indeks kelestarian lingkungan-biodiversitas

67
INDEKS KELESTARIAN LINGKUNGAN = Environmental Sustainability Index Diabstraksikan oleh: soemarno, psdl ppsub, desember 2012 Bahan Kajian pada MK. PSDAL BIODIVERSITAS

Transcript of indeks kelestarian lingkungan-biodiversitas

Page 1: indeks kelestarian lingkungan-biodiversitas

INDEKS KELESTARIAN LINGKUNGAN

=Environmental

Sustainability Index

Diabstraksikan oleh: soemarno, psdl ppsub, desember 2012

Bahan Kajian pada MK. PSDAL

BIODIVERSITAS

Page 2: indeks kelestarian lingkungan-biodiversitas

BIODIVERSITY = KEANEKA RAGAMAN HAYATI

Diunduh dari: http://woentari-monica.blogspot.com/2012/05/pengertian-keanekaragaman-hayati-dari.html……………… 4/12/2012

1. Keragaman hayati (biodiversity atau biological diversity) merupakan istilah yang digunakan untuk menggambarkan kekayaan berbagai bentuk kehidupan di bumi ini mulai dari organisme bersel tunggal sampai organisme tingkat tinggi. Keragaman hayati mencakup keragaman habitat, keragaman spesies (jenis) dan keragaman genetik (variasi sifat dalam spesies)

2. Keanekaragaman Hayati adalah tingkat variasi bentuk kehidupan dalam suatu ekosistem tertentu, bioma, atau seluruh planet. Keanekaragaman Hayati adalah ukuran dari kesehatan ekosistem. Keanekaragaman Hayati adalah sebagian fungsi dari iklim. Pada habitat darat, daerah tropis biasanya kaya sedangkan daerah-daerah kutub dukungan spesies yang lebih sedikit. Perubahan lingkungan yang cepat biasanya menyebabkan kepunahan massa. Salah satu perkiraan adalah bahwa kurang dari 1% dari spesies yang telah ada di Bumi yang masih ada.

3. Keanekaragaman Hayati adalah keseluruhan variasi berupa bentuk, penampilan, jumlah, dan sifat yang dapat ditemukan pada makhluk hidup.Keanekaragaman hayati merupakan lahan penelitian dan pengembangan ilmu yang sangat berguna untuk kehidupan manusia.

Page 3: indeks kelestarian lingkungan-biodiversitas

KEANEKARAGAMAN HAYATI

Diunduh dari: http://staff.blog.ui.ac.id/andreas.pramudianto/2009/02/27/keanekaragaman-hayati-dalam-hukum-lingkungan-internasional/ ……………… 4/12/2012

Keanekaragaman hayati menekankan pada semua jenis spesies tumbuhan, hewan dan mikroorganisme juga dengan ekosistimnya dimana mereka merupakan bagian yang tak terpisahkan, termasuk jumlah dan frekuensi ekosistem,

spesies dan gen yang saling berkaitan.

Ada tiga macam keanekaragaman hayati, yaitu :

a. Keanekaragaman spesies (Species Diversity)b. Keanekaragaman ekosistem (Ecosystem Diversity)c. Keanekaragaman genetika (Genetic Diversity)

Page 4: indeks kelestarian lingkungan-biodiversitas

Keanekaragaman spesies / jenis (Species Diversity)Keanekaragaman spesies terbentuk

oleh adanya kesesuaian

kandungan genetika yang mengatur sifat

dari kebakaan dengan lingkungan terhadap anggota

jenis yang sama yang dalam hal ini

memiliki kerangka dasar, komponen

genetika khususnya kromosom yang

sama.Diunduh dari: http://staff.blog.ui.ac.id/andreas.pramudianto/2009/02/27/keanekaragaman-hayati-dalam-hukum-

lingkungan-internasional/ ……………… 4/12/2012

Species Richness Index: Simpson’s Index

Simpson gave the probability of any two individuals drawn at random from an infinitely large community

belonging to different species. The Simpson index is therefore expressed as 1-D or

1/D.

