Impact of Geological Stress on Flow and Transport in ... · Impact of stress on natural fracture...

57
Peter K. Kang University of Minnesota Oct 23th, 2018, IMA Impact of Geological Stress on Flow and Transport in Fractured Media

Transcript of Impact of Geological Stress on Flow and Transport in ... · Impact of stress on natural fracture...

  • Peter K. Kang

    University of MinnesotaOct 23th, 2018, IMA!

    Impact of Geological Stress on

    Flow and Transport in Fractured Media

  • Peter K. Kang

    University of MinnesotaOct 17th, 2018, ESCI 8001!

    Impact of Geological Stress on

    Flow and Transport in Fractured Media

  • Collaborators

    Ruben Juanes

    Marco Dentz

    Qinghua Lei

    Stephen Brown, Michael Fehler, Daniel R. Burns

    Yingcai Zheng

    Weon Shik Han

    Jeffrey Hyman

  • Intro

    Yoon and Kang, in preparation

    Why we care about flow and transport through fractures?: Fractures often act as either seal or dominate flow paths

  • There are many studies on flow and transport through rough fractures

    I. Neretnieks et al., WRR, 1982; Y. W. Tsang and C. F. Tsang, WRR, 1987; L. Moreno et al., WRR, 1988; S. Brown et al., JGR, 1998; Y. Méheust and J. Schmittbuhl, GRL, 2000;

    Hele-Shaw Rough fracture

    Intro

    R. L. Detwiler et al., WRR, 2000; H. Auradou et al., PRE, 2001; F. Bauget and M. Fourar., JCH, 2008;Talon et al., EPL 2012; L. Wand and M. B. Cardenas, WRR, 2014

  • Image: MICROSEISMIC INC.

    In reality, fractures are always under confining stress: Hydraulic fracturing

    Image: Baker Hughes

    Intro

  • Image: MICROSEISMIC INC.

    Impact of confining stress on fluid flow properties has been widely studied

    Intro

    K. G. Raven and J. E. Gale, 1985; D. D. Nolte et al. 1989; R. W. Zimmerman et al. 1992; D. R. Briggins, 1992;W. A. Olsson and S. R. Brown, 1993; A. J. A. Unger and C. W. Mase, 1993; W. B. Durham and B. P. Bonner, 1994;

    C. E. Renshaw, 1995; V. V. Mourzenko et al., 1995;N. Watanabe et al., 2008; L. Zou et al., 2013.T. Koyama et al., 2008.W. Jeong and J. Song., 2005, 2008.H. Auradou, 2009.

  • Rock physics model – permeability vs stiffness

    Unger and Mase, WRR, 1993; Mourzenko et al., PRE, 1997;

    Pyrak-Nolte and Morris, 2000

    Laboratory experiment

    Petrovitch et al, 2013

    Numerical experiment

    Intro

  • Seismic equation:

    Flow equation (incompressible, plane Poiseuille flow):

    , : flux per unit depth

    : fourth order stiffness tensor (function of rock properties),

    : Cauchy stress tensor

    : infinitesimal strain tensor

    : displacement vector

    ,

    ,

    : permeability (fn of fracture rock properties)

    Rock physics model links flow and seismic dataIntro

  • compliance

    Rock physics model

    perm

    eabi

    lity

    Joint flow-seismic inversion with rock physics model

    Kang et al., 2016, Water Resources ResearchHu et al., 2018, Geophysics

    Intro

  • Objectives of this study

    1. Study the impact of the geological stress on flow andtracer transport through a single rough fracture scaleto fracture network scale.

    2. Develop a parsimonious and effective transport model.

    distance [m]0 2 4 6 8 10 12 14 16

    dist

    ance

    [m]

    -8

    -7

    -6

    -5

    -4

    -3

    -2

    -1

  • Numerically generate realistic fracture surface (Fourier synthesis method).

    1. Construct a rough fracture surface: self-affine fractal

    x

    z

    Top surface

    Bottom surface

    x

    z

    a(x)

    Top surface

    Bottom surface

    Fracture aperture

    Bottom surfaceTop surface

  • Assumptions

    1. The medium is linearly elastic.

    2. Only consider normal stress.

    3. Consider non-local interaction between contact areas.

    2. Solve the elastic contact problem on rough-walled fractures

    : normal displacement

    : standard deviation of aperture values at first contact

    � = 0

    �0

    a(x)a(x)δ = 3 σ0

    a(x)

    δ = 3 σ0

  • 0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    δ = 0 δ = 1 .5σ0

    δ = 2 .5σ0 δ = 3 .5σ0

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    δ = 0 δ = 1 .5σ0

    δ = 2 .5σ0 δ = 3 .5σ0

    2. Solve the elastic contact problem

    aperture0 0.2 0.4 0.6 0.8 1

    prob

    abilit

    y de

    nsity

    0

    2

    4

    6

    8

    10

    δ = 3 .5σ0δ = 2 .5σ0δ = 1 .5σ0δ = 0

    10-3

    10-2

    10-1

    100

    10-2

    10-1

    10 0

    101

    aperture

    prob

    abilit

    y de

    nsity

  • Fluid flow in the fracture is calculated by assuming 1) Laminar flow2) The cubic law is locally valid Which gives a series of parallel plates.

