Infall and Rotation around Young Stars Formation and Evolution of Protoplanetary Disks Michiel R....

42
Infall and Rotation around Young Stars Formation and Evolution of Protoplanetary Disks Michiel R. Hogerheijde Steward Observatory The University of Arizona

Transcript of Infall and Rotation around Young Stars Formation and Evolution of Protoplanetary Disks Michiel R....

Page 1: Infall and Rotation around Young Stars Formation and Evolution of Protoplanetary Disks Michiel R. Hogerheijde Steward Observatory The University of Arizona.

Infall and Rotation around Young Stars

Formation and Evolution of Protoplanetary Disks

Infall and Rotation around Young Stars

Formation and Evolution of Protoplanetary Disks

Michiel R. Hogerheijde

Steward Observatory

The University of Arizona

Page 2: Infall and Rotation around Young Stars Formation and Evolution of Protoplanetary Disks Michiel R. Hogerheijde Steward Observatory The University of Arizona.

OutlineOutline

• An overview of star formation

• Rotation in interstellar clouds

• Decoupling of collapsing cores

• Formation of disks

• L1489 IRS: A transitional object with a contracting disk?

• Summary and further work

Page 3: Infall and Rotation around Young Stars Formation and Evolution of Protoplanetary Disks Michiel R. Hogerheijde Steward Observatory The University of Arizona.

OutlineOutline

• An overview of star formation

• Rotation in interstellar clouds

• Decoupling of collapsing cores

• Formation of disks

• L1489 IRS: A transitional object with a contracting disk?

• Summary and further work

Page 4: Infall and Rotation around Young Stars Formation and Evolution of Protoplanetary Disks Michiel R. Hogerheijde Steward Observatory The University of Arizona.

An overview of star formationAn overview of star formation

(Hogerheijde 1998; after Shu et al. 1987)

Page 5: Infall and Rotation around Young Stars Formation and Evolution of Protoplanetary Disks Michiel R. Hogerheijde Steward Observatory The University of Arizona.

Cloud StructureCloud Structure

•Cloud complex•Filaments•Cores•Kernels

Motte & André (2001)

Page 6: Infall and Rotation around Young Stars Formation and Evolution of Protoplanetary Disks Michiel R. Hogerheijde Steward Observatory The University of Arizona.

OutlineOutline

• An overview of star formation

• Rotation in interstellar clouds

• Decoupling of collapsing cores

• Formation of disks

• L1489 IRS: A transitional object with a contracting disk?

• Summary and further work

Page 7: Infall and Rotation around Young Stars Formation and Evolution of Protoplanetary Disks Michiel R. Hogerheijde Steward Observatory The University of Arizona.

Rotation in interstellar cloudsRotation in interstellar clouds

• Line width – size relation

• Specific angular momentum – size relation

• Magnetic breaking

• Turbulence as a source of rotation

Page 8: Infall and Rotation around Young Stars Formation and Evolution of Protoplanetary Disks Michiel R. Hogerheijde Steward Observatory The University of Arizona.

Rotation in interstellar cloudsRotation in interstellar clouds

• v–R relation (Larson 1981)

Larson (1981)

vR0.5

Page 9: Infall and Rotation around Young Stars Formation and Evolution of Protoplanetary Disks Michiel R. Hogerheijde Steward Observatory The University of Arizona.

Rotation in interstellar cloudsRotation in interstellar clouds

• Line width – size relationship• vR, =0.530.07 (Caselli & Myers 1995)

• Virial equilibrium: 2K+W=0Mv2-GM2/R=0vR0.5

• Turbulent and/or rotational support for cloud cores

Page 10: Infall and Rotation around Young Stars Formation and Evolution of Protoplanetary Disks Michiel R. Hogerheijde Steward Observatory The University of Arizona.

Rotation in interstellar cloudsRotation in interstellar clouds

• J/M–R relation (Goodman et al. 1993)

• R-0.4

• ~ constant• J/M R1.6

Goodman et al. (1993)

Page 11: Infall and Rotation around Young Stars Formation and Evolution of Protoplanetary Disks Michiel R. Hogerheijde Steward Observatory The University of Arizona.

