Image Processing 2 - Agilent · Introduction to Image Processing and Analysis Gilbert Min, Ph.D....

21
Introduction to Image Processing and Analysis Gilbert Min, Ph.D. Applications Scientist Nanotechnology Measurements Operations

Transcript of Image Processing 2 - Agilent · Introduction to Image Processing and Analysis Gilbert Min, Ph.D....

Page 1: Image Processing 2 - Agilent · Introduction to Image Processing and Analysis Gilbert Min, Ph.D. Applications Scientist Nanotechnology Measurements Operations

Introduction to Image Processing and

Analysis

Gilbert Min, Ph.D.Applications ScientistNanotechnology Measurements Operations

Page 2: Image Processing 2 - Agilent · Introduction to Image Processing and Analysis Gilbert Min, Ph.D. Applications Scientist Nanotechnology Measurements Operations

10°

20°

30°

40°

50°

60°70°

80°90°100°110°

120°

130°

140°

150°

160°

170°

180°

Isotropy: 2.22 %

First Direction: 67.5°

Second Direction: 114°

Third Direction: 90.0°

Working with SPM Image Files

Realtime acquisition

Post processing software

Raw data files (binary / ASCII formats)Limited tools for display & analysis

Agilent PicoImageResults for presentation/publication(.jpg, .tiff, .avi, .xls, etc.)

µm

-10

-8

-6

-4

-2

0

2

4

6

8

0 2 4 6 8 10 12 14 16 18 20 22 24 m m

Elem ent: segm ent o f wid th : 1 m m , E nclosed area : 0 .0653 m m 2

0.2 0.3 0.4 0.5 0.6 0

68

136

Roundness

ISO 25178Height Parameters

Sq 3.19

Ssk -0.945

Sku 3.85

Sp 4.77

Page 3: Image Processing 2 - Agilent · Introduction to Image Processing and Analysis Gilbert Min, Ph.D. Applications Scientist Nanotechnology Measurements Operations

First Step: Image Leveling Most all SPM images require a basic leveling to remove inevitable artifacts from image acquisition (sample tilt, scanner bow / nonlinearities, z-drift, line skips, etc.).

Common approaches to leveling:- plane flattening- line by line flattening

Original raw image After leveling process

nm

0

50

100

150

200

250

300

350

400

450

500

550

600

0 2 4 6 8 10 µm

µm

0

1

2

3

4

5

6

7

8

9

10

nm

0

20

40

60

80

100

120

140

160

180

0 2 4 6 8 10 µm

µm

0

1

2

3

4

5

6

7

8

9

10

Page 4: Image Processing 2 - Agilent · Introduction to Image Processing and Analysis Gilbert Min, Ph.D. Applications Scientist Nanotechnology Measurements Operations

Leveling Images: Plane FlattenSimplest approach – a linear plane is subtracted from surface

nm

0

2.5

5

7.5

10

12.5

15

17.5

20

22.5

25

27.5

30

32.5

350 1 2 3 4 5 µm

µm

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

nm

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

0 1 2 3 4 5 µm

µm

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Useful when there is very minimal curvature relative to the surface topography

LS plane fit

Page 5: Image Processing 2 - Agilent · Introduction to Image Processing and Analysis Gilbert Min, Ph.D. Applications Scientist Nanotechnology Measurements Operations

Plane Flattening: 3-Point Method

Plane is simply defined by three user-defined reference points on the surface

Useful for step height applications, where a user specific leveling reference is required and where the surface can be leveled to an average.

Page 6: Image Processing 2 - Agilent · Introduction to Image Processing and Analysis Gilbert Min, Ph.D. Applications Scientist Nanotechnology Measurements Operations

Line Flattening

Each scan line is fit to a polynomial and the polynomial shape is subtracted.