Simpson’s index is heavily weighed towards the most abundant species in the sample while being

less sensitive to species richness. It has been shown that once the number of species exceeds 10 the

underlying species abundance distribution is important in determining whether the index has a

high or low value. The D value which is standing for the dominance

index is used in pollution monitoring studies. As D increases, diversity decreases.

(diunduh dari: http://webcache.googleusercontent.com/search?q=cache:CN372gBQkCwJ:ocw.unu.edu/)

Page 5: indeks kelestarian lingkungan-biodiversitas

Species Diversity Indices: Shannon-Wiener Index

Shannon and Wiener independently derived the function which has become known as Shannon index of diversity. This indeed assumes that

individuals are randomly sampled from an independently large population.

The index also assumes that all the species are represented in the sample. Log2 is often used for calculating this diversity index but any log base

may be used. It is of course essential to be consistent in the choice of log base when comparing diversity between samples or estimating evenness.

The value of Shannon diversity is usually found to fall between 1.5 and 3.5 and only rarely it surpasses 4.5. It has been reported that under log

normal distribution, 105 specieswillbe needed to produce a value of Shannon diversity more than 5. Expected Shannon diversity is also used (Exp H’) as an alternative to H’. Exp H’ is equivalent to the number of

equally common species required to produce the value of H’ given by the sample.

The observed diversity (H’) is always compared with maximum Shannon diversity (Hmax) which could possibly occur in a situation where all

species were equally Abundant.Diunduh dari: http://staff.blog.ui.ac.id/andreas.pramudianto/2009/02/27/keanekaragaman-hayati-dalam-hukum-

lingkungan-internasional/ ……………… 4/12/2012

Page 6: indeks kelestarian lingkungan-biodiversitas

Keanekaragaman ekosistem (Ecosystem Diversity)

Merupakan suatu kesatuan lingkungan

yang melibatkan unsur-unsur biotik, faktor fisik

(iklim, tanah dan air) dan faktor kimia

(keasaman) yang saling berinteraksi.

Beberapa tipe (kelompok) keanekaragaman ekosistem antara lain :1. Ekosistem bahari:

Terdiri dari ekosistem laut dan ekosistem pantai

2. Ekosistem darat”: Terdiri dari vegetasi dataran rendah, vegetasi pegunungan dan vegetasi munson.

Diunduh dari: http://staff.blog.ui.ac.id/andreas.pramudianto/2009/02/27/keanekaragaman-hayati-dalam-hukum-lingkungan-internasional/ ……………… 4/12/2012

An ecosystem is a community plus the physical environment that it occupies at a given time. An

ecosystem can exist at any scale, for example, from the size of a small tide pool up to the size of the entire biosphere. However, lakes, marshes, and forest stands represent more typical examples of

the areas that are compared in discussions of ecosystem diversity.

The diversity of an ecosystem is dependent on the physical characteristics of the environment, the diversity of species present, and the interactions

that the species have with each other and with the environment. Therefore, the functional complexity of an ecosystem can be expected to increase with the

number and taxonomic diversity of the species present, and the vertical and horizontal complexity

of the physical environment.

(Sumber: http://cnx.org/content/m12156/latest/#roth)

Page 7: indeks kelestarian lingkungan-biodiversitas

KEANEKARAGAMAN GENETIKA (GENETIC DIVERSITY)

Setiap kerangka dasar komponen

genetika tersusun ribuan faktor

kebakaan keturunan.

Satu faktor pengatur kebakaan disebut gen, suatu lingkungan yang

memuat tumbuhan yang liar/sudah didomestikasi.

Diunduh dari: http://staff.blog.ui.ac.id/andreas.pramudianto/2009/02/27/keanekaragaman-hayati-dalam-hukum-lingkungan-internasional/ ……………… 4/12/2012

Keanekaragaman genetik (genetic diversity) adalah suatu tingkatan biodiversitas yang merujuk

pada jumlah total variasi genetik dalam keseluruhan spesies yang mendiami sebagian atau seluruh

permukaan bumi yang dapat didiami. Ia berbeda dari variabilitas genetik, yang menjelaskan kecenderungan kemampuan suatu karakter/sifat untuk bervariasi yang

dikendalikan secara genetik.

