Improving impact performance in D-‐LFT composites via...

1
Improving impact performance in DLFT composites via UDtape based fabrics & tailored laminates A study was conducted on inline compounded directlongfiber thermoplasAc (DLFT) composites to evaluate methods to increase energy absorpAon of glassreinforced polypropylene in an impact scenario through addiAon of unidirecAonalglass (UD) tapebased fabrics and tailored laminates. Results indicate such hybrid structures may open new opportuniAes for thermoplasAc composites produced in the tailored DLFT process for a variety of market segments. The study demonstrated the benefit of a hybrid molding process like tailored DLFT that allows a number of parameters (e.g. cost, weight, moldability, and higher mechanicals where needed) to be balanced and hence it can provide manufacturers with the best cost/performance raAo for a given applicaAon. Improving Impact ProperAes of DLFT Composites Recognizing the benefits of tailored DLFT for any industry desiring to improve the mechanical performance of thermoplas>c composites, 4 companies funded a study to 1) evaluate the effects on impact proper>es of using UDglass tapebased products (which subsequently were fabricated into intermediate fabrics and tailored laminates) in the tailored DLFT process; and 2) check that tailored DLFT is a viable process for demanding produc>onmolding opera>ons of complex parts. Ticona Engineering Polymers supplied PPimpregnated UDglassreinforced tapes that Oxeon AB, with exper>se in producing spread tow reinforcements (based on tapes instead of yarns), used to produce fabric weaves. Fiberforge also used the tapes to produce Tailored Blank tape laminates using its patented process for conver>ng preimpregnated thermoplas>c tapes. In turn, Fraunhofer Ins>tute for Chemical Technology – a fully equipped R&D center with significant exper>se in the field of polymer composites – compounded PPbased DLFT material and used various combina>ons of the DLFT charge, tape fabrics, and tailored laminates in different layup configura>ons and thicknesses to compression mold test plaques and later an actual automo>ve part. Study Overview A 2part study was conducted. First, different combina>ons of pure DLFT, pure tape fabrics, and pure tailored laminates in various thicknesses, plus a number of hybrid combina>ons were laid up in a simple, flat plaque tool (400 x 400 mm) and compression molded. Twenty material and layup combina>ons were successfully produced and the most representa>ve are shown in Table I (pure DLFT, pure tape laminate, pure tape fabric and a number of hybrid configura>ons). One plaque was produced for each combina>on, and then 6 standard test coupons were removed from each plaque. For hybrid configura>ons, 2 plaques were produced to allow researchers to cut sufficient coupons to impact samples on both the DLFT side as well as the UD tape fabric/laminate side. A minimum of 5 samples from each plaque were subjected to EN ISO 66032 (with the remaining sample kept as a control). This process allowed for a rapid evalua>on of a number of different layup and material combina>ons, and permi`ed researchers to quickly determine which samples represented the best performing arrangements. The purpose of the second part of the study was to determine if goodquality tailored DLFT parts could be made quickly enough to be prac>cal in a commercial produc>on environment using the UDglass products. With knowledge gained from the flat plaque tests, researchers developed a new layup pa`ern with all 3 materials and molded this in a larger (1,113 x 775 mm) tool loaned by Minda Schenk Plas>c Solu>ons. This tool was an automo>ve series produc>on mold used to produce engine noise shields that are mounted under the front end of a European passenger car. The shield was a challenging design with segments of tall, thin ribs that would be hard to fill with UDglass products alone. Since this was a commercial tool meant for con>nuous part produc>on, it had no hea>ng/cooling lines so was kept at molding temperatures between rounds of molding the hybrid layups by molding conven>onal DLFT parts. Materials Selec2on Ticona supplied 0.25mm thick PP/glass UD tapes (Celstran CFRTP PPGF70 with 70 wt% glass) in a variety of widths depending on how they would be used. Oxeon converted these into tape fabrics (TeXtreme plain weaves that were 0.50mm thick per ply and were laid up 2 plies thick in either a 0°/90° = (0/90) or a ± 45° configura>on = (± 45). In turn, the double plies were used to build stacked configura>ons in specific thicknesses that were not preconsolidated. Fiberforge also used the tapes to produce tailored laminates (consolidated Tailored Blanks). For