Rotation in interstellar cloudsRotation in interstellar clouds

Goodman et al. (1993): ω∝R−0.4

Define β≡rotational energy

gravitational energy∝

Iω2

GM2 /R∝ω2R3

GM, with moment of inertia I ≡pMR2

Goodman et al. find β ≈0.02

Specific angular momentum JM

=IωM

∝ωR2 ∝R1.6, using I ∝MR2 and ω∝R−0.4

If virial equilibrium applies, Δv2 =GM /R⇒ βvirial=ω2R2

Δv2 =ω2R∝R0 ≈constant

constant density, constant ω⇒ β constant

differential rotation ω∝R-1, n∝R−2 ⇒ β constant

Page 12: Infall and Rotation around Young Stars Formation and Evolution of Protoplanetary Disks Michiel R. Hogerheijde Steward Observatory The University of Arizona.

Rotation in interstellar cloudsRotation in interstellar clouds

• Magnetic breaking (Königl 1987; Mouschovias 1991)

Basu (1997)

Page 13: Infall and Rotation around Young Stars Formation and Evolution of Protoplanetary Disks Michiel R. Hogerheijde Steward Observatory The University of Arizona.

Rotation in interstellar cloudsRotation in interstellar clouds

• Turbulence as a source of rotation (Burkert & Bodenheimer 2000)

n=-4

n=-3

n=-2

Different realizations

p(k)~kn

J/M=2.310-3 km s-1 pc

=0.03, independent of R

Burkert & Bodenheimer (2000)

Page 14: Infall and Rotation around Young Stars Formation and Evolution of Protoplanetary Disks Michiel R. Hogerheijde Steward Observatory The University of Arizona.

OutlineOutline

• An overview of star formation

• Rotation in interstellar clouds

• Decoupling of collapsing cores

• Formation of disks

• L1489 IRS: A transitional object with a contracting disk?

• Summary and further work

Page 15: Infall and Rotation around Young Stars Formation and Evolution of Protoplanetary Disks Michiel R. Hogerheijde Steward Observatory The University of Arizona.

Decoupling of collapsing coresDecoupling of collapsing cores

• Goodman et al. (1998)• R>0.1 pc vR0.5

• R<0.1 pc vR0

• Transition to coherence

• Scale corresponds to clustering-scale of young stars in Taurus (Larson 1995)

(dramatization)Goodman et al. (1998)

Page 16: Infall and Rotation around Young Stars Formation and Evolution of Protoplanetary Disks Michiel R. Hogerheijde Steward Observatory The University of Arizona.

Decoupling of collapsing coresDecoupling of collapsing cores

• Ohashi et al. (1997)

• Two embedded YSOs in Taurus

• IRAS 04169+2702: rotating, flattened envelope; must be infalling too

• IRAS 04365+2535: compact core; could be rotationally supported

R~0.1 pc

Ohashi et al. (1997)

Page 17: Infall and Rotation around Young Stars Formation and Evolution of Protoplanetary Disks Michiel R. Hogerheijde Steward Observatory The University of Arizona.

Decoupling of collapsing coresDecoupling of collapsing cores

• Belloche et al. (2002)

• Deeply embedded YSO IRAM 04191+1521

• Outflow• Flattened envelope• Spectral signature of

infall• Position-velocity

diagram suggests rotation

Belloche et al. (2002)

Page 18: Infall and Rotation around Young Stars Formation and Evolution of Protoplanetary Disks Michiel R. Hogerheijde Steward Observatory The University of Arizona.

Decoupling of collapsing coresDecoupling of collapsing cores

• 1D model of infall

• ‘2D’ model of rotation

• Break at ~3300 AU (0.02 pc)

• Infall: constant inside-out

• Rotation: slow spin up

• Mass reservoir ~0.5 M

Belloche et al. (2002)

Page 19: Infall and Rotation around Young Stars Formation and Evolution of Protoplanetary Disks Michiel R. Hogerheijde Steward Observatory The University of Arizona.