Pengukuran keanekaragaman genetikKeanekaragaman genetika suatu populasi dapat diperkirakan dengan menggunakan beberapa

pengukuran sederhana.

1. Keanekaragaman gen, adalah proporsi lokus polimorfik diseluruh genom.

2. Heterozigositas, adalah jumlah rata-rata individu dengan lokus polimorfik.

3. Alel per lokus, juga digunakan untuk mendemonstrasikan variabilitas.

(sumber: http://id.wikipedia.org/wiki/Keanekaragaman_genetik)

Page 8: indeks kelestarian lingkungan-biodiversitas

BiodiversityVariety of living things, number of

kinds

Ecological diversitydifferent habitats, niches, species

interactionsSpecies diversity

different kinds of organisms, relationships among species

Genetic diversitydifferent genes & combinations of

genes within populations

Diunduh dari: facstaff.gpc.edu/~apennima/ENVS/Biodiversity.ppt

Page 9: indeks kelestarian lingkungan-biodiversitas

Manfaat Biodiversitas

• Fungsi ekosistem• Jasa-jasa Ekosistem

• Membersihkan air,• Cleaning air,• Habitat & breeding areas for wildlife, …

• Manfaat estetika dan budaya

Diunduh dari: facstaff.gpc.edu/~apennima/ENVS/Biodiversity.ppt

Page 10: indeks kelestarian lingkungan-biodiversitas

• Vital economic natural resources– Renewable

• Forests (plants, wildlife) • Soils • Fresh water (lakes, rivers)• Wildlife and fisheries• Rangeland

– Nonrenewable• Minerals • Fossil Fuels

Diunduh dari: facstaff.gpc.edu/~apennima/ENVS/Biodiversity.ppt

Sumberdaya Alam

Page 11: indeks kelestarian lingkungan-biodiversitas

Sumberdaya Alam• Management of natural

resources– Assure availability of

resources for the future– Three “philosophies”

• Maximum sustained yield• Ecosystem-based

management • Adaptive management

Diunduh dari: facstaff.gpc.edu/~apennima/ENVS/Biodiversity.ppt

Page 12: indeks kelestarian lingkungan-biodiversitas

• New food sources– Grains, fruits, vegetables, meat, fish

Diunduh dari: facstaff.gpc.edu/~apennima/ENVS/Biodiversity.ppt

Manfaat Biodiversitas

Page 13: indeks kelestarian lingkungan-biodiversitas

Pengobatan:• Plants• Jellyfish & sea

anemones• Nudibranchs

• Marine slugs

Diunduh dari: facstaff.gpc.edu/~apennima/ENVS/Biodiversity.ppt

Manfaat Biodiversitas

Page 14: indeks kelestarian lingkungan-biodiversitas

Berapa besar biodiversitas1.7—2.0 million speciesEstimates to 100 million

Diunduh dari: facstaff.gpc.edu/~apennima/ENVS/Biodiversity.ppt

Biodiversitas

Page 15: indeks kelestarian lingkungan-biodiversitas

Dimana biodiversitas?– Everywhere

• Every continent and habitat has unique life forms

– Concentrated in the tropics

• Panama: > 500 species of breeding birds

• Arctic: 50-100 species– Dense concentrations

Diunduh dari: facstaff.gpc.edu/~apennima/ENVS/Biodiversity.ppt

Biodiversitas

Page 16: indeks kelestarian lingkungan-biodiversitas

Kepunahan & Reduksi Populasi– Perburuan & Panen

berlebihan• Tiger• Dodo• Whales• Sharks

– Kehilangan Habitat

Diunduh dari: facstaff.gpc.edu/~apennima/ENVS/Biodiversity.ppt

Ancaman Biodiversitas

Page 17: indeks kelestarian lingkungan-biodiversitas

• Extinction and population reductions– Pollution– Climate change– Invasive species

Diunduh dari: facstaff.gpc.edu/~apennima/ENVS/Biodiversity.ppt

Ancaman Biodiversitas

Page 18: indeks kelestarian lingkungan-biodiversitas

• How can we protect biodiversity– Stop overharvesting

• Sustainable yield• Hunting & fishing laws

(every state ?)– in developing nations ?