The height average of each line is set equal to the previous line to remove any offset

Z

Z

Z

X

X

X1st order

2nd order

3rd order

scan lines

leveled line

Page 7: Image Processing 2 - Agilent · Introduction to Image Processing and Analysis Gilbert Min, Ph.D. Applications Scientist Nanotechnology Measurements Operations

Line Flattening: a Cylindrical Hair Follicle0 2 4 6 8 10 µm

µm

0

1

2

3

4

5

6

7

8

9

10

0 2 4 6 8 10 µm

µm

0

1

2

3

4

5

6

7

8

9

10

0 2 4 6 8 10 µm

µm

0

1

2

3

4

5

6

7

8

9

10

1st order

0th order (raw)

2nd order

Page 8: Image Processing 2 - Agilent · Introduction to Image Processing and Analysis Gilbert Min, Ph.D. Applications Scientist Nanotechnology Measurements Operations

Using Include/Exclude with Line Flattening

Artifacts from line flattening can be avoided by identifying structures to include/exclude in the calculated polynomial used in subtraction

Line by line levelled

0 2 4 6 8 10 µm

µm

0

1

2

3

4

5

6

7

8

9

10

0 2 4 6 8 10 µm

µm

0

1

2

3

4

5

6

7

8

9

10

0 2 4 6 8 10 µm

µm

0

1

2

3

4

5

6

7

8

9

10

1st order 1st order excluding raised stamps

Page 9: Image Processing 2 - Agilent · Introduction to Image Processing and Analysis Gilbert Min, Ph.D. Applications Scientist Nanotechnology Measurements Operations

2D / 3D Display OptionsColor Pallette

3D continuous mesh 3D copper material

nm

0

50

100

150

200

250

300

350

400

450

500

550

600

0 2 4 6 8 10 µm

µm

0

1

2

3

4

5

6

7

8

9

10

nm

0

50

100

150

200

250

300

350

400

450

500

550

600

0 2 4 6 8 10 µm

µm

0

1

2

3

4

5

6

7

8

9

10

Add Visualization Effects

2D photo simulation

Page 10: Image Processing 2 - Agilent · Introduction to Image Processing and Analysis Gilbert Min, Ph.D. Applications Scientist Nanotechnology Measurements Operations

Adding Data Overlay onto 3D SurfacesMore info can be extracted when combining multiple data channels - surface topography with functional imaging (phase, KFM, EFM, MFM, etc.)

Organic material phase overlaid on topography

PZT filmSP overlaid on topography

SDRAMSP overlaid on topography

0 1 2 3 4 5 µm

µm

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

V

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 µm

µm

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

surface potentialtopography

+ =

3D overlay

Page 11: Image Processing 2 - Agilent · Introduction to Image Processing and Analysis Gilbert Min, Ph.D. Applications Scientist Nanotechnology Measurements Operations

Filtering: Removing Noise from Images Using a filtering algorithm can remove unwanted noise that often appears in acquired images

Matrix / Spatial Filtering

Spatial filtering is made by moving a transformation matrix over the surface. Input Ipixels are interpolated/modified according to the weighted values of adjacent pixels to produce filtered image of output O pixels

Types of Matrix Filters:

-Smoothing/denoising (median, mean, Gaussian)

-Min/Max

-Edge detection (Laplacian, Sobel, Gradient)

-Many more…including custom user-defined!

121242121

000010000

A “Custom” 3x3?

No effect:every pixel is

multiplied by 1

3x3 GaussianFilter

Page 12: Image Processing 2 - Agilent · Introduction to Image Processing and Analysis Gilbert Min, Ph.D. Applications Scientist Nanotechnology Measurements Operations

Applying Matrix / Spatial Filters0 1 2 3 4 5 µm

µm

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 1 2 3 4 5 µm

µm

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 1 2 3 4 5 µm

µm

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 1 2 3 4 5 µm

µm

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

median denoising7x7

median denoising27x27

Sobel 7x7edge detection

Page 13: Image Processing 2 - Agilent · Introduction to Image Processing and Analysis Gilbert Min, Ph.D. Applications Scientist Nanotechnology Measurements Operations

Fourier filtering

Calculates a spectral representation of frequency components (FFT) of an image and user identifies bandwidths for inclusion/exclusion into the filtered surface.