    3. Run flow and transport simulation on rough-walled fractures

    X

    j

    Qij = 0

    Qij = �b3ij�a

    12µ

    Pj � Pi�a

    Boundary conditions:1. No flow on top and bottom boundaries2. Constant pressure on left and right boundaries

  • Pressure field

    Normalized flow field

    Series of terraces

    Increase in stress

    � = 3.5�0� = 2.5�0� = 1.5�0� = 0

    Flow field becomes more tortuous and preferential paths arise as stress increases.

    0 10

    0 1

  • 3. Run flow and transport simulation on rough-walled fractures

    Flow fieldAperture field

  • 3. Run flow and transport simulation on rough-walled fractures

    High stress case:Low stress case: � = 3.5�0� = 0

  • Will the increase in confining stress

    lead to anomalous transport?

  • The field truth: Anomalous transport is widely observed in subsurface

    Extraction boreholeInjection borehole

    Photo of Ploemeur field site

    Schematic of tracer tests in fractured aquiferField tracer breakthrough curve

    Kang et al., Water Resour. Res. (2015)

  • Fickian transport vs Anomalous transport

  • Signature of Anomalous Transport

    10−3 10−2 10−1 100

    10−7

    10−6

    10−5

    10−4

    10−3

    10−2

    time

    mea

    n sq

    uare

    dis

    plac

    emen

    t

    2

    1

    1

    1

    (a) (c)

    1 − α

    1 + α 11

    prob

    abilit

    y de

    nsity

    FickianAnomalous

    (b)

    time

    x

    y

    mean flow direction

    Fickiansuperdiffusive

    subdiffusive

  • We can clearly observe transition from Fickian to non-Fickian (anomalous) transport.

    4. Analyze flow and transport characteristics with respect to stress

    Time evolution of spreading(a) (b)

    normalized time101 102 103 104 105

    prob

    abilit

    y de

    nsity

    10-9

    10-7

    10-5

    10-3

    10-1

    displacement

    peak

    arri

    val t

    ime

    100

    101

    102

    0 1 2 3 4

    1

    3

    [σ0 ]

    normalized time100 102 104

    MSD

    10-1

    101

    103

    105

    1

    1

    1.3

    1

    2

    1 displacement0 1 2 3 4

    slop

    e1

    1.1

    1.2

    1.3

    1.4

    (a) (b)

    normalized time101 102 103 104 105

    prob

    abilit

    y de

    nsity

    10-9

    10-7

    10-5

    10-3

    10-1

    displacement

    peak

    arri

    val t

    ime

    100

    101

    102

    0 1 2 3 4

    1

    3

    [σ0 ]

    normalized time100 102 104

    MSD

    10-1

    101

    103

    105

    1

    1

    1.3

    1

    2

    1

    (a) (b)

    normalized time101 102 103 104 105

    prob

    abilit

    y de

    nsity

    10-9

    10-7

    10-5

    10-3

    10-1

    displacement

    peak

    arri

    val t

    ime

    100

    101

    102

    0 1 2 3 4

    1

    3

    [σ0 ]

    normalized time100 102 104

    MSD

    10-1

    101

    103

    105

    1

    1

    1.3

    1

    2

    1

    δ = 3 .5σ0δ = 2 .5σ0δ = 1 .5σ0δ = 0

    δ = 3 .5σ0δ = 2 .5σ0δ = 1 .5σ0δ = 0

  • 5. Develop a predictive transport model

    Kang et al., GRL., 2014

    3D pore scale

    Le Borgne et al., PRL., 2008

    Darcy scale

    Model development: Spatial Markov Model

    Kang et al., WRR. (2015)

    Field scale

  • : follows the transition time distribution ( ) that follows truncated power-law 0(⌧)

    vn vn+1 vn+2

    ⌧n =dx

    vn

    0(⌧)

    transition time100 102 104 106

    prob

    abilit

    y den

    sity

    10-12

    10-10

    10-8

    10-6

    10-4

    10-2

    1 + �

    1

    Directly map multiscale heterogeneity onto particle velocity probability distribution: velocity heterogeneity