OutlineOutline

• An overview of star formation

• Rotation in interstellar clouds

• Decoupling of collapsing cores

• Formation of disks

• L1489 IRS: A transitional object with a contracting disk?

• Summary and further work

Page 20: Infall and Rotation around Young Stars Formation and Evolution of Protoplanetary Disks Michiel R. Hogerheijde Steward Observatory The University of Arizona.

Formation of disksFormation of disks

• Terebey, Shu, & Cassen (1984; TSC84)

• Inside-out collapse: asound, t

• Slow rotation, solid body: Ω

• Centrifugal radius Rc asoundt3Ω2

• Initial growth of disk small (t<1)

• Rapid growth at late times (t>1): infall of material from large R with large ΩR

Page 21: Infall and Rotation around Young Stars Formation and Evolution of Protoplanetary Disks Michiel R. Hogerheijde Steward Observatory The University of Arizona.

Formation of disksFormation of disks

• Basu (1998)• Weak magnetic field• Magnetic breaking:

differential rotation ΩR-1

• Rc t Ω2

• Rapid initial growth• Later growth linear:

material at large R has smaller initial Ω

TSC84

Basu (1998)

Basu (1998)

Page 22: Infall and Rotation around Young Stars Formation and Evolution of Protoplanetary Disks Michiel R. Hogerheijde Steward Observatory The University of Arizona.

Formation of disksFormation of disks

• Stahler et al. (1994)

• Growth of disk in TSC84 framework

• 3 regions• Inner dense disk,

Keplerian, R<Rd

• Outer tenuous disk, rapid inflow, Rd<R<Rc

• Narrow dense ring where mass and angular momentum piles up, Rd≈0.34 Rc

Adapted from Stahler et al. (1994)

Page 23: Infall and Rotation around Young Stars Formation and Evolution of Protoplanetary Disks Michiel R. Hogerheijde Steward Observatory The University of Arizona.

Formation of disksFormation of disks

• Shear motions dissipated by viscosity

• Source of viscosity unknown; turbulence?

• viscosity: = asound H (Shakura & Sunyaev 1973)

• Stellar irradiation, viscosity sets up temperature distribution TR-1/2 R

• Resulting surface density distribution (R)= 0(R/R0)-1 (Lynden-Bell & Pringle 1974; Pringle 1981)

• Continued evolution: disk spreading while matter accretes onto star

Page 24: Infall and Rotation around Young Stars Formation and Evolution of Protoplanetary Disks Michiel R. Hogerheijde Steward Observatory The University of Arizona.

Formation of disksFormation of disks

• Vertical scale height H set by temperature• Increased angle of interception stellar light raises

temperature• Result: Flaring disk (e.g., D’Alessio et al. 1998;

Chaing & Goldreich 1997; Dullemond et al. 2001)

Page 25: Infall and Rotation around Young Stars Formation and Evolution of Protoplanetary Disks Michiel R. Hogerheijde Steward Observatory The University of Arizona.

OutlineOutline

• An overview of star formation

• Rotation in interstellar clouds

• Decoupling of collapsing cores

• Formation of disks

• L1489 IRS: A transitional object with a contracting disk?

• Summary and further work

Page 26: Infall and Rotation around Young Stars Formation and Evolution of Protoplanetary Disks Michiel R. Hogerheijde Steward Observatory The University of Arizona.

L1489 IRS: A transitional object with a contracting disk?

L1489 IRS: A transitional object with a contracting disk?

• L1489 IRS = IRAS 04016+2610

• Lbol=3.7 L embedded YSO

• Taurus, d~140 pc• Very weak outflow• HST/NICMOS:

inclined, cleared-out cavity (Padgett et al. 1999)

Padgett et al. (1999)

Page 27: Infall and Rotation around Young Stars Formation and Evolution of Protoplanetary Disks Michiel R. Hogerheijde Steward Observatory The University of Arizona.

