III-V MOSFETs for Next Generation · National Chiao Tung University CSD Lab. Tokyo Institute of...

31
National Chiao Tung University CSD Lab. Tokyo Institute of Technology Iwai Lab. 1 III-V MOSFETs for Next Generation - Fabrication of III-V MOS Capacitors Edward Y. Chang, Yueh-Chin Lin National Chiao Tung University Hiroshi Iwai, Kuniyuki Kakushima Tokyo Institute of Technology

Transcript of III-V MOSFETs for Next Generation · National Chiao Tung University CSD Lab. Tokyo Institute of...

Page 1: III-V MOSFETs for Next Generation · National Chiao Tung University CSD Lab. Tokyo Institute of Technology Iwai Lab. 17 TMA only (control) HCl + TMA treatment Sulfide + TMA treatment

National Chiao Tung University CSD Lab. Tokyo Institute of Technology Iwai Lab. 1

III-V MOSFETs for Next Generation

- Fabrication of III-V MOS Capacitors

Edward Y. Chang, Yueh-Chin LinNational Chiao Tung University

Hiroshi Iwai, Kuniyuki KakushimaTokyo Institute of Technology

Page 2: III-V MOSFETs for Next Generation · National Chiao Tung University CSD Lab. Tokyo Institute of Technology Iwai Lab. 17 TMA only (control) HCl + TMA treatment Sulfide + TMA treatment

National Chiao Tung University CSD Lab. Tokyo Institute of Technology Iwai Lab. 2

Importance of CMOS devices

Page 3: III-V MOSFETs for Next Generation · National Chiao Tung University CSD Lab. Tokyo Institute of Technology Iwai Lab. 17 TMA only (control) HCl + TMA treatment Sulfide + TMA treatment

National Chiao Tung University CSD Lab. Tokyo Institute of Technology Iwai Lab. 3

La2O3

La-silicate

W

500 oC, 30 min1 nm

k=8~14

k=23

Si

HfO2SiOx layer(0.5~0.7nm)

Si

Higher-kin DirectContact

Si

SiO2(~1.2nm)

Present stage

ContinousScaling for Future Electronics

EOT:Equivalent oxide thickness

III-V sub.

Higher-kin DirectContact

EOT~1.2nm

EOT~0.9nm

EOT~0.5nm

EOT~0.5nm

GreenNanoelectronics

excess leakage current

CMOS device scaling

Page 4: III-V MOSFETs for Next Generation · National Chiao Tung University CSD Lab. Tokyo Institute of Technology Iwai Lab. 17 TMA only (control) HCl + TMA treatment Sulfide + TMA treatment

National Chiao Tung University CSD Lab. Tokyo Institute of Technology Iwai Lab. 4

Advantages of high-k/ III-V integration

Si GaAs In0.53Ga0.47As In0.7Ga0.3As InAs

Eg (eV) 1.12 1.42 0.74 0.59 0.35

Bulk e mobility cm2 /V s 1400 8500 12000 20 000 40000

Bulk hole mobility cm2 /V s 450 400 300 300~ 400 500

III-V materials have:

High electron mobility

High-low field drift velocity

Good for low power logic application

Page 5: III-V MOSFETs for Next Generation · National Chiao Tung University CSD Lab. Tokyo Institute of Technology Iwai Lab. 17 TMA only (control) HCl + TMA treatment Sulfide + TMA treatment

National Chiao Tung University CSD Lab. Tokyo Institute of Technology Iwai Lab. 5

1. Redution of interface state density・Selection of high-k material・Proper surface treatments・Optimization in the annealing process2. Reduction of parasitic resistance・Alloy process, etc..

Gate oxide

Gate electrode

III-VInterface state(surface potential control)

Parasitc resistance(power consumption)

Issues in high-k/ III-V technology

Page 6: III-V MOSFETs for Next Generation · National Chiao Tung University CSD Lab. Tokyo Institute of Technology Iwai Lab. 17 TMA only (control) HCl + TMA treatment Sulfide + TMA treatment

National Chiao Tung University CSD Lab. Tokyo Institute of Technology Iwai Lab. 6

Selection of high-k material for III-V

High interface density Dit: High Dit results in Fermi level pinning, instability, carrier scattering.Oxides with high dielectric constant and large band gap are required.

Oxide Al2O3 HfO2 La2O3 CeO2

k 8~11.5 25 30 38

Eg (eV) 6.65 5.7 4.3 3.2

Page 7: III-V MOSFETs for Next Generation · National Chiao Tung University CSD Lab. Tokyo Institute of Technology Iwai Lab. 17 TMA only (control) HCl + TMA treatment Sulfide + TMA treatment

National Chiao Tung University CSD Lab. Tokyo Institute of Technology Iwai Lab. 7

National Chiao Tung University CSD Lab.