Part 1 (the plaque study), the laminates were supplied in single sheets (to be cut to size as needed) and several and configura>ons, e.g.0°/90° = (0/90) with a thickness of 0.5, 1.0, or 2.0 mm; or a quasi isotropic (0°/90°/+45°/45°) s where “s” represents a symmetric layup of 8 plies. For Part 2 (the engineshield study), Fiberforge produced both partshape tailored laminates and large sheets of laminate, which were then cut to size and shape as needed. In both cases, the tape laminates were preconsolidated. The tape fabrics and tailored laminates were used alone or paired with inline compounded DLFT composite produced by Fraunhofer with an ILC unit supplied by Dieffenbacher GmbH using PP resin (PPC71170 RNA from Dow Chemical), an addi>ves package (Priex 20078 coupling agent and AddVance 453 stabilizer from Addcomp Holland BV); and discon>nuous choppedglass fiber (JM 490 2400 tex glass by Johns Manville). The glass loading level of the DLFT formula>on differed between the ini>al plaque study (which featured 30 wt% glass, the mostcommon automo>ve loading level) and the larger automo>ve part (which featured 20 wt% glass to enhance fill in the part’s far more complex geometry). www.JECcomposites.com Michael Ruby* & Daniel Grauer, Ticona Engineering Polymers Benjamin Hangs & Frank Henning, Fraunhofer Ins>tute for Chemical Technology Andreas Martsman, Oxeon AB Simon T. Jespersen, Fiberforge (not shown) * michael.ruby@>cona.com a`empted and 20 were successfully produced. Table I above provides details on 11 of the most interes>ng and representa>ve configura>ons (including pure DLFT, pure tape fabrics, pure tailored laminates, and a variety of hybrid layups in different thicknesses and orienta>ons) from this part of the study. Use of Precolored Material to Evaluate Material Movement in Shield Molding Trials In Part 2 of the study with the engine shield tool, researchers wanted to understand how the materials moved/flowed during molding, so they precolored each type to enhance visibility. Ticona’s UD tapes were supplied in black (for use in the fabric weaves Oxeon would produce), and yellow (for the Tailored Blank laminates Fiberforge would produce). Ticona also supplied a blue color masterbatch for the D LFT material to be compounded by Fraunhofer. Figure 1 below shows how the precolored black tape fabric, yellow tailored laminate, and blue DLFT charge looked prior to molding in Part 2’s engineshield tool. Figure 2 shows the part (front and back/roadfacing side and vehiclefacing side) auer molding. The DLFT charge was used primarily to mold the vehiclefacing (back) side of the part as the most complex ribbing was located there; the tailored laminate and tape fabric were used on the front (roadfacing) side of the part as that loca>on sees the most damaging condi>ons and the UD glass in both fabrics and tailored laminates would have had challenges penetra>ng the tall thin ribs on the reverse side of the part. Prehea2ng / Molding Parameters To ensure good fusion between recently compounded DLFT charge (exi>ng the ILC unit at close to 200C) and previously produced tape fabric and/or tailored laminate, it was necessary to preheat the la`er prior to molding using an infrared (IR) oven at PP’s processing temperature (near 200C). Hea>ng >me for both fabrics and tailored laminates varied depending on thickness of material and with unconsolidated / consolidated forms of the semifinished products. Both the flat plaque tool and the more complex engine shield tool were molded on a 36,000kN compression press. The smaller, flat plaques were molded at 3,200 kN pressure for 45 sec at 75C; the more complex shields were molded at 12,000 kN pressure for 30 sec in a much cooler tool of 4045C. The difference in dwell >me and temperature was a func>on of thickness. The ILC unit, IR oven, and compression press were in close proximity, so tape fabrics and/or tailored laminates could heat while DLFT was compounded and parts were molded. For the shield part, this yielded an effec>ve cycle >me of 70 sec to produce a part, although actual dwell >me in the tool was 30 sec and researchers note that this was under unop>mized condi>ons. Results, ObservaAons & SuggesAons Flat Plaque Tes2ng – Were Impact Results Improved? Previous research suggested that the UDtape products would significantly increase not only s>ffness/strength but also impact proper>es, and impact results confirmed this. Figure 3 below shows results of some representa>ve samples. The pure tape fabrics and pure tape laminates yielded energy at maximum force (blue bars) and total energy (red bars) values that were approximately 9x higher than those measured from the baseline/control pure DLFT material