.802  0.162  0  24  0.45612903  0.45612903 

209  91  64  57  36  8.802  0.221  0  24  0.45612903  0.45612903 

210  91  64  57  36  8.802  0.156  0  24  0.45612903  0.45612903 

211  90  64  57  36  8.802  0.197  0  24  0.45612903  0.45612903 

212  91  64  57  36  8.802  0.077  0  24  0.45612903  0.45612903 

213  91  64  68  44  7.335  0.119  0  24  0.41483871  0.41483871 

214  91  64  68  44  7.335  0.179  0  24  0.41483871  0.41483871 

215  91  64  68  44  7.335  0.128  0  24  0.41483871  0.41483871 

216  92  64  68  44  7.335  0.093  0  24  0.41483871  0.41483871 

217  91  63  68  44  7.335  0.164  0  24  0.41483871  0.41483871 

218  91  64  68  44  7.335  0.15  0  24  0.41483871  0.41483871 

219  91  63  68  44  7.335  0.069  0  24  0.41483871  0.41483871 

220  93  64  68  44  7.335  0.127  0  24  0.41483871  0.41483871 

221  92  64  68  44  7.335  0.165  0  24  0.41483871  0.41483871 

222  91  64  68  44  7.335  0.094  0  24  0.41483871  0.41483871 

223  91  63  68  44  7.335  0.183  0  24  0.41483871  0.41483871 

224  92  64  68  44  7.335  0.137  0  24  0.41483871  0.41483871 

Page 226: Infiltration, Seepage, Fate, and Transport Modeling Report

225  92  63  68  44  7.335  0.209  0  24  0.41483871  0.41483871 

226  92  62  68  44  7.335  0.157  0  24  0.41483871  0.41483871 

227  90  63  68  44  7.335  0.191  0  24  0.41483871  0.41483871 

228  90  62  68  44  7.335  0.106  0  24  0.41483871  0.41483871 

229  92  62  68  44  7.335  0.142  0  24  0.41483871  0.41483871 

230  91  62  68  44  7.335  0.248  0  24  0.41483871  0.41483871 

231  91  63  68  44  7.335  0.05  0  24  0.41483871  0.41483871 

232  91  62  68  44  7.335  0.157  0  24  0.41483871  0.41483871 

233  91  62  68  44  7.335  0.089  0  24  0.41483871  0.41483871 

234  92  62  68  44  7.335  0.074  0  24  0.41483871  0.41483871 

235  92  62  68  44  7.335  0.143  0  24  0.41483871  0.41483871 

236  92  62  68  44  7.335  0.163  0  24  0.41483871  0.41483871 

237  91  61  68  44  7.335  0.168  0  24  0.41483871  0.41483871 

238  92  61  68  44  7.335  0.107  0  24  0.41483871  0.41483871 

239  92  61  68  44  7.335  0.124  0  24  0.41483871  0.41483871 

240  92  61  68  44  7.335  0.031  0  24  0.41483871  0.41483871 

241  92  61  68  44  7.335  0.201  0  24  0.41483871  0.41483871 

242  92  60  68  44  7.335  0.076  0  24  0.41483871  0.41483871 

243  92  60  68  44  7.335  0.064  0  24  0.41483871  0.41483871 

244  92  60  58  35  7.335  0.031  0  24  0.32866667  0.32866667 

245  92  60  58  35  7.335  0.1  0  24  0.32866667  0.32866667 

246  91  60  58  35  7.335  0.066  0  24  0.32866667  0.32866667 

247  91  61  58  35  7.335  0.077  0  24  0.32866667  0.32866667 

248  91  60  58  35  7.335  0.07  0  24  0.32866667  0.32866667 

249  92  59  58  35  7.335  0.074  0  24  0.32866667  0.32866667 

250  92  58  58  35  7.335  0.084  0  24  0.32866667  0.32866667 

251  92  58  58  35  7.335  0.044  0  24  0.32866667  0.32866667 

252  92  58  58  35  7.335  0.035  0  24  0.32866667  0.32866667 

253  92  59  58  35  7.335  0.106  0  24  0.32866667  0.32866667 

254  91  58  58  35  7.335  0.041  0  24  0.32866667  0.32866667 

255  91  57  58  35  7.335  0.047  0  24  0.32866667  0.32866667 

256  91  57  58  35  7.335  0.097  0  24  0.32866667  0.32866667 

257  90  56  58  35  7.335  0.057  0  24  0.32866667  0.32866667 

258  90  55  58  35  7.335  0.117  0  24  0.32866667  0.32866667 

259  90  55  58  35  7.335  0.024  0  24  0.32866667  0.32866667 

260  90  55  58  35  7.335  0.002  0  24  0.32866667  0.32866667 

261  90  55  58  35  7.335  0.031  0  24  0.32866667  0.32866667 

262  89  55  58  35  7.335  0.043  0  24  0.32866667  0.32866667 

263  89  53  58  35  7.335  0.018  0  24  0.32866667  0.32866667 

264  90  53  58  35  7.335  0.016  0  24  0.32866667  0.32866667 

265  89  52  58  35  7.335  0.037  0  24  0.32866667  0.32866667 

266  89  52  58  35  7.335  0.09  0  24  0.32866667  0.32866667 

267  88  52  58  35  7.335  0.061  0  24  0.32866667  0.32866667 

268  89  52  58  35  7.335  0.014  0  24  0.32866667  0.32866667 

269  89  52  58  35  7.335  0.015  0  24  0.32866667  0.32866667 

270  89  51  58  35  7.335  0.007  0  24  0.32866667  0.32866667 

271  89  50  58  35  7.335  0.042  0  24  0.32866667  0.32866667 

Page 227: Infiltration, Seepage, Fate, and Transport Modeling Report

272  89  49  58  35  7.335  0.048  0  24  0.32866667  0.32866667 

273  89  50  58  35  7.335  0.064  0  24  0.32866667  0.32866667 

274  89  50  53  31  7.335  0.065  0  24  0.24419355  0.24419355 

275  87  50  53  31  7.335  0.125  0  24  0.24419355  0.24419355 

276  86  50  53  31  7.335  0.111  0  24  0.24419355  0.24419355 

277  85  50  53  31  7.335  0.036  0  24  0.24419355  0.24419355 

278  85  49  53  31  7.335  0.078  0  24  0.24419355  0.24419355 

279  87  48  53  31  7.335  0.015  0  24  0.24419355  0.24419355 

280  86  48  53  31  7.335  0.051  0  24  0.24419355  0.24419355 

281  85  47  53  31  7.335  0.063  0  24  0.24419355  0.24419355 

282  85  46  53  31  7.335  0.121  0  24  0.24419355  0.24419355 

283  85  47  53  31  7.335  0.028  0  24  0.24419355  0.24419355 

284  86  45  53  31  7.335  0.042  0  24  0.24419355  0.24419355 

285  85  44  53  31  7.335  0.034  0  24  0.24419355  0.24419355 