Tokyo Institute of Technology Iwai Lab.

- Verious high-k for In0.53Ga0.47As substrates

- High-k on verious III-V substrates

- Process engineering- Interface reaction upon process- Electrical characterization

Our collaborative mission

InxGa1-xAs (x=0.53, 0.70, 1.00)

HfO2, La2O3, CeO2, Pr6O11

Establish a material selection guidline for future high-k/III-V technology

Page 8: III-V MOSFETs for Next Generation · National Chiao Tung University CSD Lab. Tokyo Institute of Technology Iwai Lab. 17 TMA only (control) HCl + TMA treatment Sulfide + TMA treatment

National Chiao Tung University CSD Lab. Tokyo Institute of Technology Iwai Lab. 8

1. ALD Al2O3 on InAs substrarte

2. ALD Al2O3 on InGaAs substrate

3. Surface treatment for La2O3/InGaAs

4. Enhanced deposition for HfO2/InGaAs

Content

Page 9: III-V MOSFETs for Next Generation · National Chiao Tung University CSD Lab. Tokyo Institute of Technology Iwai Lab. 17 TMA only (control) HCl + TMA treatment Sulfide + TMA treatment

National Chiao Tung University CSD Lab. Tokyo Institute of Technology Iwai Lab. 9

1. ALD Al2O3 on InAs substrarte

Page 10: III-V MOSFETs for Next Generation · National Chiao Tung University CSD Lab. Tokyo Institute of Technology Iwai Lab. 17 TMA only (control) HCl + TMA treatment Sulfide + TMA treatment

National Chiao Tung University CSD Lab. Tokyo Institute of Technology Iwai Lab. 10

Experimental procedure

Page 11: III-V MOSFETs for Next Generation · National Chiao Tung University CSD Lab. Tokyo Institute of Technology Iwai Lab. 17 TMA only (control) HCl + TMA treatment Sulfide + TMA treatment

National Chiao Tung University CSD Lab. Tokyo Institute of Technology Iwai Lab. 11

(a) Native oxide coverred InAs surface

(b) Al2O3/HCl+TMA-treated InAs

interface.

(c) Al2O3/sulfide+TMA treated

interface.

- As-related oxides are reducedto below level of XPS detection

- In-O(S) bonds are also reduceafter surface treatments,HCl+TMA treatment seemsbe more effective

Al2O3/InAs

HCl+TMA

S+TMA

control

suppressed

suppressed

X-ray photoelectron spectroscopy(XPS) analysis

Page 12: III-V MOSFETs for Next Generation · National Chiao Tung University CSD Lab. Tokyo Institute of Technology Iwai Lab. 17 TMA only (control) HCl + TMA treatment Sulfide + TMA treatment

National Chiao Tung University CSD Lab. Tokyo Institute of Technology Iwai Lab. 12

- JG < 10-9 A/cm2, with -4 V < VG < 3.5 V, ensure that it is not affect C-V measurement

Al2O3/InAsJ-V analysis

Page 13: III-V MOSFETs for Next Generation · National Chiao Tung University CSD Lab. Tokyo Institute of Technology Iwai Lab. 17 TMA only (control) HCl + TMA treatment Sulfide + TMA treatment

National Chiao Tung University CSD Lab. Tokyo Institute of Technology Iwai Lab. 13

Al2O3/InAs

- “Low frequency” C-V behavior: Short minority carrier response

- Accumulation regime: ∆C is small and does not seem to be affected significantly by the different surface treatments

- Inversion regime: ∆C (control) > ∆C (sulfide+TMA) > ∆C (HCl+TMA)

TMA only (control) HCl + TMA treatment Sulfide + TMA treatment

10 cycle TMA, 300oC HCl, 1 min10 cycle TMA, 300oC

HCl, 1 min; (NH4)2S, 20min10 cycle TMA, 300oC

Multi frequency C-V analysis

Page 14: III-V MOSFETs for Next Generation · National Chiao Tung University CSD Lab. Tokyo Institute of Technology Iwai Lab. 17 TMA only (control) HCl + TMA treatment Sulfide + TMA treatment

National Chiao Tung University CSD Lab. Tokyo Institute of Technology Iwai Lab. 14

- Depletion capacitance (Cdep): HCl + TMA → Sulfide + TMA → TMA only (control)