– Protect habitat • Refuges, parks, preserves

– Endangered Species Act

Diunduh dari: facstaff.gpc.edu/~apennima/ENVS/Biodiversity.ppt

Proteksi Biodiversitas

Page 19: indeks kelestarian lingkungan-biodiversitas

• Refuges, parks, preserves– How big should refuges be?– Where should they be?– McArthur & Wilson “Theory of Island

Biogeography”• colonization rate• extinction rate (local)• predicts number of species

Diunduh dari: facstaff.gpc.edu/~apennima/ENVS/Biodiversity.ppt

Proteksi Biodiversitas

Page 20: indeks kelestarian lingkungan-biodiversitas

• Effect of island size • Effect of island distance

Diunduh dari: facstaff.gpc.edu/~apennima/ENVS/Biodiversity.ppt

Proteksi Biodiversitas

Page 21: indeks kelestarian lingkungan-biodiversitas

McArthur & Wilson: “Teori Biogeografi

Pulau”

– Laju Kolonisasi– Laju Kepunahan (lokal)– predicts number of

species

Diunduh dari: facstaff.gpc.edu/~apennima/ENVS/Biodiversity.ppt

Proteksi Biodiversitas

Page 22: indeks kelestarian lingkungan-biodiversitas

Biogeografi Pulau:Ukuran Pulau memprediksi jumlah spesies

Diunduh dari: facstaff.gpc.edu/~apennima/ENVS/Biodiversity.ppt

Proteksi Biodiversitas

Page 23: indeks kelestarian lingkungan-biodiversitas

Biogeografi Pulau– Everyplace is an island– Fragmentasi Habitat

• Smaller fragments hold fewer species

Diunduh dari: facstaff.gpc.edu/~apennima/ENVS/Biodiversity.ppt

Proteksi Biodiversitas

Page 24: indeks kelestarian lingkungan-biodiversitas

BIODIVERSITAS EKOSISTEM

Diunduh dari: http://www.environmentabout.com/820/ecosystem-biodiversity-and-types-of-biodiversity ……………… 4/12/2012

ECOSYSTEM BIODIVERSITY implies the existence of different species within an ecosystem. It

can also be defined as the degree of variations among the life forms in an ecosystem or planet.

ECOSYSTEM DIVERSITY is the variety of different natural systems or ecosystems in a

particular area.

Examples of ecosystem diversity are deserts, forests, wetlands, rain-forests, marine ecosystems etc.

Page 25: indeks kelestarian lingkungan-biodiversitas

What is biodiversity?

• OED: “biodiversity Ecol., diversity of plant and animal life, as represented by the number of extant species”

• Ricklefs & Miller: Biodiversity includes a number of different levels of variation in the natural world: genetic, species, ecosystem

• Begon et al. “The term may be used to describe the number of species, the amount of genetic variation or the number of community types present in an area”.

Tetapi .......… sebagian terbesar penelitian fokus pada diversitas spesies

Diunduh dari: www.geos.ed.ac.uk/homes/mwilliam/Biodiversity1.ppt

Page 26: indeks kelestarian lingkungan-biodiversitas

Apakah Biodiversitas mempengaruhi fungsi-fungsi

ekosistem ?

Diunduh dari: www.geos.ed.ac.uk/homes/mwilliam/Biodiversity1.ppt

Page 27: indeks kelestarian lingkungan-biodiversitas

Konsekwensi fungsional dari Biodiversitas:

Numbers and Kinds of Species

Organismal

traits

Ecosystem Processes

Diunduh dari: www.geos.ed.ac.uk/homes/mwilliam/Biodiversity1.ppt

Page 28: indeks kelestarian lingkungan-biodiversitas

Traits & Fungsi Ekosistem

1. Traits may mediate energy and material flow directly

2. Traits may alter abiotic conditions (limiting resources, disturbance, microclimate)

Diunduh dari: www.geos.ed.ac.uk/homes/mwilliam/Biodiversity1.ppt

Page 29: indeks kelestarian lingkungan-biodiversitas

Ekspresi Trait ditentukan oleh:

1. Species richness2. Species evenness3. Species composition4. Species interaction5. Temporal and spatial variation

Diunduh dari: www.geos.ed.ac.uk/homes/mwilliam/Biodiversity1.ppt

Page 30: indeks kelestarian lingkungan-biodiversitas

0.0 0.4 0.8 1.2 1.6 2.0 2.40.0

0.4

0.8

1.2

1.6

2.0

2.4

2.8

3.2r2=0.93

Tot

al fo

liar

N (

g m-2

gro

und

area

)

LAI

Diunduh dari: www.geos.ed.ac.uk/homes/mwilliam/Biodiversity1.ppt

Page 31: indeks kelestarian lingkungan-biodiversitas

The Ecosystem/Ecology Divide

1. Key ecosystem types in Arctic tundra show clear differences in key species and functional types

2. But at the ecosystem level there are clear patterns in the landscape irrespective of species composition

3. Bulk measures like LAI and foliar N are good descriptors of process rates

4. Dengan demikian, Apakah species sangat penting?

Diunduh dari: www.geos.ed.ac.uk/homes/mwilliam/Biodiversity1.ppt

Page 32: indeks kelestarian lingkungan-biodiversitas

Kekayaan Species & Fungsi Ekosistem : Theory

1. If niches are complementary, adding species could increase process rates linearly

2. As niches overlap the response should saturate

Diunduh dari: www.geos.ed.ac.uk/homes/mwilliam/Biodiversity1.ppt

Page 33: indeks kelestarian lingkungan-biodiversitas

Niche differentiation and productivity.

a. A simple model — the 'snowballs on the barn' model — of niche

differentiation and coexistence. The range of conditions in which each species can exist is shown with a

circle, the position of which is defined by its centre. By randomly

choosing locations for various numbers of circles (species), it is possible to calculate the effect of diversity on the 'coverage' of the

heterogeneous habitat. The amount of such coverage is proportional to

community biomass.b. Results of simulations

(triangles) and of an analytical solution (solid curve) to the effects

of diversity on community productivity for the snowballs on

the barn model

From: Tilman (2000), Nature.Diunduh dari: www.geos.ed.ac.uk/homes/mwilliam/Biodiversity1.ppt

Page 34: indeks kelestarian lingkungan-biodiversitas

(A) Dependence of 1996 aboveground plant biomass (that is, productivity) (mean and SE) on the number of plant species seeded into the 289 plots.

(B) Dependence of 1996 above-ground plant biomass on the number of functional groups seeded into each

plot. Curves shown are simple asymptotic functions fitted to treatment means. More complex curves did not provide significantly better fits

From: Tilman et al. (1997) Science

Diunduh dari: www.geos.ed.ac.uk/homes/mwilliam/Biodiversity1.ppt

Page 35: indeks kelestarian lingkungan-biodiversitas

Hypothesized mechanisms involved in biodiversity

experiments using synthetic communities. Sampling effects are involved in

community assembly, such that communities that have more species have a greater probability of containing a

higher phenotypic trait diversity. Phenotypic

diversity then maps onto ecosystem processes through

two main mechanisms: dominance of species with

particular traits, and complementarity among

species with different traits. Intermediate scenarios

involve complementarity among particular species or

functional groups or, equivalently, dominance of

particular subsets of complementary species.

From: Loreau et al (2001) Science

Diunduh dari: www.geos.ed.ac.uk/homes/mwilliam/Biodiversity1.ppt

Page 36: indeks kelestarian lingkungan-biodiversitas

Kemerataan Species

1. Human effects on species more commonly involve alteration of relative abundance than extinction

2. Little research on importance of evenness of function so far

3. Future richness experiments should include evenness effects

Diunduh dari: www.geos.ed.ac.uk/homes/mwilliam/Biodiversity1.ppt

Page 37: indeks kelestarian lingkungan-biodiversitas

Komposisi Species

• Species mediate pathways of energy and material flow

• Examples: Introduced species can alter patterns of ecosystem processes

Diunduh dari: www.geos.ed.ac.uk/homes/mwilliam/Biodiversity1.ppt

Page 38: indeks kelestarian lingkungan-biodiversitas

Species introduksi dapat mengubah pola proses-proses ekosistem

1. Introduction of N-fixing tree Myrica faya to N-limited Hawaiian forests led to 5-fold increase in N inputs

2. Dampak signifikan terhadap struktur dan fungsi hutan

Vitousek et al. (1987) ScienceDiunduh dari: www.geos.ed.ac.uk/homes/mwilliam/Biodiversity1.ppt