Useful for images with periodic patterns, eg. atomic lattices

Filtering: Removing Noise from Images

Raw data (1o line level)

2D FFT spectrum FFT filtered

Page 14: Image Processing 2 - Agilent · Introduction to Image Processing and Analysis Gilbert Min, Ph.D. Applications Scientist Nanotechnology Measurements Operations

Analysis Tools: Profile Extraction / Step Height

Extracted profile

Extracted profile

1 2 3 4 5

0 1 2 3 4 5 6 7 8 9 10 11 µm

nm

0

50

100

150

200

250

300

1 2 3 4 5

Maximum height 150 nm 152 nm 162 nm 161 nm 112 nm

Mean height 141 nm 149 nm 158 nm 154 nm 111 nm

Width 0.414 µm 0.429 µm 0.443 µm 0.414 µm 0.343 µm

Total height v-p-v 165 nm 167 nm 170 nm 181 nm 135 nm

Total height v-p 142 nm 167 nm 170 nm 154 nm 133 nm

Minimum height 133 nm 145 nm 155 nm 145 nm 109 nm

1 2 3 4 5

0 1 2 3 4 5 6 7 8 9 10 11 µm

nm

0

50

100

150

200

250

300

1 2 3 4 5

Maximum height 168 nm 153 nm 153 nm 150 nm 150 nm

Mean height 157 nm 152 nm 151 nm 148 nm 148 nm

Width 0.415 µm 0.415 µm 0.415 µm 0.401 µm 0.386 µm

Total height v-p-v 172 nm 157 nm 155 nm 154 nm 154 nm

Total height v-p 170 nm 157 nm 155 nm 153 nm 154 nm

Minimum height 149 nm 150 nm 150 nm 145 nm 147 nm

Page 15: Image Processing 2 - Agilent · Introduction to Image Processing and Analysis Gilbert Min, Ph.D. Applications Scientist Nanotechnology Measurements Operations

Measuring Surface Roughness Roughness parameters quantify height statistics of a surface

Some commonly reported values

Depth between the mean plane and the deepest valley

Maximum pit height

Height between the highest peak and the mean plane

Maximum peak height

Heightbetween the highest peak and the deepest valley

Maximum height

4th statistical moment describing flatness of

distribution

Kurtosis

3rd statistical moment, qualifying the symmetry of

distribution

Skewness

Mean surface height

1st moment of distribution

Arithmetic Mean

Standard deviation of the height distribution

Root Mean Square

EUR and ISO Standards exist for 2D & 3D parameters to ensure conformity

Page 16: Image Processing 2 - Agilent · Introduction to Image Processing and Analysis Gilbert Min, Ph.D. Applications Scientist Nanotechnology Measurements Operations

Surface Roughness Examples

nm

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

ISO 25178Height Parameters

Sq 1.78 nm

Ssk -3.04

Sku 18.4

Sp 5.97 nm

Sv 15.3 nm

Sz 21.3 nm

Sa 1.06 nm

nm

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

ISO 25178Height Parameters

Sq 0.268 nm

Ssk 0.0306

Sku 3.08

Sp 1.01 nm

Sv 1.92 nm

Sz 2.93 nm

Sa 0.214 nm

“Smooth” film “Pitted” film

Page 17: Image Processing 2 - Agilent · Introduction to Image Processing and Analysis Gilbert Min, Ph.D. Applications Scientist Nanotechnology Measurements Operations