regardless of thickness. This shows the benefit of greater retained fiber length and higher FVFs on improving mechanical proper>es in composites. (It should be noted that while Figure 3 is useful for no>ng qualita>ve trends, it cannot be used to pull quan>ta>ve values from samples measured at different thicknesses, since both Young’s modulus and the second moment of iner>a (and therefore coupon bending during impact) are strongly influenced by nominal wall thickness.) Interes>ng results were also seen on hybrid samples containing tape fabric and/or tailored laminate plus DLFT. As previously noted, hybrid samples were tested by impac>ng the DLFT side as well as the tape fabric and/or tailored laminate side from each hybrid test plaque, representa>ve results of which are shown in Figure 4. As with Figure 3, the red bars represent total energy absorbed and the blue bars represent maximum force. For each set of samples (DLFT side vs. tape fabric and/or tailored laminate side), trends indicate that energy at maximum force is always lower on the DLFT side of the sample than on the tape fabric and/or tailored laminate side, while the reverse is true for total energy absorbed. Researchers theorize that because the DLFT side with shorter, discon>nuous glass at lower FVF loadings is not as s>ff / strong as the side with UDtape fabrics and/or tailored laminates, which also have higher FVFs as well as longer glass, that it breaks earlier and more easily in the impact test (e.g. lower energy at maximum force). The reverse is true for the s>ffer/stronger tape fabric and/or tailored laminate side, which requires more energy to break (higher energy at maximum force). As the DLFT side breaks, it puts the UDglass into tension, so when that impactor breaks through the DLFT side and hits the UDglass side, there is less kine>c energy leu to break the UDglass in the sample (higher total energy absorbed). All impacted samples broke in the test. Engine Shield Produc2on – Was Process Fast Enough for Commercial Produc2on? Since compounding, hea>ng, and molding cells were located in close proximity, mul>ple steps could be completed simultaneously, giving an effec>ve molding cycle for the engine shield of 70 sec, which makes the process compa>ble for mediumto high produc>on volumes. Typical cycle >mes in commercial thermoplas>c compression molding opera>ons range from 30 sec for thinner, smaller parts to 90 sec for larger and thicker parts, so a 70 sec cycle >me is within the target range. However, it should be noted that this was a nonop>mized process and that it was the prehea>ng opera>on that was the limi>ng step in the process sequence, not the actual molding >me of 30 sec or the ILC unit, which is capable of producing DLFT compound at a rate of 8 kg/min. Researchers feel that with further work (e.g. staged oven, automated handling equipment, use of preconsolidated fabrics or laminates, and a tool equipped with clamps/fixtures), that it should be possible to drop the effec>ve cycle >me significantly lower than 70 sec, which would make the tailored D LFT faster and even more costeffec>ve vs. alterna>ve materials/process combina>ons. Figure 1 (le3) shows precolored fabric, laminate, and DLFT charge prior to molding; Figure 2 (right) shows front (top, roadfacing) and back (bo@om, vehiclefacing) sides of the part a3er molding. Figure 3: Energy at maximum force and total energy for pure DLFT (at 2.0, 2.5, & 3.0 mm thickness) vs. pure tape laminates and pure tape fabrics (both at 2.0mm thickness) showing a 9x improvement in performance with use of UDglass reinforcements Figure 4: Energy at maximum force (blue bars) and total energy (red bars) for select hybrid samples impacted on both DLFT and tape fabric and/or tailored laminate sides of the hybrid configuraRons Hybrid Layup CombinaAons Materials Used Nominal Wall (mm) No. of Plies/ Layers Fiber OrientaAon of Each Ply ( o ) V1 Pure Tape Fabric 2.0 4 (0/90) V2 Pure Tape Laminate 2.0 1 (0/90)2 s V3 Pure DLFT 2.0 Not applicable DLFT V4 Pure DLFT 2.5 Not applicable DLFT V5 Pure DLFT 3.0 Not applicable DLFT V6 Hybrid of Tape Fabric + DLFT 0.5 + 2.5 1 (0/90) + DLFT V7 Hybrid of Tape Laminate + DLFT 0.5 + 2.5 1 (0/90) + DLFT V8 Hybrid of Tape Fabric + DLFT 1.0 + 2.0 2 2 x (0/90) + DLFT V9 Hybrid of Tape Laminate+ DLFT 1.0 + 2.0 1 (0/90)s + DLFT V10 Hybrid of Tape Fabric + Tape Laminate + DLFT 2 x 0.5 + 2.0 1+1 (0/90) + (0/90) + DLFT V11 Hybrid of Tape Laminate + Tape Fabric + DLFT 2 x 0.5 + 2.0 1+1 (0/90) + (0/90) + DLFT Table I: Select materials/layup/orientaRon/thicknesses for Part 1 flat test plaques Layup Configura2ons Produced in Plaque Molding Trials For the Phase 1 plaque study, 21 material/layup combina>ons were