L1489 IRS: A transitional object with a contracting disk?

L1489 IRS: A transitional object with a contracting disk?

• SCUBA submillimeter continuum images, 850 and 450 µm

• Compact emission around star

• Extended starless core 8000 AU to north-east

Hogerheijde & Sandell 2000

Page 28: Infall and Rotation around Young Stars Formation and Evolution of Protoplanetary Disks Michiel R. Hogerheijde Steward Observatory The University of Arizona.

L1489 IRS: A transitional object with a contracting disk?

L1489 IRS: A transitional object with a contracting disk?

Hogerheijde & Sandell 2000

Best-fit Shu (1977) parameters:asound=0.46±0.04 km s-1

t=(1.3–3.2)106 yrrCEW=130,000–300,000 AU >> core

Page 29: Infall and Rotation around Young Stars Formation and Evolution of Protoplanetary Disks Michiel R. Hogerheijde Steward Observatory The University of Arizona.

L1489 IRS: A transitional object with a contracting disk?

L1489 IRS: A transitional object with a contracting disk?

Hogerheijde & Sandell 2000

‘Classic’ infall signatureCan fit collapse model to data,

but not for same (asound, t)

Page 30: Infall and Rotation around Young Stars Formation and Evolution of Protoplanetary Disks Michiel R. Hogerheijde Steward Observatory The University of Arizona.

L1489 IRS: A transitional object with a contracting disk?

L1489 IRS: A transitional object with a contracting disk?

Hogerheijde & Sandell 2000

L1527 IRS‘Classic’ infall signatureWell fit for same (asound, t)

Page 31: Infall and Rotation around Young Stars Formation and Evolution of Protoplanetary Disks Michiel R. Hogerheijde Steward Observatory The University of Arizona.

L1489 IRS: A transitional object with a contracting disk?

L1489 IRS: A transitional object with a contracting disk?

Hogerheijde & Sandell 2000

TMC1‘Classic’ infall signatureWell fit for same (asound, t)

Not a problem with the Shu (1977) inside

out collapse model

Page 32: Infall and Rotation around Young Stars Formation and Evolution of Protoplanetary Disks Michiel R. Hogerheijde Steward Observatory The University of Arizona.

L1489 IRS: A transitional object with a contracting disk?

L1489 IRS: A transitional object with a contracting disk?

• BIMA and OVRO millimeter interferometer maps• HCO+ J=1–0 and 3–2• Resolution ~5=700 AU• Rotating disk, not infalling envelope• Radius ~2000 AU, >> typical disk around T Tauri stars

2000AU

Hogerheijde 2001

Page 33: Infall and Rotation around Young Stars Formation and Evolution of Protoplanetary Disks Michiel R. Hogerheijde Steward Observatory The University of Arizona.

L1489 IRS: A transitional object with a contracting disk?

L1489 IRS: A transitional object with a contracting disk?

• Position–velocity diagrams look like Keplerian rotation

2800 0 -2800

0

2

-2

2

0

-2

Vel

ocit

y (k

m s

-1)

Offset (AU)

• Flared disk• Keplerian rotation around

M=0.65 M

• vin=1.3 (R/100 AU)-0.5 km s-1

• Mdisk=0.02 M (from SCUBA)

Hogerheijde 2001

Page 34: Infall and Rotation around Young Stars Formation and Evolution of Protoplanetary Disks Michiel R. Hogerheijde Steward Observatory The University of Arizona.

L1489 IRS: A transitional object with a contracting disk?

L1489 IRS: A transitional object with a contracting disk?

• Interferometer and single-dish spectra reproduced• Including infall signature• Requires some foreground absorption in HCO+ 1–0

Hogerheijde 2001

Page 35: Infall and Rotation around Young Stars Formation and Evolution of Protoplanetary Disks Michiel R. Hogerheijde Steward Observatory The University of Arizona.

L1489 IRS: A transitional object with a contracting disk?

L1489 IRS: A transitional object with a contracting disk?