Page 39: indeks kelestarian lingkungan-biodiversitas

• Introduction of deep-rooted salt cedar (Tamarix sp.) to Mojave and Sonaran deserts resulted in:– Increased water accessed by vegetation– Increased surface litter and salts– Inhibited many native species, reduced

biodiversity

Berry (1970)Diunduh dari: www.geos.ed.ac.uk/homes/mwilliam/Biodiversity1.ppt

Species introduksi dapat mengubah pola proses-proses ekosistem

Page 40: indeks kelestarian lingkungan-biodiversitas

• Introduction of Agropyron cristatum, tussock grass, to US Great Plains– Reduced allocation to roots compared to

native grasses– Soil N levels reduced, and 25% less total soil C

compared to native prairie soil

Christian & Wilson (1999)Diunduh dari: www.geos.ed.ac.uk/homes/mwilliam/Biodiversity1.ppt

Species introduksi dapat mengubah pola proses-proses ekosistem

Page 41: indeks kelestarian lingkungan-biodiversitas

• Introduction of Bromus tectorum, cheatgrass, to western US– Fire frequency increased by a factor of 10 in the

>40 million ha it now dominates

Whisenant (1990)Diunduh dari: www.geos.ed.ac.uk/homes/mwilliam/Biodiversity1.ppt

Species introduksi dapat mengubah pola proses-proses ekosistem

Page 42: indeks kelestarian lingkungan-biodiversitas

Interaksi Species• Mutualism• Trophic interaction

– Predation– Parasitism– Herbivory

• Competition

Diunduh dari: www.geos.ed.ac.uk/homes/mwilliam/Biodiversity1.ppt

Page 43: indeks kelestarian lingkungan-biodiversitas

Mutualism

1. N-fixation in plant-microbe symbiosis2. Plant-mycorrhizal associations

1. Both increase production and accelerate succession

3. Decomposition is driven by highly integrated consortia of microbes

Diunduh dari: www.geos.ed.ac.uk/homes/mwilliam/Biodiversity1.ppt

Page 44: indeks kelestarian lingkungan-biodiversitas

STUDI KASUS

Mycorrhizal fungal diversity determines plant

biodiversity, ecosystem variability and productivity

Diunduh dari: www.geos.ed.ac.uk/homes/mwilliam/Biodiversity1.ppt

Page 45: indeks kelestarian lingkungan-biodiversitas

van der Heijden 1998Experiment 2 Diunduh dari: www.geos.ed.ac.uk/homes/mwilliam/Biodiversity1.ppt

Page 46: indeks kelestarian lingkungan-biodiversitas

Komunitas mikroba: Semakin beragam semakin efisien

Soil microbial functional diversity (Shannon index H')

and metabolic quotient (qCO2 = soil basal

respiration/soil microbial biomass) correlate inversely.

A higher diversity in the organic plots is related to a

lower qCO2, indicating greater energy efficiency of the more diverse microbial

community. The Shannon index is significantly different

between both conventional systems (CONFYM,

CONMIN) and the BIODYN system, the qCO2, between

CONMIN and BIODYN (P < 0.05).