    Berkowitz and Scher, PRL., 1997Dentz et al., AWR, 2004

    5. Develop a predictive transport model

  • Velocity correlation structure is Markovian in space

    vn vn+1 vn+2

    0 100

    100

    −9

    −7

    −5

    −3

    −1

    0vn

    vn+1

    1(v|v0)

    Le Borgne et al., Phys. Rev. Lett. (2008)Kang et al., Phys. Rev. Lett. (2011)

    current velocity class

    next

    vel

    ocity

    cla

    ss

    0

    0.01

    0.02

    0.5

    1

    current velocity class

    next

    vel

    ocity

    cla

    ss

    0

    no correlation

    perfect correlation

    log scale

    5. Develop a predictive transport model

    We formulate correlated CTRW that honors velocity heterogeneity and correlation.

    : characterized by the transition time distributionand one-step transition probability density

    0(⌧) 1(⌧ |⌧ 0)

    xn+1 = xn + dx, tn+1 = tn + ⌧ , ⌧ =dx

    v

    St+1 = f( ,�, St)AAACCHicbVC7SgNBFJ2Nrxhfq5YWDgYhYgi7ImgjBG0sIzEPyG7C7GQ2GTL7YOauEJaUNv6KjYUitn6CnX/j5FFo4oGBwzn3cOceLxZcgWV9G5ml5ZXVtex6bmNza3vH3N2rqyiRlNVoJCLZ9IhigoesBhwEa8aSkcATrOENbsZ+44FJxaPwHoYxcwPSC7nPKQEtdczDajuFU3uEr7BfcGLFi9gROt4lRVxtw0nHzFslawK8SOwZyaMZKh3zy+lGNAlYCFQQpVq2FYObEgmcCjbKOYliMaED0mMtTUMSMOWmk0NG+FgrXexHUr8Q8ET9nUhJoNQw8PRkQKCv5r2x+J/XSsC/dFMexgmwkE4X+YnAEOFxK7jLJaMghpoQKrn+K6Z9IgkF3V1Ol2DPn7xI6mclW/O783z5elZHFh2gI1RANrpAZXSLKqiGKHpEz+gVvRlPxovxbnxMRzPGLLOP/sD4/AFzFJewAAACCHicbVC7SgNBFJ2Nrxhfq5YWDgYhYgi7ImgjBG0sIzEPyG7C7GQ2GTL7YOauEJaUNv6KjYUitn6CnX/j5FFo4oGBwzn3cOceLxZcgWV9G5ml5ZXVtex6bmNza3vH3N2rqyiRlNVoJCLZ9IhigoesBhwEa8aSkcATrOENbsZ+44FJxaPwHoYxcwPSC7nPKQEtdczDajuFU3uEr7BfcGLFi9gROt4lRVxtw0nHzFslawK8SOwZyaMZKh3zy+lGNAlYCFQQpVq2FYObEgmcCjbKOYliMaED0mMtTUMSMOWmk0NG+FgrXexHUr8Q8ET9nUhJoNQw8PRkQKCv5r2x+J/XSsC/dFMexgmwkE4X+YnAEOFxK7jLJaMghpoQKrn+K6Z9IgkF3V1Ol2DPn7xI6mclW/O783z5elZHFh2gI1RANrpAZXSLKqiGKHpEz+gVvRlPxovxbnxMRzPGLLOP/sD4/AFzFJewAAACCHicbVC7SgNBFJ2Nrxhfq5YWDgYhYgi7ImgjBG0sIzEPyG7C7GQ2GTL7YOauEJaUNv6KjYUitn6CnX/j5FFo4oGBwzn3cOceLxZcgWV9G5ml5ZXVtex6bmNza3vH3N2rqyiRlNVoJCLZ9IhigoesBhwEa8aSkcATrOENbsZ+44FJxaPwHoYxcwPSC7nPKQEtdczDajuFU3uEr7BfcGLFi9gROt4lRVxtw0nHzFslawK8SOwZyaMZKh3zy+lGNAlYCFQQpVq2FYObEgmcCjbKOYliMaED0mMtTUMSMOWmk0NG+FgrXexHUr8Q8ET9nUhJoNQw8PRkQKCv5r2x+J/XSsC/dFMexgmwkE4X+YnAEOFxK7jLJaMghpoQKrn+K6Z9IgkF3V1Ol2DPn7xI6mclW/O783z5elZHFh2gI1RANrpAZXSLKqiGKHpEz+gVvRlPxovxbnxMRzPGLLOP/sD4/AFzFJewAAAB5HicbZBNS8NAEIYnftb4Vb16WSyCp5J40aPgxWMF+wFtKZvNpF262YTdiVBC/4AHLyJe/U3e/DduP0BtfWHh4Z0ZduaNciUtBcGXt7G5tb2zW9nz9w/8w6Pj6knLZoUR2BSZykwn4haV1NgkSQo7uUGeRgrb0fhuVm8/obEy0480ybGf8qGWiRScnNUYVGtBPZiLrUO4hBosNah+9uJMFClqEopb2w2DnPolNySFwqnfKyzmXIz5ELsONU/R9sv5mlN24ZyYJZlxTxObu78nSp5aO0kj15lyGtnV2sz8r9YtKLnpl1LnBaEWi4+SQjHK2OxmFkuDgtTEARdGul2ZGHHDBblkfJdBuHrxOrSu6qHjh58woAJncA6XEMI13MI9NKAJAmJ4hldv5L14b977onHDW06cwh95H98YPIsCAAACCHicbVDJSgNBFHwTtxi3qEcPNgYhYggzXvQiCF48RmIWyEZPpydp0rPQ/UYIQ45e/BUvHhTx6id482/sLKAmFjQUVa94/cqNpNBo219Waml5ZXUtvZ7Z2Nza3snu7lV1GCvGKyyUoaq7VHMpAl5BgZLXI8Wp70pecwfXY792z5UWYXCHw4i3fNoLhCcYRSN1sofldoKnzohcEi/fjLQokKY08S4tkHIbTzrZnF20JyCLxJmRHMxQ6mQ/m92QxT4PkEmqdcOxI2wlVKFgko8yzVjziLIB7fGGoQH1uW4lk0NG5NgoXeKFyrwAyUT9nUior/XQd82kT7Gv572x+J/XiNG7aCUiiGLkAZsu8mJJMCTjVkhXKM5QDg2hTAnzV8L6VFGGpruMKcGZP3mRVM+KjuG3P21AGg7gCPLgwDlcwQ2UoAIMHuAJXuDVerSerTfrfTqasmaZffgD6+MbSnqXKg==AAACCHicbVDJSgNBFHwTtxi3qEcPNgYhYggzXvQiCF48RmIWyEZPpydp0rPQ/UYIQ45e/BUvHhTx6id482/sLKAmFjQUVa94/cqNpNBo219Waml5ZXUtvZ7Z2Nza3snu7lV1GCvGKyyUoaq7VHMpAl5BgZLXI8Wp70pecwfXY792z5UWYXCHw4i3fNoLhCcYRSN1sofldoKnzohcEi/fjLQokKY08S4tkHIbTzrZnF20JyCLxJmRHMxQ6mQ/m92QxT4PkEmqdcOxI2wlVKFgko8yzVjziLIB7fGGoQH1uW4lk0NG5NgoXeKFyrwAyUT9nUior/XQd82kT7Gv572x+J/XiNG7aCUiiGLkAZsu8mJJMCTjVkhXKM5QDg2hTAnzV8L6VFGGpruMKcGZP3mRVM+KjuG3P21AGg7gCPLgwDlcwQ2UoAIMHuAJXuDVerSerTfrfTqasmaZffgD6+MbSnqXKg==AAACCHicbVC7SgNBFJ2Nrxhfq5YWDgYhYgi7NtoIQRvLSMwDspswOzubDJl9MHNXCEtKG3/FxkIRWz/Bzr9x8ig0emDgcM493LnHSwRXYFlfRm5peWV1Lb9e2Njc2t4xd/eaKk4lZQ0ai1i2PaKY4BFrAAfB2olkJPQEa3nD64nfumdS8Ti6g1HC3JD0Ix5wSkBLPfOw3s3g1B7jSxyUnETxMnaEjvukjOtdOOmZRatiTYH/EntOimiOWs/8dPyYpiGLgAqiVMe2EnAzIoFTwcYFJ1UsIXRI+qyjaURCptxsesgYH2vFx0Es9YsAT9WfiYyESo1CT0+GBAZq0ZuI/3mdFIILN+NRkgKL6GxRkAoMMZ60gn0uGQUx0oRQyfVfMR0QSSjo7gq6BHvx5L+keVaxNb+1itWreR15dICOUAnZ6BxV0Q2qoQai6AE9oRf0ajwaz8ab8T4bzRnzzD76BePjG3HUl6w=AAACCHicbVC7SgNBFJ2Nrxhfq5YWDgYhYgi7ImgjBG0sIzEPyG7C7GQ2GTL7YOauEJaUNv6KjYUitn6CnX/j5FFo4oGBwzn3cOceLxZcgWV9G5ml5ZXVtex6bmNza3vH3N2rqyiRlNVoJCLZ9IhigoesBhwEa8aSkcATrOENbsZ+44FJxaPwHoYxcwPSC7nPKQEtdczDajuFU3uEr7BfcGLFi9gROt4lRVxtw0nHzFslawK8SOwZyaMZKh3zy+lGNAlYCFQQpVq2FYObEgmcCjbKOYliMaED0mMtTUMSMOWmk0NG+FgrXexHUr8Q8ET9nUhJoNQw8PRkQKCv5r2x+J/XSsC/dFMexgmwkE4X+YnAEOFxK7jLJaMghpoQKrn+K6Z9IgkF3V1Ol2DPn7xI6mclW/O783z5elZHFh2gI1RANrpAZXSLKqiGKHpEz+gVvRlPxovxbnxMRzPGLLOP/sD4/AFzFJewAAACCHicbVC7SgNBFJ2Nrxhfq5YWDgYhYgi7ImgjBG0sIzEPyG7C7GQ2GTL7YOauEJaUNv6KjYUitn6CnX/j5FFo4oGBwzn3cOceLxZcgWV9G5ml5ZXVtex6bmNza3vH3N2rqyiRlNVoJCLZ9IhigoesBhwEa8aSkcATrOENbsZ+44FJxaPwHoYxcwPSC7nPKQEtdczDajuFU3uEr7BfcGLFi9gROt4lRVxtw0nHzFslawK8SOwZyaMZKh3zy+lGNAlYCFQQpVq2FYObEgmcCjbKOYliMaED0mMtTUMSMOWmk0NG+FgrXexHUr8Q8ET9nUhJoNQw8PRkQKCv5r2x+J/XSsC/dFMexgmwkE4X+YnAEOFxK7jLJaMghpoQKrn+K6Z9IgkF3V1Ol2DPn7xI6mclW/O783z5elZHFh2gI1RANrpAZXSLKqiGKHpEz+gVvRlPxovxbnxMRzPGLLOP/sD4/AFzFJewAAACCHicbVC7SgNBFJ2Nrxhfq5YWDgYhYgi7ImgjBG0sIzEPyG7C7GQ2GTL7YOauEJaUNv6KjYUitn6CnX/j5FFo4oGBwzn3cOceLxZcgWV9G5ml5ZXVtex6bmNza3vH3N2rqyiRlNVoJCLZ9IhigoesBhwEa8aSkcATrOENbsZ+44FJxaPwHoYxcwPSC7nPKQEtdczDajuFU3uEr7BfcGLFi9gROt4lRVxtw0nHzFslawK8SOwZyaMZKh3zy+lGNAlYCFQQpVq2FYObEgmcCjbKOYliMaED0mMtTUMSMOWmk0NG+FgrXexHUr8Q8ET9nUhJoNQw8PRkQKCv5r2x+J/XSsC/dFMexgmwkE4X+YnAEOFxK7jLJaMghpoQKrn+K6Z9IgkF3V1Ol2DPn7xI6mclW/O783z5elZHFh2gI1RANrpAZXSLKqiGKHpEz+gVvRlPxovxbnxMRzPGLLOP/sD4/AFzFJewAAACCHicbVC7SgNBFJ2Nrxhfq5YWDgYhYgi7ImgjBG0sIzEPyG7C7GQ2GTL7YOauEJaUNv6KjYUitn6CnX/j5FFo4oGBwzn3cOceLxZcgWV9G5ml5ZXVtex6bmNza3vH3N2rqyiRlNVoJCLZ9IhigoesBhwEa8aSkcATrOENbsZ+44FJxaPwHoYxcwPSC7nPKQEtdczDajuFU3uEr7BfcGLFi9gROt4lRVxtw0nHzFslawK8SOwZyaMZKh3zy+lGNAlYCFQQpVq2FYObEgmcCjbKOYliMaED0mMtTUMSMOWmk0NG+FgrXexHUr8Q8ET9nUhJoNQw8PRkQKCv5r2x+J/XSsC/dFMexgmwkE4X+YnAEOFxK7jLJaMghpoQKrn+K6Z9IgkF3V1Ol2DPn7xI6mclW/O783z5elZHFh2gI1RANrpAZXSLKqiGKHpEz+gVvRlPxovxbnxMRzPGLLOP/sD4/AFzFJewAAACCHicbVC7SgNBFJ2Nrxhfq5YWDgYhYgi7ImgjBG0sIzEPyG7C7GQ2GTL7YOauEJaUNv6KjYUitn6CnX/j5FFo4oGBwzn3cOceLxZcgWV9G5ml5ZXVtex6bmNza3vH3N2rqyiRlNVoJCLZ9IhigoesBhwEa8aSkcATrOENbsZ+44FJxaPwHoYxcwPSC7nPKQEtdczDajuFU3uEr7BfcGLFi9gROt4lRVxtw0nHzFslawK8SOwZyaMZKh3zy+lGNAlYCFQQpVq2FYObEgmcCjbKOYliMaED0mMtTUMSMOWmk0NG+FgrXexHUr8Q8ET9nUhJoNQw8PRkQKCv5r2x+J/XSsC/dFMexgmwkE4X+YnAEOFxK7jLJaMghpoQKrn+K6Z9IgkF3V1Ol2DPn7xI6mclW/O783z5elZHFh2gI1RANrpAZXSLKqiGKHpEz+gVvRlPxovxbnxMRzPGLLOP/sD4/AFzFJewAAACCHicbVC7SgNBFJ2Nrxhfq5YWDgYhYgi7ImgjBG0sIzEPyG7C7GQ2GTL7YOauEJaUNv6KjYUitn6CnX/j5FFo4oGBwzn3cOceLxZcgWV9G5ml5ZXVtex6bmNza3vH3N2rqyiRlNVoJCLZ9IhigoesBhwEa8aSkcATrOENbsZ+44FJxaPwHoYxcwPSC7nPKQEtdczDajuFU3uEr7BfcGLFi9gROt4lRVxtw0nHzFslawK8SOwZyaMZKh3zy+lGNAlYCFQQpVq2FYObEgmcCjbKOYliMaED0mMtTUMSMOWmk0NG+FgrXexHUr8Q8ET9nUhJoNQw8PRkQKCv5r2x+J/XSsC/dFMexgmwkE4X+YnAEOFxK7jLJaMghpoQKrn+K6Z9IgkF3V1Ol2DPn7xI6mclW/O783z5elZHFh2gI1RANrpAZXSLKqiGKHpEz+gVvRlPxovxbnxMRzPGLLOP/sD4/AFzFJew