Transcript of Improving impact performance in D-‐LFT composites via...

Page 1: Improving impact performance in D-‐LFT composites via …images.jeccomposites.com/PostersSessions/JAM12/JEC...Ticona Engineering Polymers supplied PP- ‐impregnated UD- ‐glass-

Improving  impact  performance  in  D-­‐LFT  composites    via  UD-­‐tape  based  fabrics  &  tailored  laminates  

A  study  was  conducted  on  inline  compounded  direct-­‐long-­‐fiber  thermoplasAc  (D-­‐LFT)  composites  to  evaluate  methods  to  increase  energy  absorpAon  of  glass-­‐reinforced  polypropylene  in  an  impact  scenario  through  addiAon  of  unidirecAonal-­‐glass  (UD)  tape-­‐based  fabrics  and  tailored  laminates.  Results  indicate  such  hybrid  structures  may  open  new  opportuniAes  for  thermoplasAc  composites  produced  in  the  tailored  D-­‐LFT  process  for  a  variety  of  market  segments.    

The  study  demonstrated  the  benefit  of  a  hybrid  molding  process  like  tailored  D-­‐LFT  that  allows  a  number  of  parameters  (e.g.  cost,  weight,  moldability,  and  higher  mechanicals  where  needed)  to  be  balanced  and  hence  it  can  provide  manufacturers  with  the  best  cost/performance  raAo  for  a  given  applicaAon.        