Diunduh dari: www.geos.ed.ac.uk/homes/mwilliam/Biodiversity1.ppt Maeder 2002

Page 47: indeks kelestarian lingkungan-biodiversitas

Interaksi Trophik

• Modify fluxes of energy and materials• Influence abundance of species that control

these fluxes– e.g., predator removal can lead to a cascade of

ecological effects

Diunduh dari: www.geos.ed.ac.uk/homes/mwilliam/Biodiversity1.ppt

Page 48: indeks kelestarian lingkungan-biodiversitas

(A) Changes in sea otter abundance over time at several islands in the Aleutian archipelago and concurrent changes in (B) sea urchin biomass, (C) grazing intensity, and (D) kelp density measured from kelp forests at Adak Island. Error bars in (B) and (C) indicate 1 SE. The proposed mechanisms of change are portrayed in the marginal cartoons--the one on the left shows how the kelp forest ecosystem was organized before the sea otter's decline and the one on the right shows how this ecosystem changed with the addition of killer whales as an apex predator. Heavy arrows represent strong trophic interactions; light arrows represent weak interactions.

Estes et al. (1998) ScienceDiunduh dari: www.geos.ed.ac.uk/homes/mwilliam/Biodiversity1.ppt

Page 49: indeks kelestarian lingkungan-biodiversitas

Interaksi Trophik

1. All types of organisms must be considered in understanding biodiversity effects

2. Interactions among species must be considered

3. Changes in interactions can alter traits expressed by species, so presence/absence of species is insufficient to predict impact

Diunduh dari: www.geos.ed.ac.uk/homes/mwilliam/Biodiversity1.ppt

Page 50: indeks kelestarian lingkungan-biodiversitas

Biodiversity & Jasa Ecosystem

1. Ecosystem services are defined as the processes and conditions of natural ecosystems that support human activity and sustain human life

2. E.g., maintenance of soil fertility, climate regulation, natural pest control

3. E.g., flows of ecosystem goods such as food, timber and freshwater

Diunduh dari: www.geos.ed.ac.uk/homes/mwilliam/Biodiversity1.ppt

Page 51: indeks kelestarian lingkungan-biodiversitas

Valuasi Biodiversitas

1. Techniques used include direct valuation based on market prices, and estimates of what individuals are willing to pay to protect endangered wildlife

2. Valuation of marginal losses that accompany specific biodiversity changes are most relevant to policy decisions

3. Predictions are highly uncertain

Diunduh dari: www.geos.ed.ac.uk/homes/mwilliam/Biodiversity1.ppt

Page 52: indeks kelestarian lingkungan-biodiversitas

Apa pengaruh diversitas tumbuhan thd proses-proses ekosistem?

Plant community composition = IDENTITY

Diversitas Tumbuhan: 1. Genetic2. Population3. Species4. Functional group of species5. Habitat

Plant diversity = RICHNESSDiunduh dari: www.biology.ufl.edu/.../Diversity%20and%20ecosystems,%2011-3-10.p...

Page 53: indeks kelestarian lingkungan-biodiversitas

Climate

Relief(Topography)

Parent material

Time

Organisms

Ecosystemstructure and

function

State Factors

Ecosystem = (Cl, O, R, P, T)

Diunduh dari: www.biology.ufl.edu/.../Diversity%20and%20ecosystems,%2011-3-10.p...

Page 54: indeks kelestarian lingkungan-biodiversitas

Mengapa kita peduli ?• Understand a state factor control over

ecosystem variation: • in space• in time

Memahami dampak aktivitas manusia:• Habitat destruction and

extinction• Simplification through

management• Biological invasions

Diunduh dari: www.biology.ufl.edu/.../Diversity%20and%20ecosystems,%2011-3-10.p...

Page 55: indeks kelestarian lingkungan-biodiversitas

Variation in key plant traits can cause species to differ in their effects on ecosystem processes

• Trophic structure

• Biogeochemical cycles

• Disturbance regime

• Biophysical processes

Diunduh dari: www.biology.ufl.edu/.../Diversity%20and%20ecosystems,%2011-3-10.p...

Page 56: indeks kelestarian lingkungan-biodiversitas

Functional types are a useful simplification

• Life forms often make useful groups

• Groups of species that have a similar influence on an ecosystem process

• Relevant grouping depends on process of interest

• Makes it possible to represent aspects of diversity in models

Diunduh dari: www.biology.ufl.edu/.../Diversity%20and%20ecosystems,%2011-3-10.p...

Page 57: indeks kelestarian lingkungan-biodiversitas

Identitas Species : How does who’s there affect ecosystem processes?