  • 5. Develop a predictive transport model: Correlated CTRW

    normalized time100 102 104

    MSD

    10-1

    101

    103

    105

    1

    1

    1.3

    1

    2

    1

    normalized time100 102 104

    MSD

    10-1

    101

    103

    105

    1

    1

    1.3

    1

    2

    1

    Kang et al., EPSL. (2016)

  • Field trip to obtain natural fracture surfaces

    Visual laboratory experiment on stressed rough fracture

  • Experimental set up: Dynamic imaging with transparent micromodels

  • Laboratory experiment results: rough fracture

    High stressLow stress

  • 1. Stress induces anomalous transport at a single fracture scale: transition from Fickian to non-Fickian

    2. Spatial Markov model can predict anomalous transportthrough stressed rough fractures.

    Part 1 Conclusions

  • distance [m]0 2 4 6 8 10 12 14 16

    dist

    ance

    [m]

    -8

    -7

    -6

    -5

    -4

    -3

    -2

    -1

    Impact of stress on natural fracture network scale flow and transport

    Natural fracture networks of the Bristol fractured reservoir

    • A natural fracture network is extracted from the geological map of a rock outcrop.• Aperture values are sampled from a aperture distribution that follows log normal

    distribution with mean 1 [mm] and variance 1.• Aperture values are randomly assigned to each link.

    0

    1

    2 [mm]

  • distance [m]0 2 4 6 8 10 12 14 16

    dist

    ance

    [m]

    -8

    -7

    -6

    -5

    -4

    -3

    -2

    -1

    3 MPa 3 MPa

    3 MPa

    3 MPa

    Impact of stress magnitude on fracture network-scale transport

    σ'x = 3 MPa, σ'y = 3 MPa

  • distance [m]0 2 4 6 8 10 12 14 16

    dist

    ance

    [m]

    -8

    -7

    -6

    -5

    -4

    -3

    -2

    -1

    15 MPa 15 MPa

    15 MPa

    15 MPaσ'x = 15 MPa, σ'y = 15 MPa

    Impact of stress magnitude on fracture network-scale transport

  • Impact of stress orientation on fracture network-scale transport

    distance [m]0 2 4 6 8 10 12 14 16

    dist

    ance

    [m]

    -8

    -7

    -6

    -5

    -4

    -3

    -2

    -1

    15 MPa 15 MPa

    5 MPa

    5 MPaσ'x = 15 MPa, σ'y = 5 MPa

  • distance [m]0 2 4 6 8 10 12 14 16

    dist

    ance

    [m]

    -8

    -7

    -6

    -5

    -4

    -3

    -2

    -1

    5 MPa 5 MPa

    15 MPa

    15 MPaσ'x = 5 MPa, σ'y = 15 MPa

    Impact of stress orientation on fracture network-scale transport

  • • The Cauchy linear momentum equation is solved using finite-discrete element method (FEMDEM) (Munjiza, 2004).