Improving  Impact  ProperAes  of  D-­‐LFT  Composites    Recognizing  the  benefits  of  tailored  D-­‐LFT  for  any  industry  desiring  to  improve  the  mechanical  performance  of  thermoplas>c  composites,  4  companies  funded  a  study  to  1)  evaluate  the  effects  on  impact  proper>es  of  using  UD-­‐glass  tape-­‐based  products  (which  subsequently  were  fabricated  into  intermediate  fabrics  and  tailored  laminates)  in  the  tailored  D-­‐LFT  process;  and  2)  check  that  tailored  D-­‐LFT  is  a  viable  process  for  demanding  produc>on-­‐molding  opera>ons  of  complex  parts.  Ticona  Engineering  Polymers  supplied  PP-­‐impregnated  UD-­‐glass-­‐reinforced  tapes  that  Oxeon  AB,  with  exper>se  in  producing  spread  tow  reinforcements  (based  on  tapes  instead  of  yarns),  used  to  produce  fabric  weaves.    Fiberforge  also  used  the  tapes  to  produce  Tailored  Blank  tape  laminates  using  its  patented  process  for  conver>ng  preimpregnated  thermoplas>c  tapes.    In  turn,  Fraunhofer  Ins>tute  for  Chemical  Technology  –  a  fully  equipped  R&D  center  with  significant  exper>se  in  the  field  of  polymer  composites  –  compounded  PP-­‐based  D-­‐LFT  material  and  used  various  combina>ons  of  the  D-­‐LFT  charge,  tape  fabrics,  and  tailored  laminates  in  different  layup  configura>ons  and  thicknesses  to  compression  mold  test  plaques  and  later  an  actual  automo>ve  part.        Study  Overview  A  2-­‐part  study  was  conducted.    First,  different  combina>ons  of  pure  D-­‐LFT,  pure  tape  fabrics,  and  pure  tailored  laminates  in  various  thicknesses,  plus  a  number  of  hybrid  combina>ons  were  laid  up  in  a  simple,  flat  plaque  tool  (400  x  400  mm)  and  compression  molded.    Twenty  material  and  layup  combina>ons  were  successfully  produced  and  the  most  representa>ve  are  shown  in  Table  I  (pure  D-­‐LFT,  pure  tape  laminate,  pure  tape  fabric  and  a  number  of  hybrid  configura>ons).    One  plaque  was  produced  for  each  combina>on,  and  then  6  standard  test  coupons  were  removed  from  each  plaque.    For  hybrid  configura>ons,  2  plaques  were  produced  to  allow  researchers  to  cut  sufficient  coupons  to  impact  samples  on  both  the  D-­‐LFT  side  as  well  as  the  UD-­‐tape  fabric/laminate  side.    A  minimum  of  5  samples  from  each  plaque  were  subjected  to  EN  ISO  6603-­‐2  (with  the  remaining  sample  kept  as  a  control).  This  process  allowed  for  a  rapid  evalua>on  of  a  number  of  different  layup  and  material  combina>ons,  and  permi`ed  researchers  to  quickly  determine  which  samples  represented  the  best-­‐performing  arrangements.  The  purpose  of  the  second  part  of  the  study  was  to  determine  if  good-­‐quality  tailored  D-­‐LFT  parts  could  be  made  quickly  enough  to  be  prac>cal  in  a  commercial  produc>on  environment  using  the  UD-­‐glass  products.  With  knowledge  gained  from  the  flat-­‐plaque  tests,  researchers  developed  a  new  layup  pa`ern  with  all  3  materials  and  molded  this  in  a  larger  (1,113  x  775  mm)  tool  loaned  by  Minda  Schenk  Plas>c  Solu>ons.    This  tool  was  an  automo>ve  series  produc>on  mold  used  to  produce  engine  noise  shields  that  are  mounted  under  the  front  end  of  a  European  passenger  car.    The  shield  was  a  challenging  design  with  segments  of  tall,  thin  ribs  that  would  be  hard  to  fill  with  UD-­‐glass  products  alone.  Since  this  was  a  commercial  tool  meant  for  con>nuous  part  produc>on,  it  had  no  hea>ng/cooling  lines  so  was  kept  at  molding  temperatures  between  rounds  of  molding  the  hybrid  layups  by  molding  conven>onal  D-­‐LFT  parts.      Materials  Selec2on  Ticona  supplied  0.25-­‐mm  thick  PP/glass  UD  tapes  (Celstran  CFR-­‐TP  PP-­‐GF70  with  70  wt-­‐%  glass)  in  a  variety  of  widths  depending  on  how  they  would  be  used.    Oxeon  converted  these  into  tape  fabrics  (TeXtreme  plain  weaves  that  were  0.50-­‐mm  thick  per  ply  and  were  laid  up  2  plies  thick  in  either  a  0°/90°  =  (0/90)  or  a  ±  45°  configura>on  =  (±  45).  In  turn,  the  double  plies  were  used  to  build  stacked  configura>ons  in  specific  thicknesses  that  were  not  preconsolidated.    Fiberforge  also  used  the  tapes  to  produce  tailored  laminates  (consolidated  Tailored  Blanks).    For  Part  1  (the  plaque  study),  the  laminates  were  supplied  in  single  sheets  (to  be  cut  to  size  as  needed)  and  several  and  configura>ons,  e.g.0°/90°  =  (0/90)  with  a  thickness  of  0.5,  1.0,  or  2.0  mm;  or  a  quasi-­‐isotropic  (0°/90°/+45°/-­‐45°)s  where  “s”  represents  a  symmetric  layup  of  8  plies.    For  Part  2  (the  engine-­‐shield  study),  Fiberforge  produced  both  part-­‐shape  tailored  laminates  and  large  sheets  of  laminate,  which  were  then  cut  to  size  and  shape  as  needed.    In  both  cases,  the  tape  laminates  were  preconsolidated.  The  tape  fabrics  and  tailored  laminates  were  used  alone  or  paired  with  inline  compounded  D-­‐LFT  composite  produced  by  Fraunhofer  with  an  ILC  unit  supplied  by  Dieffenbacher  GmbH  using  PP  resin  (PP-­‐C711-­‐70  RNA  from  Dow  Chemical),  an  addi>ves  package  (Priex  20078  coupling  agent  and  AddVance  453  stabilizer  from  Addcomp  Holland  BV);  and  discon>nuous  chopped-­‐glass  fiber  (JM  490  2400  tex  glass  by  Johns  Manville).  The  glass  loading  level  of  the  D-­‐LFT  formula>on  differed  between  the  ini>al  plaque  study  (which  featured  30  wt-­‐%  glass,  the  most-­‐common  automo>ve  loading  level)  and  the  larger  automo>ve  part  (which  featured  20  wt-­‐%  glass  to  enhance  fill  in  the  part’s  far  more  complex  geometry).      