286  84  44  53  31  7.335  0.021  0  24  0.24419355  0.24419355 

287  84  45  53  31  7.335  0.001  0  24  0.24419355  0.24419355 

288  82  45  53  31  7.335  0.02  0  24  0.24419355  0.24419355 

289  82  44  53  31  7.335  0.01  0  24  0.24419355  0.24419355 

290  82  44  53  31  7.335  0.047  0  24  0.24419355  0.24419355 

291  82  43  53  31  7.335  0.02  0  24  0.24419355  0.24419355 

292  82  42  53  31  7.335  0.035  0  24  0.24419355  0.24419355 

293  81  43  53  31  7.335  0.065  0  24  0.24419355  0.24419355 

294  81  43  53  31  7.335  0.047  0  24  0.24419355  0.24419355 

295  80  42  53  31  7.335  0.05  0  24  0.24419355  0.24419355 

296  79  41  53  31  7.335  0.04  0  24  0.24419355  0.24419355 

297  80  40  53  31  7.335  0.011  0  24  0.24419355  0.24419355 

298  80  40  53  31  7.335  0.017  0  24  0.24419355  0.24419355 

299  80  39  53  31  7.335  0.016  0  24  0.24419355  0.24419355 

300  79  39  53  31  7.335  0.004  0  24  0.24419355  0.24419355 

301  78  38  53  31  7.335  0.044  0  24  0.24419355  0.24419355 

302  78  39  53  31  7.335  0.022  0  24  0.24419355  0.24419355 

303  77  37  53  31  7.335  0.025  0  24  0.24419355  0.24419355 

304  75  37  53  31  7.335  0.069  0  24  0.24419355  0.24419355 

305  75  36  53  30  8.802  0.006  0  24  0.157  0.157 

306  75  36  53  30  8.802  0.011  0  24  0.157  0.157 

307  75  36  53  30  8.802  0.015  0  24  0.157  0.157 

308  76  35  53  30  8.802  0.007  0  24  0.157  0.157 

309  76  34  53  30  8.802  0.005  0  24  0.157  0.157 

310  76  36  53  30  8.802  0.013  0  24  0.157  0.157 

311  76  36  53  30  8.802  0.018  0  24  0.157  0.157 

312  75  36  53  30  8.802  0.019  0  24  0.157  0.157 

313  74  35  53  30  8.802  0.03  0  24  0.157  0.157 

314  74  35  53  30  8.802  0.005  0  24  0.157  0.157 

315  75  36  53  30  8.802  0.019  0  24  0.157  0.157 

316  75  36  53  30  8.802  0.072  0  24  0.157  0.157 

317  74  36  53  30  8.802  0.042  0  24  0.157  0.157 

318  73  36  53  30  8.802  0.031  0  24  0.157  0.157 

Page 228: Infiltration, Seepage, Fate, and Transport Modeling Report

319  71  35  53  30  8.802  0.024  0  24  0.157  0.157 

320  70  32  53  30  8.802  0.046  0  24  0.157  0.157 

321  69  32  53  30  8.802  0.041  0  24  0.157  0.157 

322  68  31  53  30  8.802  0.017  0  24  0.157  0.157 

323  68  30  53  30  8.802  0.022  0  24  0.157  0.157 

324  69  29  53  30  8.802  0  0  24  0.157  0.157 

325  70  30  53  30  8.802  0.032  0  24  0.157  0.157 

326  70  30  53  30  8.802  0.012  0  24  0.157  0.157 

327  69  31  53  30  8.802  0.015  0  24  0.157  0.157 

328  70  30  53  30  8.802  0.041  0  24  0.157  0.157 

329  70  32  53  30  8.802  0.02  0  24  0.157  0.157 

330  69  31  53  30  8.802  0.04  0  24  0.157  0.157 

331  68  29  53  30  8.802  0.011  0  24  0.157  0.157 

332  67  28  53  30  8.802  0.009  0  24  0.157  0.157 

333  67  28  53  30  8.802  0.031  0  24  0.157  0.157 

334  66  28  53  30  8.802  0.012  0  24  0.157  0.157 

335  67  29  60  38  7.335  0.066  0  24  0.10129032  0.10129032 

336  68  29  60  38  7.335  0.022  0  24  0.10129032  0.10129032 

337  68  28  60  38  7.335  0.009  0  24  0.10129032  0.10129032 

338  68  29  60  38  7.335  0.058  0  24  0.10129032  0.10129032 

339  68  29  60  38  7.335  0.067  0  24  0.10129032  0.10129032 

340  66  28  60  38  7.335  0.06  0  24  0.10129032  0.10129032 

341  67  28  60  38  7.335  0.017  0  24  0.10129032  0.10129032 

342  66  28  60  38  7.335  0.042  0  24  0.10129032  0.10129032 

343  64  28  60  38  7.335  0.037  0  24  0.10129032  0.10129032 

344  64  28  60  38  7.335  0.064  0  24  0.10129032  0.10129032 

345  65  28  60  38  7.335  0.072  0  24  0.10129032  0.10129032 

346  64  28  60  38  7.335  0.04  0  24  0.10129032  0.10129032 

347  63  27  60  38  7.335  0.029  0  24  0.10129032  0.10129032 

348  64  26  60  38  7.335  0.031  0  24  0.10129032  0.10129032 

349  64  26  60  38  7.335  0.053  0  24  0.10129032  0.10129032 

350  64  27  60  38  7.335  0.053  0  24  0.10129032  0.10129032 

351  65  28  60  38  7.335  0.081  0  24  0.10129032  0.10129032 

352  66  29  60  38  7.335  0.092  0  24  0.10129032  0.10129032 

353  65  29  60  38  7.335  0.033  0  24  0.10129032  0.10129032 

354  65  28  60  38  7.335  0.049  0  24  0.10129032  0.10129032 

355  65  28  60  38  7.335  0.042  0  24  0.10129032  0.10129032 

356  64  26  60  38  7.335  0.045  0  24  0.10129032  0.10129032 

357  63  26  60  38  7.335  0.021  0  24  0.10129032  0.10129032 

358  62  26  60  38  7.335  0.041  0  24  0.10129032  0.10129032 

359  63  25  60  38  7.335  0.13  0  24  0.10129032  0.10129032 

360  63  27  60  38  7.335  0.027  0  24  0.10129032  0.10129032 

361  63  26  60  38  7.335  0.043  0  24  0.10129032  0.10129032 

362  63  27  60  38  7.335  0.059  0  24  0.10129032  0.10129032 

363  63  28  60  38  7.335  0.04  0  24  0.10129032  0.10129032 

364  62  27  60  38  7.335  0.029  0  24  0.10129032  0.10129032 

365  63  26  60  38  7.335  0.051  0  24  0.10129032  0.10129032 

Page 229: Infiltration, Seepage, Fate, and Transport Modeling Report

Multi‐Day Storm Event Name: Monsoon Storm Event Latitude: 31 Distribution: Sinusoidal Distribution 