Surface Roughness: Same Surface, Different Scan Siz esnm

0

5

10

15

20

25

30

35

40

45

50

55

60

ISO 25178Height Parameters

Sq 10.5 nm

Ssk 0.408

Sku 2.39

Sp 35.7 nm

Sv 25.4 nm

Sz 61.1 nm

Sa 8.91 nm

nm

0

10

20

30

40

50

60

70

80

90

100

110

120

ISO 25178Height Parameters

Sq 8.38 nm

Ssk 0.74

Sku 5.89

Sp 96.8 nm

Sv 27.5 nm

Sz 124 nm

Sa 6.22 nm

Important calculations are made over appropriate length scales, as roughness values depend on sample size

5 um scan

25 um scan

Page 18: Image Processing 2 - Agilent · Introduction to Image Processing and Analysis Gilbert Min, Ph.D. Applications Scientist Nanotechnology Measurements Operations

Using the Thresholding Tool

Allows user to select surface planes of different altitudes/height levels for manipulation

µm

0

0.0198

0.0397

0.0595

0.0793

0.0991

0.119

0.139

0.159

0.178

0.1980 20 40 60 80 100 %

0 10 20 30 40 50 60 %

Abbott – Firestone Curve(height histogram & bearing ratio)

Place along curve corresponds to height level

Page 19: Image Processing 2 - Agilent · Introduction to Image Processing and Analysis Gilbert Min, Ph.D. Applications Scientist Nanotechnology Measurements Operations

Using the Thresholding Tool

Stamp substrate ISO 25178Height Parameters

Sa 2.94 nm

Sq 3.9 nm

Sp 14.5 nm

Sv 14.3 nm

Sz 28.8 nm

ISO 25178Height Parameters

Sa 24.2 nm

Sq 29.3 nm

Sp 54.2 nm

Sv 73.4 nm

Sz 128 nm

ISO 25178Height Parameters

Sa 2.93 nm

Sq 4.51 nm

Sp 33.7 nm

Sv 6.56 nm

Sz 40.3 nmStamp bits including sidewall

Top surface of stamp bits

Page 20: Image Processing 2 - Agilent · Introduction to Image Processing and Analysis Gilbert Min, Ph.D. Applications Scientist Nanotechnology Measurements Operations

1 2 3 4 5 6 0

104

208

Form factor

Example Workflow for Pore Analysis nm

-34.8

-24.1

-13.4

-2.63

8.09

18.8

29.5

40.3

51

61.7

0 20 40 60 80 100 %

0 2.5 5 7.5 10 12.5 15 17.5 20 %

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3 3.25 3.5 3.75 µm

µm

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

2.25

2.5

2.75

3

3.25

3.5

3.75

Thresholded -

0 1 2 3 µm

µm

0

0.5

1

1.5

2

2.5

3

3.5

Mean parameters on 545 grains

Number of grains: 545Total area occupied by the grains: 6.94 µm2 (48.5 %)Density of grains: 38.1 grains / µm2.

Area = 0.0127 µm2 +/- 0.166 µm2Perimeter = 749 nm +/- 9319 nmMean diameter = 68.3 nm +/- 24.8 nmMin diameter = 52.2 nm +/- 24.3 nmMax diameter = 97.1 nm +/- 52 nmForm factor = 1.07 +/- 1.4Aspect ratio = 2.88 +/- 4.31Roundness = 87.7 +/- 1996Orientation = 64.2° +/- 51.8°

20 40 60 80 100 120 140 nm0

70.5

141

Mean diameter

1. Choose proper flattening method

2. Use height thresholding tool to select pits of interest

3. Binarization defines pores for 4. Display results

0 1 2 3 µm

µm

0

0.5

1

1.5

2

2.5

3

3.5

Page 21: Image Processing 2 - Agilent · Introduction to Image Processing and Analysis Gilbert Min, Ph.D. Applications Scientist Nanotechnology Measurements Operations

Always remember…

When working with images, it’s good practice to:

1) Preserve raw data files before applying operators & filters

2) Keep a consistent workflow among data sets, especially when comparing statistical results

3) Try to avoid “over-processing” data and introducing artificial software image artifacts