Siklus N ….…

• N fixation• Space and time of N uptake• Species of N used• Turnover time and allocation• Litter quality

Diunduh dari: www.biology.ufl.edu/.../Diversity%20and%20ecosystems,%2011-3-10.p...

Page 58: indeks kelestarian lingkungan-biodiversitas

Diunduh dari: www.biology.ufl.edu/.../Diversity%20and%20ecosystems,%2011-3-10.p...

Page 59: indeks kelestarian lingkungan-biodiversitas

Growth

Quality litter

Nutrient mineralization

+

Growth

Quality litter

Nutrient mineralization

+

Plant litter traits can reinforce site nutrient

availability

Diunduh dari: www.biology.ufl.edu/.../Diversity%20and%20ecosystems,%2011-3-10.p...

Page 60: indeks kelestarian lingkungan-biodiversitas

Wedin and Tilman 1990Diunduh dari: www.biology.ufl.edu/.../Diversity%20and%20ecosystems,%2011-3-10.p...

Page 61: indeks kelestarian lingkungan-biodiversitas

Kekayaan Spesies = Species richnessHow does species number affect ecosystem

processes?

Is there an effect of diversity per se that is independent of

identity?

Diunduh dari: www.biology.ufl.edu/.../Diversity%20and%20ecosystems,%2011-3-10.p...

Page 62: indeks kelestarian lingkungan-biodiversitas

Tilman et al. 1997

Production: +, saturating

Changes in diversity have their largest

effects at low diversity

Diunduh dari: www.biology.ufl.edu/.../Diversity%20and%20ecosystems,%2011-3-10.p...

Page 63: indeks kelestarian lingkungan-biodiversitas

Mekanisme-mekanisme

1. Complementary resource use: ­ Species = more complete resource useNiche differentiation, niche partitioning

2. Sampling effect: Species = probability of getting spp. with

strong effects on processes

How can we differentiate between these mechanisms?

Diunduh dari: www.biology.ufl.edu/.../Diversity%20and%20ecosystems,%2011-3-10.p...

Page 64: indeks kelestarian lingkungan-biodiversitas

Experiment: Menanam spesies secara Monokultur dan Campuran

1. Complementary resource use: Production in mixture >> production in

monocultureSynergy: “Overyielding”

2. Sampling effect: Production in mixture = production in

monocultureFew well-controlled empirical tests have

manipulated richness independent of composition

Diunduh dari: www.biology.ufl.edu/.../Diversity%20and%20ecosystems,%2011-3-10.p...

Page 65: indeks kelestarian lingkungan-biodiversitas

Tilman et al. 1997

1. Functional diversity explained the greatest amount of variation in plant biomass

2. When functional diversity was included, species diversity had no effect

Doesn’t matter how many species, only how many

functional groups

Diunduh dari: www.biology.ufl.edu/.../Diversity%20and%20ecosystems,%2011-3-10.p...

Page 66: indeks kelestarian lingkungan-biodiversitas

Tilman et al. 1997

Effects of functional diversity were caused by

presence or absence of key functional groups

Productivity = C4 grasses, legumes

Plant %N = legumesSoil NO3

- = C4 grasses

Overyielding was also observed:

C4 grasses yielded more in high then in

low diversity treatments

Diunduh dari: www.biology.ufl.edu/.../Diversity%20and%20ecosystems,%2011-3-10.p...

Page 67: indeks kelestarian lingkungan-biodiversitas

References• Chapin et al (2000) Consequences of changing biodiversity.

Nature 405: 234-242• Tilman, Wedin and Knops (1996) Productivity and sustainability

influenced by biodiversity in grassland ecosystems. Nature 379: 718-720

• Naeem & Li (1997) Biodiversity enhances ecosystem reliability. Nature 390:507-509

• Van der Heijden et al. (1998) Nature 396: 69-72• Constanza et al (1997) The value of the world's

ecosystem services and natural capital. Nature 387: 253-260

• Maeder et al (2002) Soil fertility and biodiversity in organic farming. Science 296: 1694-7

Diunduh dari: www.geos.ed.ac.uk/homes/mwilliam/Biodiversity1.ppt