Entry Modifier 

Max T Offset: 0 Min T Offset: 0 Max RH Offset: 0 Min RH Offset: 0 Wind Scale: 100 Precipitation Scale: 100 Start Precip Offset: 0 End Precip Offset: 0 PET Scale: 100 Net Radiation Scale: 100 

Climate Entries 

Day # Max T (°F) 

Min T (°F) 

Max RH (%) 

Min RH (%) 

Wind  Precipitation Precipitation 

Started Precipitation 

Ended PET 

1  53  36  60  38  7.3  0.3  0  24  0.1 

2  47  32  60  38  7.3  1.6  0  24  0.1 

3  45  35  60  38  7.3  1.8  0  24  0.1 

4  42  34  60  38  7.3  0.4  0  24  0.1 

5  43  32  60  38  7.3  0.8  0  24  0.1 

6  53  41  60  38  7.3  0.1  0  24  0.1 

7  57  38  60  38  7.3  0.8  0  24  0.1 

8  47  33  60  38  7.3  0.1  0  24  0.1 

24‐hour, 100‐year Storm Name: 24‐hour, 100‐year Storm Latitude: 31 Distribution: Sinusoidal Distribution 

Entry Modifier 

Max T Offset: 0 Min T Offset: 0 Max RH Offset: 0 Min RH Offset: 0 Wind Scale: 100 Precipitation Scale: 100 

Page 230: Infiltration, Seepage, Fate, and Transport Modeling Report

Start Precip Offset: 0 End Precip Offset: 0 PET Scale: 100 Net Radiation Scale: 100 

Climate Entries 

Day # Max T (°F) 

Min T (°F) 

Max RH (%) 

Min RH (%) 

Wind  Precipitation Precipitation 

Started Precipitation 

Ended PET 

1  65  43  60  38  7.3  4.8  0  24  0.1 

2  65  43  60  38  7.3  0.1  0  24  0.1 

K Functions 

Well‐Graded #3 (high clay), Ksat = 8.42e‐06 ft/hr Model: Data Point Function Function: X‐Conductivity vs. Pore‐Water Pressure 

Curve Fit to Data: 100 % Segment Curvature: 46 % 

K‐Saturation: 8.42e‐006 Data Points: Matric Suction (psf), X‐Conductivity (ft/hr) 

Data Point: (0.005, 8.42e‐006) Data Point: (0.01, 8.42e‐006) Data Point: (0.028381, 8.4189e‐006) Data Point: (0.080549, 8.4164e‐006) Data Point: (0.22861, 8.4109e‐006) Data Point: (0.64881, 8.3984e‐006) Data Point: (1.8414, 8.3705e‐006) Data Point: (5.2261, 8.3078e‐006) Data Point: (14.832, 8.1678e‐006) Data Point: (15.714, 8.1562e‐006) Data Point: (42.096, 7.857e‐006) Data Point: (119.47, 7.1792e‐006) Data Point: (339.08, 5.7708e‐006) Data Point: (962.35, 3.2787e‐006) Data Point: (1529.9, 1.9956e‐006) Data Point: (2731.3, 7.4428e‐007) Data Point: (3044.1, 5.8644e‐007) Data Point: (4558.3, 2.0754e‐007) Data Point: (6072.4, 8.7118e‐008) Data Point: (7586.6, 4.1843e‐008) Data Point: (7751.6, 3.8891e‐008) Data Point: (9100.8, 2.229e‐008) Data Point: (10615, 1.2866e‐008) 

Page 231: Infiltration, Seepage, Fate, and Transport Modeling Report

Data Point: (12129, 7.9116e‐009) Data Point: (13643, 5.1188e‐009) Data Point: (15158, 3.4526e‐009) Data Point: (16672, 2.4107e‐009) Data Point: (18186, 1.733e‐009) Data Point: (19700, 1.2773e‐009) Data Point: (21214, 9.6176e‐010) Data Point: (22000, 8.3637e‐010) 

Estimation Properties Hydraulic K Sat: 0 ft/hr Hyd. K‐Function Estimation Method: Van Genuchten Function Maximum: 1000 Minimum: 0.01 Num. Points: 20 Residual Water Content: 0 ft³/ft³ 

Andesite Rock Model: Data Point Function Function: X‐Conductivity vs. Pore‐Water Pressure 

Curve Fit to Data: 100 % Segment Curvature: 48 % 

K‐Saturation: 170 Data Points: Matric Suction (psf), X‐Conductivity (ft/hr) 

Data Point: (0.005, 170) Data Point: (0.01, 170) Data Point: (0.055505, 170) Data Point: (0.30808, 170) Data Point: (1.71, 170) Data Point: (9.4912, 2.3949) Data Point: (52.681, 0.010516) Data Point: (55.556, 0.0089604) Data Point: (292.4, 6.6243e‐005) 

Estimation Properties Hydraulic K Sat: 0 ft/hr Hyd. K‐Function Estimation Method: Van Genuchten Function Maximum: 1000 Minimum: 0.01 Num. Points: 20 Residual Water Content: 0 ft³/ft³ 

Silt #2, Ksat = 1.18e‐02 ft/hr Model: Data Point Function Function: X‐Conductivity vs. Pore‐Water Pressure 

Curve Fit to Data: 100 % Segment Curvature: 46 % 

K‐Saturation: 0.0118 Data Points: Matric Suction (psf), X‐Conductivity (ft/hr) 

Data Point: (0.005, 0.0118) 

