In search for the ultimate model parameters of reactive ...

22
www.DRAFT.ugent.be In search for the ultimate model parameters of reactive magnetron sputtering K. Strijckmans, W.P. Leroy & D. Depla Research Group DRAFT, Ghent University

Transcript of In search for the ultimate model parameters of reactive ...

Page 1: In search for the ultimate model parameters of reactive ...

www.DRAFT.ugent.be

In search for the ultimate model parameters of reactive magnetron

sputtering

K. Strijckmans, W.P. Leroy & D. DeplaResearch Group DRAFT, Ghent University

Page 2: In search for the ultimate model parameters of reactive ...

ww

w.d

raft

.ug

en

t.b

e

2

Outline

1. Introduction

� Reactive Magnetron Sputtering

� Modeling the technique

2. RSD2009 model

� Input

� Output

3. Hysteresis experiments

� Experimental setup

� Aluminium & Yttrium

4. Finding the unknows

� Fit procedure

� Scan algorithm

5. Results

� Setting

� Correlations

� Understanding: a simplification

6. Summary

Page 3: In search for the ultimate model parameters of reactive ...

ww

w.d

raft

.ug

en

t.b

e

3

Introduction

RSD model

Hysteresisexperiments

Finding the unknows

Results

SummaryWidely applied technique BUT flawed by hysteresis effect:

• discharge voltage

• deposition rate

• partial pressure of reactive gas (e.g. O2)

Reactive Magnetron Sputter Deposition (RSD)

Magnetron: enhancing sputtering by magnetic confining electrons around the targetReactive: adding reactive gas(es) to form a compound

Page 4: In search for the ultimate model parameters of reactive ...

ww

w.d

raft

.ug

en

t.b

e

4

Modeling: the approach which meets your needs

e.g. magnetron discharge

Modeling the technique

Technique: dividable in different processes/aspects

• magnetic field

• magnetron discharge (plasma)

• particle-target interaction

• transport in gas phase

• film growth

Our model RSD2009

• an analytical surface

model, originated out of

the Berg model

• describes (steady-state)

hysteresis

• ‘Engine’

� balance equations

� 2nd order reactions

Berg, Thin Solid Films 476 (2005) 215

Depla, J.Phys. D: Appl. Phys.40 (2007) 1957

download RSD2009 free www.draft.ugent.be

Introduction

RSD model

Hysteresisexperiments

Finding the unknows

Results

Summary

Page 5: In search for the ultimate model parameters of reactive ...

ww

w.d

raft

.ug

en

t.b

e

5

Input of the RSD2009 model

• RSD model describes three parts:

� vacuum chamber by the gas flow balance� target composition� substrate composition

• RSD model parameters

Introduction

RSD model

Hysteresisexperiments

Finding the unknows

Results

Summary

Page 6: In search for the ultimate model parameters of reactive ...

ww

w.d

raft

.ug

en

t.b

e

6

Input: Experimental determined

• Sputter yield of the metal Ym (EAr(V))

weighting method

• Sticking coefficient αs of O2 on the

substrate

αs =amount of O in deposited layer

amount of arriving O

Saraiva, J.Appl.Phys.107 (2010) 034902

Leroy, Thin Solid Films 518 (2009) 1527

Introduction

RSD model

Hysteresisexperiments

Finding the unknows

Results

Summary

Page 7: In search for the ultimate model parameters of reactive ...

ww

w.d

raft

.ug

en

t.b

e

7

Input: MC simulations

SRIM models

particle-target interaction

SIMTRA models

metal transport

Ziegler, Nucl. Instr. and Meth. in Phys.

Res. B 219–220 (2004) 1027

Van Aeken, J. Phys D: Appl. Phys.41

(2008) 205307Skew Gaussian fit of implantation profile, counting in:

• incident energy• target composition

−+

−−

∆=

p

p

p

p

p R

Rxerf

R

Rx

Rxp

21

2exp

2

1)( α

π

Multi-cell approach of substrate

download SIMTRA free www.draft.ugent.be

download SRIM free www.srim.org

Introduction

RSD model

Hysteresisexperiments

Finding the unknows

Results

Summary

Page 8: In search for the ultimate model parameters of reactive ...

ww

w.d

raft

.ug

en

t.b

e

8

Problem: left with 3 unknown parameters

Reason:

• experimental hard to retrieve (k,αt) or big uncertainty (Yc)

• simulated (SRIM) value questionable (Yc)

� although some experimental attempts (αt)

Goal: examine freedom and material dependency of these parameters

Solution: fitting RSD2009 output to experiments

Assumption: no significant dependency on working conditions

Input: Unknowns

Kuschel, J. Appl. Phys. 107 (2010) 103302

Introduction

RSD model

Hysteresisexperiments

Finding the unknows

Results

Summary

Page 9: In search for the ultimate model parameters of reactive ...

ww

w.d

raft

.ug

en

t.b

e

9

Ouput of the RSD2009 model

� Substrate� Target � Gas flow

Introduction

RSD model

Hysteresisexperiments

Finding the unknows

Results

Summary

RSD model gives:

� surface composition of target and substrate� reactive flow consumptions

not easily measurable

Page 10: In search for the ultimate model parameters of reactive ...

ww

w.d

raft

.ug

en

t.b

e

10

Ouput of the RSD2009 model

� Substrate

� Target

� Gas flow

� Pressure

Introduction

RSD model

Hysteresisexperiments

Finding the unknows

Results

Summary

RSD model gives:

� surface composition of target and substrate� reactive flow consumptions

� reactive gas pressure

easily measurable

Page 11: In search for the ultimate model parameters of reactive ...

ww

w.d

raft

.ug

en

t.b

e

11

Experimental setup

Sputter conditions:

• Target Al or Y (D = 5.08 cm)

• Process gas Ar

• Reactive gas O2

• S = 55 L/s or 112 L/s

• Pbase = ~10-4 Pa

• PAr = 0.45 Pa or 0.37 Pa

• I = 0.4 A, 0.5 A or 0.6 A

Hysteresis experiment = stepwise in/decreasing the O2 flow while collecting:

• discharge voltage V and current I

• total pressure Ptot = PAr + PO2

steady state values !

Introduction

RSD model

Hysteresisexperiments

Finding the unknows

Results

Summary

Page 12: In search for the ultimate model parameters of reactive ...

ww

w.d

raft

.ug

en

t.b

e

12

Hysteresis measurements: Al and Y

Aluminium Yttrium

• choice working conditions well-defined critical points

• 3 measurements at fixed currents I=0.4 A, 0.5 A and 0.6 A

• critical points with resolution of 0.1 sccm

• pumping speed S as slope of measurement

S S

Introduction

RSD model

Hysteresisexperiments

Finding the unknows

Results

Summary

Page 13: In search for the ultimate model parameters of reactive ...

ww

w.d

raft

.ug

en

t.b

e

13

Fitting procedure: how check a set of parameters?

1

2

3 4 5 6

Fit :

• criteria = the 6 critical O2 flow values

• goodness of the fit = worst match out of 6

• fits are ‘good’ if critical points fall within acceptance tolerance

Simulation :

• includes

� measured V and I variation Ym and Iion

� changing target oxidation oxygen implantation profile

Iion (by SEEY)

• limited to experimental measured part

• cuts off at turning point = critical point

(= experimental resolution)

Introduction

RSD model

Hysteresisexperiments

Finding the unknows

Results

Summary

Page 14: In search for the ultimate model parameters of reactive ...

ww

w.d

raft

.ug

en

t.b

e

14

Scan algorithm: how it works?

Goal: finding all (xi,yi) combinations that pass the fit criteria

Ingredients :

• starting point (Start) found by slightly modified version

• step size (∆x, ∆y)

• parameter boundaries

• fit procedure + acceptance tolerance

• three lists: rejected, accepted and unfinished

Limitation : only for a connected region

Serialimplementation

illustrated for a 2-D

parameter space

(X,Y)

Introduction

RSD model

Hysteresisexperiments

Finding the unknows

Results

Summary

Page 15: In search for the ultimate model parameters of reactive ...

ww

w.d

raft

.ug

en

t.b

e

15

Results: setting

5 fit parameters :

Scan algorithm :

• 5-D parameter space (Ym, αs, Yc, αt, k)

• parallel implementation one master + many calculation slaves

• acceptance tolerance = 1.5 × experimental resolution (0.1 sccm)