www.JECcomposites.com

                                     

Michael  Ruby*  &  Daniel  Grauer,  Ticona  Engineering  Polymers  Benjamin  Hangs  &  Frank  Henning,  Fraunhofer  Ins>tute  for  Chemical  Technology  Andreas  Martsman,  Oxeon  AB  Simon  T.  Jespersen,  Fiberforge    (not  shown)  

*  michael.ruby@>cona.com  

                                                           a`empted  and  20  were  successfully  produced.    Table  I  above  provides  details  on  11  of  the  most  interes>ng  and  representa>ve  configura>ons  (including  pure  D-­‐LFT,  pure  tape  fabrics,  pure  tailored  laminates,  and  a  variety  of  hybrid  layups  in  different  thicknesses  and  orienta>ons)  from  this  part  of  the  study.        Use  of  Precolored  Material  to  Evaluate  Material  Movement  in  Shield  Molding  Trials  In  Part  2  of  the  study  with  the  engine  shield  tool,  researchers  wanted  to  understand  how  the  materials  moved/flowed  during  molding,  so  they  precolored  each  type  to  enhance  visibility.    Ticona’s  UD  tapes  were  supplied  in  black  (for  use  in  the  fabric  weaves  Oxeon  would  produce),  and  yellow  (for  the  Tailored  Blank  laminates  Fiberforge  would  produce).  Ticona  also  supplied  a  blue  color  masterbatch  for  the  D-­‐LFT  material  to  be  compounded  by  Fraunhofer.    Figure  1  below  shows  how  the  precolored  black  tape  fabric,  yellow  tailored  laminate,  and  blue  D-­‐LFT  charge  looked  prior  to  molding  in  Part  2’s  engine-­‐shield  tool.    Figure  2  shows  the  part  (front  and  back/road-­‐facing  side  and  vehicle-­‐facing  side)  auer  molding.    The  D-­‐LFT  charge  was  used  primarily  to  mold  the  vehicle-­‐facing  (back)  side  of  the  part  as  the  most  complex  ribbing  was  located  there;  the  tailored  laminate  and  tape  fabric  were  used  on  the  front  (road-­‐facing)  side  of  the  part  as  that  loca>on  sees  the  most  damaging  condi>ons  and  the  UD  glass  in  both  fabrics  and  tailored  laminates  would  have  had  challenges  penetra>ng  the  tall  thin  ribs  on  the  reverse  side  of  the  part.    Prehea2ng  /  Molding  Parameters  To  ensure  good  fusion  between  recently  compounded  D-­‐LFT  charge  (exi>ng  the  ILC  unit  at  close  to  200C)  and  previously  produced  tape  fabric  and/or  tailored  laminate,  it  was  necessary  to  preheat  the  la`er  prior  to  molding  using  an  infrared  (IR)  oven  at  PP’s  processing  temperature  (near  200C).    Hea>ng  >me  for  both  fabrics  and  tailored  laminates  varied  depending  on  thickness  of  material  and  with  unconsolidated  /  consolidated  forms  of  the  semi-­‐finished  products.  Both  the  flat  plaque  tool  and  the  more  complex  engine  shield  tool  were  molded  on  a  36,000-­‐kN  compression  press.    The  smaller,  flat  plaques  were  molded  at  ≈3,200  kN  pressure  for  45  sec  at  75C;  the  more  complex  shields  were  molded  at  ≈12,000  kN  pressure  for  30  sec  in  a  much  cooler  tool  of  ≈40-­‐45C.    The  difference  in  dwell  >me  and  temperature  was  a  func>on  of  thickness.    The  ILC  unit,  IR  oven,  and  compression  press  were  in  close  proximity,  so  tape  fabrics  and/or  tailored  laminates  could  heat  while  D-­‐LFT  was  compounded  and  parts  were  molded.    For  the  shield  part,  this  yielded  an  effec>ve  cycle  >me  of  ≈70  sec  to  produce  a  part,  although  actual  dwell  >me  in  the  tool  was  30  sec  and  researchers  note  that  this  was  under  unop>mized  condi>ons.    