Page 232: Infiltration, Seepage, Fate, and Transport Modeling Report

Data Point: (0.01, 0.0118) Data Point: (0.050666, 0.0118) Data Point: (0.2567, 0.0118) Data Point: (1.3006, 0.0118) Data Point: (6.5895, 0.0118) Data Point: (24.444, 0.0118) Data Point: (33.386, 0.0118) Data Point: (169.15, 0.0093876) Data Point: (857.03, 0.00028444) Data Point: (2330.4, 6.917e‐006) Data Point: (4342.2, 4.335e‐007) Data Point: (4636.3, 3.444e‐007) Data Point: (6942.2, 1.2285e‐007) Data Point: (9248.1, 6.3069e‐008) Data Point: (11554, 3.4728e‐008) Data Point: (13860, 1.9603e‐008) Data Point: (16166, 1.1243e‐008) Data Point: (18472, 1.1243e‐008) Data Point: (20778, 1.1243e‐008) Data Point: (22000, 1.1243e‐008) 

Estimation Properties Hydraulic K Sat: 0 ft/hr Hyd. K‐Function Estimation Method: Van Genuchten Function Maximum: 1000 Minimum: 0.01 Num. Points: 20 Residual Water Content: 0 ft³/ft³ 

Vol. Water Content Functions 

Well‐Graded #3 (high clay) Model: Fredlund‐Xing Function Function: Vol. Water Content vs. Pore‐Water Pressure 

A: 23272 psf N: 0.81304 M: 1.4413 Saturated Water Content: 0.34001 ft³/ft³ Suction Limit: 2.0885e+007 Mv: 1e‐009 /psf 

Porosity: 0.34000981 

Ore Model: Data Point Function Function: Vol. Water Content vs. Pore‐Water Pressure 

Curve Fit to Data: 100 % Segment Curvature: 46 % 

Page 233: Infiltration, Seepage, Fate, and Transport Modeling Report

Mv: 1e‐007 /psf Porosity: 0.30437391 Data Points: Matric Suction (psf), Vol. Water Content (ft³/ft³) 

Data Point: (6.25, 0.30444) Data Point: (12.5, 0.3) Data Point: (36.3, 0.291) Data Point: (55.4, 0.275) Data Point: (84.5, 0.228) Data Point: (98, 0.198) Data Point: (131, 0.171) Data Point: (168, 0.154) Data Point: (290, 0.125) Data Point: (696, 0.0983) Data Point: (2040, 0.0794) Data Point: (7840, 0.0652) Data Point: (37800, 0.052) 

Estimation Properties Vol. WC Estimation Method: Sample functions Sample Material: Clay Saturated Water Content: 0 ft³/ft³ Liquid Limit: 0 % Diameter at 10% passing: 0 Diameter at 60% passing: 0 Maximum: 1000 Minimum: 0.01 Num. Points: 20 

Silt #2 Model: Fredlund‐Xing Function Function: Vol. Water Content vs. Pore‐Water Pressure 

A: 492.7 psf N: 2.8872 M: 1.1969 Saturated Water Content: 0.44 ft³/ft³ Suction Limit: 2.0885e+007 Mv: 1e‐009 /psf 

Porosity: 0.44 

Thermal K vs VolWC Functions 

Clay Model: Spline Data Point Function Function: Thermal Conductivity vs. Vol. Water Content 

Curve Fit to Data: 100 % Segment Curvature: 48 % 

Y‐Intercept: 0.6425 

Page 234: Infiltration, Seepage, Fate, and Transport Modeling Report

Data Points: Vol. Water Content (ft³/ft³), Thermal Conductivity (BTU/hr/ft/°F) Data Point: (0, 0.6425) Data Point: (0.021579, 0.73776) Data Point: (0.043158, 0.83302) Data Point: (0.064737, 0.88875) Data Point: (0.086316, 0.92828) Data Point: (0.10789, 0.95895) Data Point: (0.12947, 0.98401) Data Point: (0.15105, 1.0052) Data Point: (0.17263, 1.0235) Data Point: (0.19421, 1.0397) Data Point: (0.21579, 1.0542) Data Point: (0.23737, 1.0673) Data Point: (0.25895, 1.0793) Data Point: (0.28053, 1.0903) Data Point: (0.30211, 1.1005) Data Point: (0.32368, 1.1099) Data Point: (0.34526, 1.1188) Data Point: (0.36684, 1.1271) Data Point: (0.38842, 1.135) Data Point: (0.41, 1.1424) 

Estimation Properties MineralThermalK: 0 BTU/hr/ft/°F Maximum: 1 Minimum: 0 Num. Points: 20 

Silt Model: Spline Data Point Function Function: Thermal Conductivity vs. Vol. Water Content 

Curve Fit to Data: 100 % Segment Curvature: 48 % 

Y‐Intercept: 0.75017 Data Points: Vol. Water Content (ft³/ft³), Thermal Conductivity (BTU/hr/ft/°F) 

Data Point: (0, 0.75017) Data Point: (0.02, 0.86287) Data Point: (0.04, 0.97557) Data Point: (0.06, 1.0415) Data Point: (0.08, 1.0883) Data Point: (0.1, 1.1246) Data Point: (0.12, 1.1542) Data Point: (0.14, 1.1793) Data Point: (0.16, 1.201) Data Point: (0.18, 1.2201) Data Point: (0.2, 1.2372) Data Point: (0.22, 1.2527) Data Point: (0.24, 1.2669) Data Point: (0.26, 1.2799) 

Page 235: Infiltration, Seepage, Fate, and Transport Modeling Report

Data Point: (0.28, 1.292) Data Point: (0.3, 1.3032) Data Point: (0.32, 1.3137) Data Point: (0.34, 1.3235) Data Point: (0.36, 1.3328) Data Point: (0.38, 1.3416) 

Estimation Properties MineralThermalK: 0 BTU/hr/ft/°F Maximum: 1 Minimum: 0 Num. Points: 20 

Sand Model: Spline Data Point Function Function: Thermal Conductivity vs. Vol. Water Content 

Curve Fit to Data: 100 % Segment Curvature: 48 % 

Y‐Intercept: 1.2184 Data Points: Vol. Water Content (ft³/ft³), Thermal Conductivity (BTU/hr/ft/°F) 

