ILC Controls & Instrumentation R&D Activities at Fermilab G. Tassotto, M. Votava, M. Wendt Fermi...

2
ILC Controls & Instrumentation R&D Activities at Fermilab G. Tassotto, M. Votava, M. Wendt Fermi National Accelerator Laboratory, Batavia, IL 60510, U.S.A. Layout of the M-Test Secondary Beamline for ILC Detector Components Beam Instrumentation: • Proportional wire chambers (PWC) • Scintillation Counters PROPORTIONAL WIRE CHAMBER Presently used in secondary, low intensity, beamlines Q T a Chamber Specifications X,Y sense plane between HV foils. require vacuum break. lots of material in the beam Gas - ArCO 2 80/20 % Electron charge make up the signal Typical setting: -2400 V to display 20,000 particles. Electronics 96 channel integrator (FNAL design) Integration time from 1 sec to 6.5 sec Dynamic range: X1, X10, X100 16 bit ADC Sensitivity = 0.312 mV/ADC count • Noise 0.2% of full scale Calibration feature Installation Picture of chamber MT6WC1 after installation and alignment FIBER PROFILE MONITOR Will replace PWC in M-Test secondary beamline Low beam energy – 1 GeV Low beam intensity - down to a few ppp Cycle time - 1 min. Spill time - 4 sec. System parameters: Burle Multianode MCP PMT HV = -2300 (Gain = 800,000) Nanometrics N277 threshold = 1.86 Estimated discriminator threshold = 5 photo electrons (pe) Light output ≈ 5 pe/Mip/fiber (Mip = minimum ionization particle) Wire Plane Assembly Layout of 16 3/4 mm horizontal fibers on ceramic substrate that will show a vertical beam profile. The vertical fibers are epoxied behind the the ceramic. Final Assembly X and Y fibers planes are installed inside a vacuum can. The 64 signals are taken from the MCP via a 50 conductor cable to a standard Fermilab SWIC scanner. Cookie The fibers are bundled and epoxied in a “cookie” to match the Burle multichannel plate (http://www.burle.com/mcp_pmt s.htm).

Transcript of ILC Controls & Instrumentation R&D Activities at Fermilab G. Tassotto, M. Votava, M. Wendt Fermi...

Page 1: ILC Controls & Instrumentation R&D Activities at Fermilab G. Tassotto, M. Votava, M. Wendt Fermi National Accelerator Laboratory, Batavia, IL 60510, U.S.A.

ILC Controls & InstrumentationR&D Activities at Fermilab

G. Tassotto, M. Votava, M. WendtFermi National Accelerator Laboratory, Batavia, IL 60510,

U.S.A.

Layout of the M-Test Secondary Beamline for ILC Detector Components

Beam Instrumentation:• Proportional wire chambers (PWC)• Scintillation Counters

PROPORTIONAL WIRE CHAMBER

Presently used in secondary, low intensity, beamlines

QuickTime™ and aTIFF (Uncompressed) decompressorare needed to see this picture.

Chamber Specifications

• X,Y sense plane between HV foils.• require vacuum break.• lots of material in the beam• Gas - ArCO2 80/20 %• Electron charge make up the signal• Typical setting: -2400 V to display

20,000 particles.

Electronics

• 96 channel integrator (FNAL design)• Integration time from 1 sec to 6.5 sec• Dynamic range: X1, X10, X100• 16 bit ADC • Sensitivity = 0.312 mV/ADC count• Noise 0.2% of full scale• Calibration feature

Installation

Picture of chamber MT6WC1 after installation and alignment

FIBER PROFILE MONITORWill replace PWC in M-Test secondary beamline

• Low beam energy – 1 GeV• Low beam intensity - down to a few ppp• Cycle time - 1 min.• Spill time - 4 sec.

System parameters:• Burle Multianode MCP PMT

HV = -2300 (Gain = 800,000)

• Nanometrics N277 threshold = 1.86

• Estimated discriminator threshold = 5 photo electrons (pe)

• Light output ≈ 5 pe/Mip/fiber (Mip = minimum ionization particle)

Wire Plane Assembly

Layout of 16 3/4 mm horizontal fibers on ceramic substrate that will show a vertical beam profile.

The vertical fibers are epoxied behind the the ceramic.

Final Assembly

X and Y fibers planes are installed inside a vacuum can. The 64 signals are taken from the MCP via a 50 conductor cable to a standard Fermilab SWIC scanner.

Cookie

The fibers are bundled and epoxied in a “cookie” to match the Burle multichannel plate (http://www.burle.com/mcp_pmts.htm).

Page 2: ILC Controls & Instrumentation R&D Activities at Fermilab G. Tassotto, M. Votava, M. Wendt Fermi National Accelerator Laboratory, Batavia, IL 60510, U.S.A.

RF

-gun booster cavities

1 & 23.