Results,  ObservaAons  &  SuggesAons    Flat  Plaque  Tes2ng  –  Were  Impact  Results  Improved?  Previous  research  suggested  that  the  UD-­‐tape  products  would  significantly  increase  not  only  s>ffness/strength  but  also  impact  proper>es,  and  impact  results  confirmed  this.    Figure  3  below  shows  results  of  some  representa>ve  samples.    The  pure  tape  fabrics  and  pure  tape  laminates  yielded  energy  at  maximum  force  (blue  bars)  and  total  energy  (red  bars)  values  that  were  approximately  9x  higher  than  those  measured  from  the  baseline/control  pure  D-­‐LFT  material  regardless  of  thickness.    This  shows  the  benefit  of  greater  retained  fiber  length  and  higher  FVFs  on  improving  mechanical  proper>es  in  composites.    (It  should  be  noted  that  while  Figure  3  is  useful  for  no>ng  qualita>ve  trends,  it  cannot  be  used  to  pull  quan>ta>ve  values  from  samples  measured  at  different  thicknesses,  since  both  Young’s  modulus  and  the  second  moment  of  iner>a  (and  therefore  coupon  bending  during  impact)  are  strongly  influenced  by  nominal  wall  thickness.)                                                        Interes>ng  results  were  also  seen  on  hybrid  samples  containing  tape  fabric  and/or  tailored  laminate  plus  D-­‐LFT.    As  previously  noted,  hybrid  samples  were  tested  by  impac>ng  the  D-­‐LFT  side  as  well  as  the  tape  fabric  and/or  tailored  laminate  side  from  each  hybrid  test  plaque,  representa>ve  results  of  which  are  shown  in  Figure  4.      As  with  Figure  3,  the  red  bars  represent  total  energy  absorbed  and  the  blue  bars  represent  maximum  force.    For  each  set  of  samples  (D-­‐LFT  side  vs.  tape  fabric  and/or  tailored  laminate  side),  trends  indicate  that  energy  at  maximum  force  is  always  lower  on  the  D-­‐LFT  side  of  the  sample  than  on  the  tape  fabric  and/or  tailored  laminate  side,  while  the  reverse  is  true  for  total  energy  absorbed.    Researchers  theorize  that  because  the  D-­‐LFT  side  with  shorter,  discon>nuous  glass  at  lower  FVF  loadings  is  not  as  s>ff  /  strong  as  the  side  with  UD-­‐tape  fabrics  and/or  tailored  laminates,  which  also  have  higher  FVFs  as  well  as  longer  glass,  that  it  breaks  earlier  and  more  easily  in  the  impact  test  (e.g.  lower  energy  at  maximum  force).    The  reverse  is  true  for  the  s>ffer/stronger  tape  fabric  and/or  tailored  laminate  side,  which  requires  more  energy  to  break  (higher  energy  at  maximum  force).    As  the  D-­‐LFT  side  breaks,  it  puts  the  UD-­‐glass  into  tension,  so  when  that  impactor  breaks  through  the  D-­‐LFT  side  and  hits  the  UD-­‐glass  side,  there  is  less  kine>c  energy  leu  to  break  the  UD-­‐glass  in  the  sample  (higher  total  energy  absorbed).    All  impacted  samples  broke  in  the  test.    Engine  Shield  Produc2on  –  Was  Process  Fast  Enough  for  Commercial  Produc2on?  Since  compounding,  hea>ng,  and  molding  cells  were  located  in  close  proximity,  mul>ple  steps  could  be  completed  simultaneously,  giving  an  effec>ve  molding  cycle  for  the  engine  shield  of  70  sec,  which  makes  the  process  compa>ble  for  medium-­‐to-­‐high  produc>on  volumes.    Typical  cycle  >mes  in  commercial  thermoplas>c  compression  molding  opera>ons  range  from  30  sec  for  thinner,  smaller  parts  to  90  sec  for  larger  and  thicker  parts,  so  a  70  sec  cycle  >me  is  within  the  target  range.    However,  it  should  be  noted  that  this  was  a  non-­‐op>mized  process  and  that  it  was  the  prehea>ng  opera>on  that  was  the  limi>ng  step  in  the  process  sequence,  not  the  actual  molding  >me  of  30  sec  or  the  ILC  unit,  which  is  capable  of  producing  D-­‐LFT  compound  at  a  rate  of  8  kg/min.    Researchers  feel  that  with  further  work  (e.g.  staged  oven,  automated  handling  equipment,  use  of  preconsolidated  fabrics  or  laminates,  and  a  tool  equipped  with  clamps/fixtures),  that  it  should  be  possible  to  drop  the  effec>ve  cycle  >me  significantly  lower  than  70  sec,  which  would  make  the  tailored  D-­‐LFT  faster  and  even  more  cost-­‐effec>ve  vs.  alterna>ve  materials/process  combina>ons.    