Data Point: (0, 1.2184) Data Point: (0.015789, 1.4094) Data Point: (0.031579, 1.6004) Data Point: (0.047368, 1.7121) Data Point: (0.063158, 1.7914) Data Point: (0.078947, 1.8529) Data Point: (0.094737, 1.9031) Data Point: (0.11053, 1.9456) Data Point: (0.12632, 1.9823) Data Point: (0.14211, 2.0148) Data Point: (0.15789, 2.0438) Data Point: (0.17368, 2.0701) Data Point: (0.18947, 2.0941) Data Point: (0.20526, 2.1161) Data Point: (0.22105, 2.1365) Data Point: (0.23684, 2.1555) Data Point: (0.25263, 2.1733) Data Point: (0.26842, 2.19) Data Point: (0.28421, 2.2058) Data Point: (0.3, 2.2207) 

Estimation Properties MineralThermalK: 0 BTU/hr/ft/°F Maximum: 1 Minimum: 0 Num. Points: 20 

Page 236: Infiltration, Seepage, Fate, and Transport Modeling Report

Vol. Specific Heat Functions 

Clay (Btu/Ft3 F) Model: Spline Data Point Function Function: Volumetric Specific Heat Capacity vs. Vol. Water Content 

Curve Fit to Data: 100 % Segment Curvature: 46 % 

Y‐Intercept: 20.189 Data Points: Vol. Water Content (ft³/ft³), Volumetric Specific Heat Capacity (BTU/ft³/°F) 

Data Point: (0, 20.189) Data Point: (0.021579, 21.535) Data Point: (0.043158, 22.881) Data Point: (0.064737, 24.228) Data Point: (0.086316, 25.574) Data Point: (0.10789, 26.92) Data Point: (0.12947, 28.266) Data Point: (0.15105, 29.612) Data Point: (0.17263, 30.959) Data Point: (0.19421, 32.305) Data Point: (0.21579, 33.651) Data Point: (0.23737, 34.997) Data Point: (0.25895, 36.344) Data Point: (0.28053, 37.69) Data Point: (0.30211, 39.036) Data Point: (0.32368, 40.382) Data Point: (0.34526, 41.729) Data Point: (0.36684, 43.075) Data Point: (0.38842, 44.421) Data Point: (0.41, 45.767) 

Estimation Properties MassSpecHeat: 0 BTU/g/°F Maximum: 1 Minimum: 0 Num. Points: 20 

Silt (Btu/ft3 F) Model: Spline Data Point Function Function: Volumetric Specific Heat Capacity vs. Vol. Water Content 

Curve Fit to Data: 100 % Segment Curvature: 46 % 

Y‐Intercept: 18.707 Data Points: Vol. Water Content (ft³/ft³), Volumetric Specific Heat Capacity (BTU/ft³/°F) 

Data Point: (0, 18.707) Data Point: (0.02, 19.955) Data Point: (0.04, 21.203) Data Point: (0.06, 22.45) Data Point: (0.08, 23.698) 

Page 237: Infiltration, Seepage, Fate, and Transport Modeling Report

Data Point: (0.1, 24.946) Data Point: (0.12, 26.194) Data Point: (0.14, 27.441) Data Point: (0.16, 28.689) Data Point: (0.18, 29.937) Data Point: (0.2, 31.184) Data Point: (0.22, 32.432) Data Point: (0.24, 33.68) Data Point: (0.26, 34.928) Data Point: (0.28, 36.175) Data Point: (0.3, 37.423) Data Point: (0.32, 38.671) Data Point: (0.34, 39.918) Data Point: (0.36, 41.166) Data Point: (0.38, 42.414) 

Estimation Properties MassSpecHeat: 0 BTU/g/°F Maximum: 1 Minimum: 0 Num. Points: 20 

Sand (Btu/Ft3 F) Model: Spline Data Point Function Function: Volumetric Specific Heat Capacity vs. Vol. Water Content 

Curve Fit to Data: 100 % Segment Curvature: 46 % 

Y‐Intercept: 19.705 Data Points: Vol. Water Content (ft³/ft³), Volumetric Specific Heat Capacity (BTU/ft³/°F) 

Data Point: (0, 19.705) Data Point: (0.015789, 20.69) Data Point: (0.031579, 21.675) Data Point: (0.047368, 22.66) Data Point: (0.063158, 23.645) Data Point: (0.078947, 24.63) Data Point: (0.094737, 25.615) Data Point: (0.11053, 26.6) Data Point: (0.12632, 27.585) Data Point: (0.14211, 28.57) Data Point: (0.15789, 29.556) Data Point: (0.17368, 30.541) Data Point: (0.18947, 31.526) Data Point: (0.20526, 32.511) Data Point: (0.22105, 33.496) Data Point: (0.23684, 34.481) Data Point: (0.25263, 35.466) Data Point: (0.26842, 36.451) Data Point: (0.28421, 37.436) Data Point: (0.3, 38.421) 

Page 238: Infiltration, Seepage, Fate, and Transport Modeling Report

Estimation Properties MassSpecHeat: 0 BTU/g/°F Maximum: 1 Minimum: 0 Num. Points: 20 

Page 239: Infiltration, Seepage, Fate, and Transport Modeling Report

APPENDIX D BADCT CLOSURE FOR

HEAP LEACH FACILITY PONDS TECHNICAL MEMORANDUM

Page 240: Infiltration, Seepage, Fate, and Transport Modeling Report

Tucson Office 3031 West Ina Road

Tucson, AZ 85741 Tel 520.297.7723 Fax 520.297.7724

www.tetratech.com

Technical Memorandum

To: Kathy Arnold From: Mike Thornbrue

Company: Rosemont Copper Company Date: January 14, 2010

Re: Prescriptive BADCT Closure for the Heap Leach Facility Ponds

Doc #: 004/10-320807-5.3

CC: David Krizek, P.E. (Tetra Tech)

The purpose of this technical memorandum is to document the Prescriptive Best Available Demonstrated Control Technology (BADCT) closure recommendations for the ponds associated with the Heap Leach Facility (HLF) for the proposed Rosemont Copper Project (Project). These recommendations are based on the Arizona Mining BADCT Guidance Manual published by the Arizona Department of Environmental Quality (ADEQ) (2004). There are three (3) ponds associated with the HLF: the Stormwater Pond, the Pregnant Leach Solution (PLS) Pond, and the Raffinate Pond.

Based on the Mine Plan of Operations (WestLand Resources, 2007), the leach grade oxide ore delivery to the pad will be completed by approximate operation Year 6. By about operation Year 10, the heap and the ponds located at the base of the Heap Leach Pad (PLS and Stormwater Ponds) will be covered with waste rock. Closure of these ponds will be required prior to placement of the waste rock.