• L1489:• Rotation>infall• Life time ≈2104 yr• Mdisk/ ≈110-6 Myr-1

• Lacc≈7 L > Lbol

• Inferred: Lacc<0.3 L

• TMC1:• Rotation<infall• Rc at 360 AU• Expanding t3

• Reaches 2000 AU in another (1–2)105 yr, ~twice current age and >> life time L1489’s diskHogerheijde (2001)

Page 36: Infall and Rotation around Young Stars Formation and Evolution of Protoplanetary Disks Michiel R. Hogerheijde Steward Observatory The University of Arizona.

Open questionsOpen questions

• Transitional ‘large-disk’ stage?

• Redistribution of angular momentum, leading to smaller disk as seen around T Tauri stars?

• Do inward motions continue all the way to the star?

Page 37: Infall and Rotation around Young Stars Formation and Evolution of Protoplanetary Disks Michiel R. Hogerheijde Steward Observatory The University of Arizona.

L1489 IRS: A transitional object with a contracting disk?

L1489 IRS: A transitional object with a contracting disk?

Keck/NIRSPEC CO gas and ice absorption lines at 4.7 µm (Boogert et al. 2002)

12CO ro-vibrational P,R lines

13CO ro-vibrational

lines +

12CO ice band

C18O ro-vibrational

lines ◊

Page 38: Infall and Rotation around Young Stars Formation and Evolution of Protoplanetary Disks Michiel R. Hogerheijde Steward Observatory The University of Arizona.

L1489 IRS: A transitional object with a contracting disk?

L1489 IRS: A transitional object with a contracting disk?

• Average line profiles• 13CO < 12 km s-1

• 12CO wing extends to +100 km s-1

• Wings present in entire P,R branches

• Infall to within 0.1 AU from star

Boogert et al. (2002)

Page 39: Infall and Rotation around Young Stars Formation and Evolution of Protoplanetary Disks Michiel R. Hogerheijde Steward Observatory The University of Arizona.

L1489 IRS: A transitional object with a contracting disk?

L1489 IRS: A transitional object with a contracting disk?

Infall model:Predicted average line profile

Flatter density profile: skimming flared disk surface

Infall model:Predicted average line profileFlatter density profile: skimming flared disk surfaceAdd 10% scattered star light

Boogert et al. (2002)

Page 40: Infall and Rotation around Young Stars Formation and Evolution of Protoplanetary Disks Michiel R. Hogerheijde Steward Observatory The University of Arizona.

L1489 IRS: A transitional object with a contracting disk?

L1489 IRS: A transitional object with a contracting disk?

• Large disk, R~2000 AU• Inward motions from 2000 to <0.1 AU• Life time ~2104 yr ≈ 5% embedded phase• Disk ‘settling’ to rotationally supported size?• Supersonic motions

• Disk instability?

• Mass accretion rate >> observed if entire (inner) disk flows in• Inflow in surface layer only?

Page 41: Infall and Rotation around Young Stars Formation and Evolution of Protoplanetary Disks Michiel R. Hogerheijde Steward Observatory The University of Arizona.

Summary and future workSummary and future work

• Cloud cores have velocity structure resembling rotation

• Turbulent origin likely

• Rotation not important for core’s dynamics

• Dense condensations decouple from magnetic breaking, spin up. R~4000–20,000 AU

• Disk forms at center, grows t1…3

• L1489 IRS: short-lived transitional stage, where large disk ‘settles’ to Keplerian structure

• Continued inflow puzzling. Contrary to expectation of viscous disk (subsonic accretion; disk spreading)

Page 42: Infall and Rotation around Young Stars Formation and Evolution of Protoplanetary Disks Michiel R. Hogerheijde Steward Observatory The University of Arizona.

Summary and future workSummary and future work

• Find more objects like L1489 IRS: ~5% of YSOs

• Orientation of L1489 IRS may be advantageous

• Higher resolution observations of disk’s velocity structure: SMA, CARMA, ALMA

• Different chemical tracers: disk interior vs. surface