9 G

hz c

av

doublet triplet quadsbeamtrans.

bunch compressor dipole

low energyinjector dump

ILC Module 1

B

doublethigh energy beam dump

dog-leg test beam-line (TBD)

HOM couplers

T YF

T

B C O B O SO

S T O O YO

O OS

T

OPS

P

SOC

T OS YO

S

S

O

S O

T C B T

S O S T O S O S S

S

test beam-line for advanced beam instrumentation, e.g.EOS, Laser-wire,

OTRI, cavity BPM’s,…

S

S

doublet doubletcorrectors

corr

ecto

rs

dipole

OS

T

doubletquad

dipole doublet

corr

ecto

rs

~ 19 meters

~ 22 meters

Layout of the ILC Test Accelerator (ILCTA) at the “New Muon Lab” (NML) building – not to scale

Basic beam instrumentation:

Beam current / bunch charge monitor

(T: toroid)Beam position monitor (B: button, S: stripline, PS: perpendicular stripline, C:

cavity)Screen monitor (some multifunctional) (Y: YaG, O: OTR, C: CTR, S: slit, F: Faraday-cup)

Time-of-flight or beam phase monitor

Synchrotron light bunch length monitor(P: pyro detector)

TDB: beam loss monitors (BLM)

Cold L-Band Cavity BPMfor the Cryomodule

Principle of Operation

Problems with simple“Pill-Box” Cavity BPM’s:• TM010 monopole common

mode (CM)• Cross-talk (xy-axes,

polarization)• Transient response (single-

bunch measurements)• Wake-potential (heat-load,

BBU)• Cryogenic and cleanroom

requirements

ILC/ILCTA Controls System

ILC Challenges• High Availability – 99.999%

uptime• Phase reference distribution• Remote Control – possibly 3

control rooms world-wide• Sheer length and number of

components – database tracking critical

Operator Displays

Archiving

Electronics

Diagnostics

Operator Displays

Frequency, GHz 1.46

Loaded Q ~ 600

Beam pipe radius, mm 39

Cell radius, mm 114

Cell gap, mm 10

Waveguide, mm 122x110x25

Coupling slot, mm 47x5x3

Window –Ceramic brick of alumina 96%

r ≈ 9.4

Size: the same as slot

N type receptacle,50 Ohm,D=9.75 mmd=3.05 mm

EM Modeling of the Waveguide-loaded Cavity-BPM

• Waveguide-loaded pillbox with slot coupling.

• Dimensioning for f010 and f110 symmetric to fRF: fRF = 1.3 GHz, f010 ≈ 1.1 GHz, f110 ≈ 1.5 GHz.

• Dipole- and monopole ports, no reference cavity for intensity signal normalization and signal phase (sign).

• Qload ≈ 600 (~ 10 % cross-talk at 300 ns bunch-to-bunch spacing).

• Minimization of the X-Y cross-talk (dimple tuning).

• Simple (cleanable) mechanics.• Iteration of EM-simulations for

optimizing all dimensions.

N2 Temperature Cycling of a Test Cavity-BPM (without Waveguide Ports)

Waveguide-loaded Cold Cavity-BPM: View of the Preliminary Construction

8 x

MMM

CREV

FWD

KLY

XFMR

ModulatorDriver

LLRF crate 1:- CPU, PS- 3x LLRF- BPM- Timing Distribution- (HOM coupler)

Modulator Control & Interlock (Rack)

Klystron Control & Interlock

Cryogenic Controls (Rack)

REV FWD

2x e--field

Temp (RTD)

CouplArc(air)

WGArc

RF Phase Reference Line

WG pressure

Vacuum Controls (Rack)

M M M M M M M MBeamPickup

24x Cavity Probe (plus optional 1..48x HOM coupler)

M M M M M M M M

BPM & Magnet

M M M M M M M M

8 x

MMM

CREV

FWD

8 x

MMM

CREV

FWD

8x Coupler

Cryomodule

Accelerator Tunnel

Service Tunnel

Timing & Synchronization

Inter-System Feedback Network/Bus

MPS Network/Bus

RT Control Network

Local Oscillator

LLRF crate 3:- CPU, PS- Motor Controller- Piezo Controller

Temp(KLX)

Temp(KLX)

Temp(KLX)

Temp(KLX)

LLRF crate 2:- CPU, PS- RF Interlock Systems

LLRF & Instrumenation Rack

WG pressWGArcKlyArc

7xFWD/REV

optional HOM (1..48x)CavREV (24x)CavFWD (24x)CavProbe (24x)Reference (3x)

BeamPickup (3x)BPM (3x)

48x signal (PMT pwr&gain)

72x coax (PMT sig.)

24x fiber (photo arc)

110x Motor

48x Piezo

Temp(KLX)

WG pressureWG pressure

REV FWD REV FWD

WGArc

Pow

er &

Hig

h Le

vel S

igna

l Pen

etra

tion

RF

& L

ow L

evel

Sig

nal P

enet

ratio

n

M

PMT (vac)

2x e--field

Temp (RTD)

CouplArc(air)

M

PMT (vac)

2x e--field

Temp (RTD)

CouplArc(air)

M

PMT (vac)8x Coupler 8x Coupler

Klystron Water PLC

KlyArcKlyArc

ILC LLRF Layout for a Main Linac RF Station