Depending on whether drain-down from the heap is still continuing at this time (approximate operational Year 10), the former PLS and Stormwater Ponds may be converted to treatment basins. A discussion of these treatment basins is provided in a separate technical memorandum. Previous analysis has indicated that residual drain-down seepage will be less than ten (10) gallons per minute approximately two (2) to three (3) years following the cessation of leaching.

1.0 General Prescriptive BADCT Pond Closure A general closure strategy for the HLF ponds was developed based on the Arizona Mining BADCT Guidance Manual (ADEQ, 2004) and submitted to ADEQ as part of the Aquifer Protection Permit (APP) application (Tetra Tech, 2009). The following sections provide a more detailed closure strategy for each pond.

Page 241: Infiltration, Seepage, Fate, and Transport Modeling Report

2

2.0 Stormwater Pond BADCT Closure Strategy The Stormwater Pond is considered a bermed non-stormwater pond by Prescriptive BADCT standards. The pond will be closed using the following procedures:

Any contained solutions will be allowed to evaporate (in the pond or on top of the spent ore) or pumped into the PLS Pond and incorporated into the solution flowing to the Solvent Extraction – Electro-Winning (SW–EX) Plant for processing or possible treatment and/or incorporation into the sulfide ore circuit;

Any residues remaining on the high-density, polyethylene (HDPE) liner will be collected and incorporated into the sulfide ore processing circuit, to recover metals in the residue such as copper and molybdenum, or be placed on top of the spent ore. Residue is defined as any solids collected on the liner to a thickness of greater than 1/4-inch or which can readily be removed by physical means such as sweeping or high pressure water sprays;

The HDPE liner will be inspected for visual signs of liner damage, liner defects, or impact by leakage through the liner system;

o If there is no evidence of past leakage, the HDPE liner and the GCL will be removed for appropriate disposal;

o Where inspection reveals presence of one (1) or more holes or tears or defective seams, the HDPE liner and GCL will be removed and the underlying surface inspected for visual signs of impact. ADEQ may require sampling and analysis of the underlying material to determine whether the potential impact poses a threat to groundwater quality. If required, soil remediation will be conducted to prevent groundwater impact;

The HDPE liner will either be sent to an approved off-site recycler or it will be placed in a proposed on-site Waste Management Area. If the GCL cannot be recycled, it will also be placed in the Waste Management Area; and

The former Stormwater Pond will either be encapsulated with waste rock or converted to a treatment basin for possible on-going drain-down seepage from the heap, and then encapsulated with waste rock.

3.0 PLS Pond BADCT Closure Strategy The PLS Pond is considered a bermed process solution pond by Prescriptive BADCT standards. The pond will be closed using the following procedures:

Any contained solutions will be allowed to evaporate (in the pond or on top of the spent ore) or pumped to the SW–EX Plant for processing or possible treatment and/or incorporation into the sulfide ore circuit;

Page 242: Infiltration, Seepage, Fate, and Transport Modeling Report

3

Any residues remaining on the top HDPE liner will be collected and incorporated into the sulfide ore processing circuit, to recover metals in the residue such as copper and molybdenum, or be placed on top of the spent ore;

The top HDPE liner and geonet will be removed, including the Leak Collection and Recovery System (LCRS). The top HDPE liner and geonet will either be sent to an approved off-site recycler or will be placed in the Waste Management Area. Piping, etc., associated with the LRCS will either be sent to an approved off-site recycler or will be placed in the Waste Management Area. Drain rock from the LRCS sump will be placed on top of the spent ore;

The bottom LLDPE liner will be inspected for visual signs of liner damage, liner defects, or impact by leakage through the liner system;

o If there is no evidence of past leakage, the LLDPE liner and the GCL will be removed for appropriate recycling or disposal;

o Where inspection reveals presence of one (1) or more holes or tears or defective seams, the LLDPE liner and GCL will be removed and the underlying surface inspected for visual signs of impact. ADEQ may require sampling and analysis of the underlying material to determine whether the potential impact poses a threat to groundwater quality. If required, soil remediation will be conducted to prevent groundwater impact;

The LLDPE liner will either be sent to an approved off-site recycler or it will be placed in the Waste Management Area. If the GCL cannot be recycled, it will also be placed in the Waste Management Area; and

The former PLS Pond will either be encapsulated with waste rock or converted to a treatment basin for possible on-going drain-down seepage from the heap, and then encapsulated with waste rock.

4.0 Raffinate Pond BADCT Closure Strategy The Raffinate Pond is considered a bermed process solution pond by Prescriptive BADCT standards. The pond will be closed using the following procedures:

Any contained solutions will be allowed to evaporate (in the pond or on top of the spent ore) or possibly treated and/or incorporated into the sulfide ore circuit;

Any residues remaining on the top HDPE liner will be collected and incorporated into the sulfide ore processing circuit, to recover metals in the residue such as copper and molybdenum, or be placed on top of the spent ore;

The top HDPE liner and geonet will be removed, including the LCRS. The top HDPE liner and geonet will either be sent to an approved off-site recycler or will be placed in the Waste Management Area. Piping, etc., associated with the LRCS will either be sent

Page 243: Infiltration, Seepage, Fate, and Transport Modeling Report

4

to an approved off-site recycler or will be placed in the Waste Management Area. Drain rock from the LRCS sump will be placed on top of the spent ore;

The bottom LLDPE liner will be inspected for visual signs of liner damage, liner defects, or impact by leakage through the liner system;

o If there is no evidence of past leakage, the LLDPE liner and the GCL will be removed for appropriate recycling or disposal;

o Where inspection reveals presence of one or more holes or tears or defective seams, the LLDPE liner and GCL will be removed and the underlying surface inspected for visual signs of impact. ADEQ may require sampling and analysis of the underlying material to determine whether the potential impact poses a threat to groundwater quality. If required, soil remediation will be conducted to prevent groundwater impact;

The LLDPE liner will either be sent to an approved off-site recycler or it will be placed in the Waste Management Area. If the GCL cannot be recycled, it will also be placed in the Waste Management Area; and

The area will be graded to drain surface runoff and minimize precipitation infiltration.

5.0 REFERENCES ADEQ, 2004. Arizona Mining BADCT Guidance Manual, Aquifer Protection Program.

Publication TB-04-01.

Tetra Tech, 2009. Aquifer Protection Permit Application. Prepared for Rosemont Copper Company. Report Dated February 2009.

WestLand Resources, Inc. (2007) Rosemont Project Mine Plan of Operations. Prepared for Augusta Resource Corporation. Report Dated July 11, 2007.