•Parameter Bounds Al Bounds Y Step size

Ym ±10% 5×10-3

αs 0.075 – 0.139 0.187 – 0.273 5×10-3

Yc 0 – 0.1 5×10-4

αt 0 - 1 5×10-3

k 0 - 2×10-22 5×10-25

Introduction

RSD model

Hysteresisexperiments

Finding the unknows

Results

Summary

Page 16: In search for the ultimate model parameters of reactive ...

ww

w.d

raft

.ug

en

t.b

e

16

Results: correlations

Reaction rate coefficient k – sputter yield oxide Yc

2-D projections (Yc, k) of 5-D

parameter sets (Ym, αs, Yc, αt, k)

acceptance tolerance =

optimal choice of the remaining

parameters (Ym, αs, αt)

• limited (Yc, k) combinations fit

• sputter yield of Y2O3 lower then of Al2O3

• strong relation between Yc and k

Introduction

RSD model

Hysteresisexperiments

Finding the unknows

Results

Summary

Page 17: In search for the ultimate model parameters of reactive ...

ww

w.d

raft

.ug

en

t.b

e

17

• more freedom in αt

• sticking coefficient αt of Y2O3 higherthen of Al2O3

• no clear relation between k and αt

• lower k higher αt

Reaction rate coefficient k – sticking coefficient αt

Sputter yield oxide Yc - sticking coefficient αt

same structure of acceptance region

because of

k-Yc relation =

higher k higher Yc

What is the nature of this?

Introduction

RSD model

Hysteresisexperiments

Finding the unknows

Results

Summary

Page 18: In search for the ultimate model parameters of reactive ...

ww

w.d

raft

.ug

en

t.b

e

18

Understanding: a simplification

( ) )(2),(),(),(

),(),(),(

xpIfItxntxkznt

txn

txntxknt

txn

cMOO

MOM

βθ++−=∂

−=∂

RSD2009 – 2nd order reaction

simplification

implantation profile(skewed Gaussian)

Oxygen implantation profile:

• RSD2009 skewed Gaussian

• simplification local uniform

decouple implantation from reaction

Solution:

• RSD2009 numeric

• simplification analytical

( )

S

scsrb

ste

rb

rbs

rbs

rbsrb

Y

Y

Cknf

zYf

zYf

Y

D

IIfF

θθθ

θ

θ

θ

θθ

=

==

−=

)(

)1(2

)(2ln

)(2

)(),,( 2

0

2

ste

s CIfF =′ ),,( θ

Depla, Springer Series in Material Science 109 (2008) p.193

Introduction

RSD model

Hysteresisexperiments

Finding the unknows

Results

Summary

Page 19: In search for the ultimate model parameters of reactive ...

ww

w.d

raft

.ug

en

t.b

e

19

Results: comparison RSD2009 and simplification

2

0),,( knIfF s =′ θAluminium Yttrium

23104 −×=k125.0

048.0

1003.6 22

0

=

=

×=

t

cY

n

α 525.0

019.0

1067.3 22

0

=

=

×=

t

cY

n

α

Introduction

RSD model

Hysteresisexperiments

Finding the unknows

Results

Summary

Page 20: In search for the ultimate model parameters of reactive ...

ww

w.d

raft

.ug

en

t.b

e

20

Results: k – Yc relation?

( )2

2

01ln2

1

c

sY

kn

fD

I=−− θ

00 )(2 znYfn ss >>θ

css YY ≈)(θ

Simplification describes well poissoned mode:

),,( IfF sθ′

Conclusion : k-Yc relation is embedded in RSD2009 model

Introduction

RSD model

Hysteresisexperiments

Finding the unknows

Results

Summary

Page 21: In search for the ultimate model parameters of reactive ...

ww

w.d

raft

.ug

en

t.b

e

21

1. The steady-state RSD2009 model describes accurately

the pressure-flow hysteresis of Al and Y in oxygen

2. The parameters k and Yc are closely correlated which

finds its origin in the model itself

3. The remaining fit freedom is marked out

4. The target sticking coefficient of oxygen on Y showed

to be higher then on Al

5. The sputter yield of Y2O3 showed to be lower then of

Al2O3

Summary:Introduction

RSD model

Hysteresisexperiments

Finding the unknows

Results

Summary

Page 22: In search for the ultimate model parameters of reactive ...

ww

w.d

raft

.ug

en

t.b

eAcknowledgements

22

DRAFT – colleagues:

Introduction

RSD model

Hysteresisexperiments

Finding the unknows

Results

Summary