    • Joint constitutive model (JCM) captures joint closure, shearing, shear dilatancy by taking fracture roughness into account.

    Geomechanical modelling of fracture networks

    Lei et al., Int. J. Rock Mech. Min. Sci. (2014)

  • σ'x = 15 MPa, σ'y = 5 MPaσ'y

    σ'x

    Example of an aperture field under stress

    • For each scenario, an ensemble of 20 realizations are generated and studied.

    Aperture field: no stress

    0

    1

    2 [mm]

    0

    1

    2 [mm]Aperture field:

  • Fluid flow in the fracture is calculated by assuming 1) Laminar flow2) The cubic law is locally valid Which gives a series of parallel plates.

    Solve for fluid flow through stressed discrete fracture networks

    X

    j

    Qij = 0

    1. No flow on top and bottom boundaries2. Constant pressure on left and right boundaries

    Boundary conditions:No flow

    No flow

    Pin Pout

    Qij = �a3ij12µ

    Pj � Pilij

    l ij

    aijP i P j

  • 0

    1

    2

    3

    4

    5

    6

    7Flow field: 15MPa-5MPa

    0

    0.5

    1Pressure field: 15MPa-5MPa

    Solve pressure equation to obtain flow field

    Pressure field: no stress

    0

    0.5

    1

    Flow field: no stress

    0

    1

    2

    3

    4

    5

    6

    7

  • Run tracer transport simulation on obtained flow fields

    Park et al., Water Resour. Res., 2001Kang et al., Adv. Water Resour., 2017

    • Flux-weighted Injection at the inlet:

    • Complete mixing at intersections:

    • Particle tracking simulation: σ'x = 15 MPa, σ'y = 15 MPa

    σ'x = 3 MPa, σ'y = 3 MPaσ'y

    σ'x

    σ'yσ'x

  • Impact of stress orientation on fracture network-scale transport

    σ'x = 15 MPa, σ'y = 5 MPa

    σ'x = 5 MPa, σ'y = 15 MPaσ'y

    σ'x

    σ'yσ'x

  • Stress induces anomalous transport in fracture network-scale transport

    We can observe features of non-Fickian (anomalous) transport:

    - Emergence of late-time tailing- Anomalously early arrival of tracers for the 15MPa-5MPa case.

    10-1 100 101 102 103

    normalized time

    10-8

    10-6

    10-4

    10-2

    100

    conc

    entra

    tion

    nostress3MPa3MPa15MPa15MPa

    10-1 100 101 102 103

    normalized time

    10-8

    10-6

    10-4

    10-2

    100

    conc

    entra

    tion

    nostress5MPa15MPa15MPa5MPa

    1

    4

    1

    3

    1

    4

    1

    3

    (a) (b)

  • What are the origins of anomalous transport?

  • No stress

    15MPa-15MPa

    5MPa-15MPa3MPa-3MPa

    15MPa-5MPa

    0

    0.05

    0.1 [mm]

    - Stress significantly increases small aperture values

    Origin of the emergence of late-time tailing

  • Origin of the emergence of late-time tailing

    Aperture distributions

    - Geologic stress broadens aperture distribution- Increase in the variance of the aperture distribution makes

    heterogeneous velocity field

    10-2

    10-1

    100

    101

    aperture [mm]

    10-3

    10-2

    10-1

    100

    prob

    abilit

    y de

    nsity

    10-2 10-1 100 101

    aperture [mm]

    10-3

    10-2

    10-1

    100

    prob

    abilit

    y de

    nsity

    (a) (b)

    nostress3MPa3MPa15MPa15MPa

    nostress5MPa15MPa15MPa5MPa

  • Normal stress on fractures

    0

    1

    2107[Pa]

    σ'x = 15 MPa, σ'y = 5 MPa

    σ'x = 5 MPa, σ'y = 15 MPa

    Shear dilation

    0

    0.5

    1 [mm]

    σ'x = 15 MPa, σ'y = 5 MPa

    σ'x = 5 MPa, σ'y = 15 MPa

    Origin of the anomalously early arrival

    • Stress anisotropy opens / closes different fracture sets• Interplay between fracture geometry (connectivity, direction) and

    stress condition controls shear dilation

    σ'yσ'x

  • Impact of geologic stress on flow field

    - Flow values are normalized with the mean flow rate of the no stress case- Shear dilation causes strong preferential paths

    No stress

    15MPa-15MPa

    5MPa-15MPa3MPa-3MPa

    15MPa-5MPa

    01234567

    σ'yσ'x

  • Can we develop a parsimonious upscaled transport model?