Page 244: Infiltration, Seepage, Fate, and Transport Modeling Report

APPENDIX E HEAP LEACH FACILITY

MODELING / TREATMENT OPTIONS TECHNICAL MEMORANDUM

Page 245: Infiltration, Seepage, Fate, and Transport Modeling Report

Record # 01 2101

Rosemont Copper Project Locator Sheet

Document Date' V1 14 01 14

Document Title: tivodion Fate. 4744

Akviel(q.4 frrerf-ment Op-fit-115

Document Author AliAki .-k-ti,ck..0r1 I Tetra...Tech

Document Description

(ISA tiesir heap Leath Fab

Other Notes ik k>?4\613...

This document is located in the following

[CIRCLE THE CATEGORY (from the list below) IN WHICH THIS ITEM IS FILED] 1. Project Management a. Mine Plan (including compilation)

a. Formal recommendations & Directions b. Supporting Documents

b. Formal meeting minutes & memos

c. General Correspondence

d. Contracts, Agreements, & MOUs (Rosemont,

Udall, SWCA)

e. Other

2. Public involvement

c. Detailed Designs

6. Alternatives

a. Cumulative Effects Catalog

b. Connected Actions

c. Dismissed from Detailed Analysis

d. Analyzed in Detail

a. Announcements & Public Meetings 7. Resources

b. Mailing Lists a. Air Quality & Climate Change

c. Scoping Period Comments b. Biological

d. Udall Foundation Working Group c. Dark Skies

e. Scoping Reports d. Fuels & Fire Management

f. Comments after Scoping Period e. Hazardous Materials

g. DEIS Public Comments f. Heritage

3. Agency Consultation & Permits g. Land Use

a. Army Corps of Engineers (404 permit) h. Livestock Grazing

b. US Fish & Wildlife Service (Sec. 7 T&E) i. Noise & Vibration

c. State Historic Preservation Office (Sec. 106) j. Public Health & Safety

d. Tribes (Sec. 106) k. Recreation & Wilderness

e. Advisory Council on Historic Preservation (Sec. I. Riparian

106) m. Socioeconomics & Environmental Justice

f. Other n. Soils & Geology

4. Communication o. Transportation & Access

a. Congressional p. Visual •

b. Cooperating Agencies Water

c. Organizations 8. Reclamation

d. Individuals 9. DEIS

e. FOIA 10. FEIS

f. Internal 11. Geospatial Analysis (GIS Data)

g. Proponent 12. FOIA Exempt Documents

S. Proposed Action 13. ROD (including BLM & ACOE)

Page 246: Infiltration, Seepage, Fate, and Transport Modeling Report

APPENDIX F MINIMUM WASTE ROCK COVER

TECHNICAL MEMORANDUM

Page 247: Infiltration, Seepage, Fate, and Transport Modeling Report

Tucson Office 3031 West Ina Road

Tucson, AZ 85741 Tel 520.297.7723 Fax 520.297.7723

www.tetratech.com

Technical Memorandum

To: Kathy Arnold From: Amy Hudson, REM

Company: Rosemont Copper Company Date: January 14, 2010

Re: Minimum Thickness Analysis for Waste Rock Placed Over Spent Heap Leach Ore Material

Doc #: 041/10-320832-5.3

CC: David Krizek (Tetra Tech)

1.0 Introduction This technical memorandum presents Tetra Tech’s infiltration and seepage modeling associated with a waste rock cover over the proposed Heap Leach Facility for the Rosemont Copper Project (Project) in Pima County, Arizona. The purpose of this modeling was to assess the minimum thickness of waste rock needed on top of the heap in order to minimize meteoric water from infiltrating into the spent ore. The modeling was completed using both the VADOSE/W and CTRAN/W programs from the GeoStudio 2007 software package (GEO-SLOPE, 2007). Modeling was performed on the final Heap Leach Pad configuration (approximately 129 acres).

2.0 Model Construction After leaching is complete, the heap will be allowed to drain for approximately two (2) to three (3) years before the ponds located at the base of the heap are covered with waste rock. Based on modeling, the flow rate from the heap will be less than ten (10) gallons per minute (gpm) at the end of the two (2) to three (3) year period. This represents a near steady-state condition prior to the addition of waste rock over the spent ore. Waste rock may be placed over the spent ore prior to the ponds being covered.

The conceptual model provided as Illustration 1 shows the system water balance components after this three (3) year drain-down period. The system water balance components consist of:

Precipitation;

Evaporation;

Runoff;

Infiltration; and

Page 248: Infiltration, Seepage, Fate, and Transport Modeling Report

2

Seepage.

Seepage includes continued drain-down of the residual leach solutions, as well as any infiltration that reaches the bottom of the heap. A waste rock cover is also shown on Illustration 1.

During operation and the initial two (2) to three (3) year drain-down period following the cessation of leaching, it is assumed that both runoff and seepage will be collected in the double-lined PLS Pond located at the base of the Heap Leach Pad. Therefore, the Heap Leach Facility will be a zero (0) discharge facility with the seepage being collected in the PLS Pond. At closure, and following the placement of waste rock over the spent ore material and over the former PLS and Stormwater Ponds, only drain-down seepage will report to the base of the heap. Separate technical memoranda were prepared to describe closure of the PLS and Stormwater Ponds.

Illustration 1 Heap Leach Pad Conceptual Model

Modeling was performed with waste rock placed over the spent ore ranging in thickness from five (5) to 25 feet. Additionally, modeling was completed with and without a one (1) foot layer of

Page 249: Infiltration, Seepage, Fate, and Transport Modeling Report

3

soil added to the surface of the waste rock cover. In summary, the various scenarios modeled included:

Five (5) feet of waste rock with and without a one (1) foot of soil layer on the surface;

Ten (10) feet of waste rock with and without a one (1) foot of soil layer on the surface;

Fifteen feet of waste rock with and without a one (1) foot of soil layer on the surface;

Twenty feet of waste rock with and without a one (1) foot of soil layer on the surface; and

Twenty five feet of waste rock with and without a one (1) foot of soil layer on the surface.

2.1 Model Input Parameters

Site specific climate data was used in the model to evaluate the infiltration and seepage of meteoric water. The parameters in the climate data file included:

Minimum and maximum daily temperature;

Daily precipitation;

Minimum and maximum daily humidity;

Daily evaporation or net radiation; and

Average daily wind speed.

The average climate conditions data set is an average of over 50 years of daily measurements taken at the Nogales 6N Meteorological Station located approximately 30 miles from the Project site. This analysis only considers the average climate conditions and does not include any specific storm events.