Figure  1  (le3)  shows  precolored  fabric,  laminate,  and  D-­‐LFT  charge  prior  to  molding;    Figure  2  (right)  shows  front  (top,  road-­‐facing)  and  back  (bo@om,  vehicle-­‐facing)  sides  of  the  part  a3er  molding.  

Figure  3:    Energy  at  maximum  force  and  total  energy  for  pure  D-­‐LFT  (at  2.0-­‐,  2.5-­‐,  &  3.0-­‐mm  thickness)  vs.  pure  tape  laminates  and  pure  tape  fabrics  (both  at  2.0-­‐mm  thickness)  showing  a  9x  improvement  in  performance  with  use  of  UD-­‐glass  reinforcements    

Figure  4:    Energy  at  maximum  force  (blue  bars)  and  total  energy  (red  bars)  for  select  hybrid  samples  impacted  on  both  D-­‐LFT  and  tape  fabric  and/or  tailored  laminate  sides  of  the  hybrid  configuraRons    

Hybrid  Layup  CombinaAons

Materials  Used Nominal  Wall  (mm)

No.  of  Plies/Layers

Fiber  OrientaAon  of  Each  Ply  (o)

V1 Pure  Tape  Fabric   2.0 4    (0/90)  

V2 Pure  Tape  Laminate 2.0 1 (0/90)2s    

V3 Pure  D-­‐LFT 2.0 Not  applicable D-­‐LFT

V4 Pure  D-­‐LFT 2.5 Not  applicable D-­‐LFT

V5 Pure  D-­‐LFT 3.0 Not  applicable D-­‐LFT

V6   Hybrid  of  Tape  Fabric  +  D-­‐LFT   0.5  +  2.5   1   (0/90)  +  D-­‐LFT  

V7   Hybrid  of  Tape  Laminate  +  D-­‐LFT   0.5  +  2.5   1   (0/90)  +  D-­‐LFT  

V8   Hybrid  of  Tape  Fabric  +  D-­‐LFT   1.0  +  2.0   2   2  x  (0/90)  +  D-­‐LFT  

V9   Hybrid  of  Tape  Laminate+  D-­‐LFT   1.0  +  2.0   1   (0/90)s    +  D-­‐LFT  

V10   Hybrid  of  Tape  Fabric  +  Tape  Laminate  +  D-­‐LFT     2  x  0.5  +  2.0   1+1   (0/90)  +  (0/90)  +  D-­‐LFT  

V11   Hybrid  of  Tape  Laminate  +  Tape  Fabric  +  D-­‐LFT     2  x  0.5  +  2.0   1+1   (0/90)  +  (0/90)  +  D-­‐LFT  

Table  I:    Select  materials/layup/orientaRon/thicknesses  for  Part  1  flat  test  plaques  

Layup  Configura2ons  Produced  in  Plaque  Molding  Trials  For  the  Phase  1  plaque  study,  21  material/layup  combina>ons  were