  • Impact of Stress on Lagrangian Velocity Distributions

    Geologic stress has major impacts on Lagrangian velocity distribution

    10-6 10-4 10-2 100

    normalized velocity

    10-4

    10-2

    100

    prob

    abilit

    y de

    nsity

    nostress3MPa3MPa15MPa15MPa

    10-6 10-4 10-2 100

    normalized velocity

    10-4

    10-2

    100

    prob

    abilit

    y de

    nsity

    nostress5MPa15MPa15MPa5MPa

    (a) (b)

  • Impact of Stress on Lagrangian Velocity Correlation

    1 2 3 4 5 6 7 8 9 10velocity class

    1

    2

    3

    4

    5

    6

    7

    8

    cond

    ition

    al v

    eloc

    ity c

    orre

    latio

    n [m

    ]

    nostress3MPa3MPa15MPa15MPa

    1 2 3 4 5 6 7 8 9 10velocity class

    1

    2

    3

    4

    5

    6

    7

    8

    cond

    ition

    al v

    eloc

    ity c

    orre

    latio

    n [m

    ]

    nostress5MPa15MPa15MPa5MPa

    (a) (b)

    Conditional correlation length:{Ref: Le Borgne et al., 2007, WRR

  • Spatial Markov Model with average correlation length

    10-1 100 101 102 103

    normalized time

    10-8

    10-6

    10-4

    10-2

    100

    conc

    entra

    tion

    nostress3MPa3MPa15MPa15MPa

    10-1 100 101 102 103

    normalized time

    10-8

    10-6

    10-4

    10-2

    100

    conc

    entra

    tion

    nostress5MPa15MPa15MPa5MPa

    (a) (b)

    SMM prediction SMM prediction

    The model with a single correlation length shows good predictability except for the 15MPa-5MPa scenario.

  • Emergence of strong correlation length due to shear dilation

    Two correlation length model is proposed:

    1 2 3 4 5 6 7 8 9 10velocity class

    1

    2

    3

    4

    5

    6

    7

    8

    cond

    ition

    al v

    eloc

    ity c

    orre

    latio

    n [m

    ]

    nostress3MPa3MPa15MPa15MPa

    1 2 3 4 5 6 7 8 9 10velocity class

    1

    2

    3

    4

    5

    6

    7

    8

    cond

    ition

    al v

    eloc

    ity c

    orre

    latio

    n [m

    ]

    nostress5MPa15MPa15MPa5MPa

    (a) (b)

    1 2 3 4 5 6 7 8 9 10velocity class

    1

    2

    3

    4

    5

    6

    7

    8

    cond

    ition

    al v

    eloc

    ity c

    orre

    latio

    n [m

    ]

    nostress3MPa3MPa15MPa15MPa

    1 2 3 4 5 6 7 8 9 10velocity class

    1

    2

    3

    4

    5

    6

    7

    8

    cond

    ition

    al v

    eloc

    ity c

    orre

    latio

    n [m

    ]

    nostress5MPa15MPa15MPa5MPa

    (a) (b)

    Tij = ai�ij + (1� ai)1� �ijN � 1

    where is a function of velocity class.ai

  • Spatial Markov Model with dual correlation lengths

    • We honor the emergence of strong velocity correlation with the two correlation length model.

    • The model nicely predicts 15MPa-5MPa scenario.

    10-1 100 101 102 103

    normalized time

    10-8

    10-6

    10-4

    10-2

    100

    conc

    entra

    tion

    10-1 100 101 102 103

    normalized time

    10-8

    10-6

    10-4

    10-2

    100

    conc

    entra

    tion

    (a) (b)nostress3MPa3MPa15MPa15MPa1 CorrL model2 CorrL model

    nostress5MPa15MPa15MPa5MPaSMM prediction2 CorrL model

    Kang et al., submitted. (2018)

  • 1. Interplay between stress and fracture geometry can induce anomalous transport in fractured media.

    2. Stress fundamentally changes velocity correlation and velocity heterogeneity.

    3. Spatial Markov model with dual correlation length can predict anomalous transport through fractured media.

    Conclusions

    σ'x = 15 MPa, σ'y = 5 MPaσ'x = 5 MPa, σ'y = 15 MPaσ'y

    σ'x

    σ'yσ'x

  • Impact of Variable-Density Flow on the Value-of-Information of Pressure and Concentration Data for Saline Aquifer Characterization

    Seonkyoo Yoon, Peter Kang

    Heterogeneous aquifer

    ?

    Managed aquifer recharge

  • Thank youResearch website: www.pkkang.com