Unsaturated flow parameters of the materials used in the model where taken from both laboratory and library data sets. Both the ore placed on the Heap Leach Pad and the waste rock placed on the spent ore will be run-of-mine (ROM) sized material. The ROM material was modeled with a permeability of 170 feet per hour (ft/hr) (100 cm/sec). This is equivalent to a coarse material with a broad distribution of sizes (poorly sorted) from gravel (0.1 inches) to large boulders (greater than 12 inches).

The primary difference between the spent ore and the waste rock is the moisture content of the material. The waste rock is expected to have a moisture content of less than ten (10) percent by volume when it is placed on the surface of the heap. The spent ore moisture content is expected to be higher than the waste rock due to leaching during the heap operation. A moisture content of about 15% is anticipated for the spent ore. Additionally, the soil cover material used in the modeling had a grain size ranging from gravel to fines and a permeability of 10-5 cm/sec based on field testing results as documented in the Geotechnical Addendum (Tt, 2009).

Page 250: Infiltration, Seepage, Fate, and Transport Modeling Report

4

2.2 Modeling Technique

The waste rock thickness analysis was completed in two (2) separate steps. The first step involved seepage and infiltration modeling using VADOSE/W (GEO-SLOPE, 2007a) to determine the flux into the spent ore and the moisture content of the soil layer, waste rock cover material, and the spent ore. The next step was particle tracking using CTRAN/W (GEO-SLOPE, 2007b) to determine the path of the water flow, including the direction of flow (into the facility [infiltration] or out of the facility [evaporation]). The following sections provide more detail on these two (2) model steps.

3.0 Model Results Modeling results are presented below as graphs comparing the various cover scenarios presented in Section 2.0. Illustrations 2 and 3 present the results of the five (5) waste rock only scenarios. Illustration 2 presents the flow (flux) of water into and out of the spent ore over a period of one (1) year while Illustration 3 presents the change in moisture content at the upper surface of the spent ore. Illustrations 4 and 5 present the results of the five (5) combined waste rock/soil layer scenarios. Illustration 2 presents the water flux, and Illustration 5 presents the moisture content at the upper surface of the spent ore.

Illustration 2 Water Flux – Waste Rock Only Over Spent Ore

Page 251: Infiltration, Seepage, Fate, and Transport Modeling Report

5

Illustration 3 Moisture Content – Waste Rock Only Over Spent Ore

Illustration 4 Water Flux – Waste Rock/Soil Layer Over Spent Ore

Page 252: Infiltration, Seepage, Fate, and Transport Modeling Report

6

Illustration 5 Moisture Content – Waste Rock/Soil Layer Over Spent Ore

The contact between the waste rock and the spent ore was used as the location in the model to analyze each of the scenarios, and to provide the data for Illustrations 2 through 5. In Illustrations 2 and 4, positive flux values represent the water that is infiltrating into the waste rock or combined waste rock/soil layer and reaching the surface of the spent ore while negative values represent water being removed from the spent ore and waste rock through evaporation.

Based on the results presented in Illustrations 2 and 4, some precipitation infiltrates into the spent ore during the first month of the model (positive flux values). This is due to the very low moisture content of the waste rock or combined waste rock/soil material being placed on the spent ore. The thinnest waste rock scenario (five [5] feet) had the highest infiltration rate while the thickest waste rock scenario (25 feet) had the lowest infiltration rate (both with and without a soil layer).

Once the initial wetting of the waste rock material was completed, each of the scenarios showed a decrease in the flux, and eventually realized an evaporation controlled period (negative flux values). Both Illustrations 2 and 4 show this initial increase and then decrease. However, the waste rock only scenarios have a much more erratic pattern over the one (1) year modeling period than the combined waste rock/soil layer scenarios. This suggests that the larger pore spaces and higher permeability of the ROM waste rock is more responsive to changes in climate conditions. The addition of a one (1) foot thick soil layer to the surface of the waste rock smoothes the erratic pattern observed in Illustration 2 and shows a more consistent rate of evaporation.

Based on just the flux data, the combination waste rock/soil layer options are more protective than the waste rock only scenarios. A five (5) foot waste rock thickness with a one (1) foot soil layer performs as effectively as the thicker waste rock only or thicker waste rock/soil layer

Page 253: Infiltration, Seepage, Fate, and Transport Modeling Report

7

scenarios. If only waste rock will be placed on the spent ore, the thickness would need to be at least 20 feet in order to minimize meteoric water infiltrating into the spent ore.

Illustrations 3 and 5 present the change in moisture content over time at the waste rock/spent ore contact. These illustrations also show the material being wetted in the early stage of the model. The thinnest waste rock scenarios have the largest increase in moisture content while the thicker layers have less increase. The thinner layers also have a faster increase in moisture content than the thicker layers. This is due to the position of the model point being used for the data analysis. As discussed above, the modeling point being described in the illustrations is located at the contact of the waste rock and the spent ore material. Therefore, the model point is located further from the top surface of the model with the thicker covers, (i.e., the point is deeper in the cover system).

The scenarios modeled without a soil layer also have a faster increase in the moisture content, and a faster decrease. This is related to the smaller pore spaces in the soil layer and associated lower permeability. Regardless of the scenario, the moisture contents are sufficiently low to suggest that no meteoric water will reach the spent ore material at closure. Modeling assumed that all surfaces had a positive drainage of at least one (1) percent, (i.e., no ponding on the cover surface).

4.0 Conclusions The most protective covers modeled in this analysis were represented by a combination of waste rock and a soil layer. A five (5) foot waste rock cover with one (1) foot of soil had much less variation in the flux of water in and out of the system (less responsive to changing climate conditions) than a waste rock only cover scenario having a thickness of 20 feet. However, a waste rock only cover of at least 20 feet in thickness will be sufficient to prevent meteoric water infiltration into the spent ore. This assumes positive drainage is maintained on the outer slopes.

5.0 References GEO-SLOPE International, Ltd. (GEO-SLOPE). (2007a). Vadose Zone Modeling with

VADOSE/W 2007: An Engineering Methodology. GEO-SLOPE International Ltd.: Calgary, Alberta, Canada.

GEO-SLOPE, (2007b). Contaminant Modeling with CTRAN/W 2007: An Engineering Methodology. GEO-SLOPE International Ltd.: Calgary, Alberta, Canada.

Tetra Tech (Tt) (2009). Geotechnical Addendum. Prepared for Rosemont Copper Company. Dated February 2009.

Page 254: Infiltration, Seepage, Fate, and Transport Modeling Report