- C-V stretch-out: HCl + TMA → Sulfide + TMA → TMA only (control)Large

Al2O3/InAs

Quasi static C-V (QSCV) analysis

Page 15: III-V MOSFETs for Next Generation · National Chiao Tung University CSD Lab. Tokyo Institute of Technology Iwai Lab. 17 TMA only (control) HCl + TMA treatment Sulfide + TMA treatment

National Chiao Tung University CSD Lab. Tokyo Institute of Technology Iwai Lab. 1515

( )s

ad xnxpNNedx

xVdε

)()()(2

2 −+−−=

• Using full numerical solution of the Poisson equation:

• Nd and Na: are the donor and acceptor

concentrations in the semiconductor

• n(x) and p(x): are the electron and hole density

• εs is the dielectric constant of the semiconductor

• The Dit at the InGaAs, InAs/high-k interface was varied, until a good fit to the

experimental data was obtained

• Charge quantization effects and non-parabolicity in the conduction band is not

included in simulation

C-V simulation with Dit profiles

Page 16: III-V MOSFETs for Next Generation · National Chiao Tung University CSD Lab. Tokyo Institute of Technology Iwai Lab. 17 TMA only (control) HCl + TMA treatment Sulfide + TMA treatment

National Chiao Tung University CSD Lab. Tokyo Institute of Technology Iwai Lab. 16

QSCV curves were well fitted by the simulations

Al2O3/InAs

C-V simulation results

Page 17: III-V MOSFETs for Next Generation · National Chiao Tung University CSD Lab. Tokyo Institute of Technology Iwai Lab. 17 TMA only (control) HCl + TMA treatment Sulfide + TMA treatment

National Chiao Tung University CSD Lab. Tokyo Institute of Technology Iwai Lab. 17

TMA only (control) HCl + TMA treatment Sulfide + TMA treatment

- U-shape profile, very similar to Al2O3/In0.53Ga0.47As case (APL 95, 202109)

- Chemical + TMA surface treatments significantly reduce the donor-like traps

- HCl + TMA treated sample shows lower donor like-traps than that of sulfide + TMA treated sample

Al2O3/InAs

Extracted Dit profiles

Page 18: III-V MOSFETs for Next Generation · National Chiao Tung University CSD Lab. Tokyo Institute of Technology Iwai Lab. 17 TMA only (control) HCl + TMA treatment Sulfide + TMA treatment

National Chiao Tung University CSD Lab. Tokyo Institute of Technology Iwai Lab. 18

2. ALD Al2O3 on InGaAs substrarte

Page 19: III-V MOSFETs for Next Generation · National Chiao Tung University CSD Lab. Tokyo Institute of Technology Iwai Lab. 17 TMA only (control) HCl + TMA treatment Sulfide + TMA treatment

National Chiao Tung University CSD Lab. Tokyo Institute of Technology Iwai Lab. 19

Al2O3/In0.53Ga0.47As

19

X-ray photoelectron spectroscopy (XPS) analysis

(a) Native surface

(b) After TMA treatment

(c) Sulfide + TMA treatment

(d) TMA treatment, PDA: 500C in N2

(e) Sulfide + TMA treatment, PDA: 500C in N2

(f) Sulfide + TMA treatment, PDA: 500C in H2

Sulfide + TMA treatment, PDA: 500C in H2:

strong effect in reducing native oxides

Page 20: III-V MOSFETs for Next Generation · National Chiao Tung University CSD Lab. Tokyo Institute of Technology Iwai Lab. 17 TMA only (control) HCl + TMA treatment Sulfide + TMA treatment

National Chiao Tung University CSD Lab. Tokyo Institute of Technology Iwai Lab. 20

Al2O3/In0.53Ga0.47As

20

TMA treatment only, N2 PDA Sulfide + TMA treatment N2 PDA Sulfide + TMA treatment, H2 PDA

“Bump” Inversion Strong inversion

True inversion response at high frequency of 1 MHz

Multi-frequency C-V characterization

Page 21: III-V MOSFETs for Next Generation · National Chiao Tung University CSD Lab. Tokyo Institute of Technology Iwai Lab. 17 TMA only (control) HCl + TMA treatment Sulfide + TMA treatment

National Chiao Tung University CSD Lab. Tokyo Institute of Technology Iwai Lab. 21

Al2O3/In0.53Ga0.47As

21

Dit extracted by conductance method and simulationSulfide + TMA treatment, H2 PDAHCl + TMA treatment, N2 PDA

Simulation is well fitted

with experimental data

U-shape profiles

Low Dit < 2x1011 eV-1cm-2

at 0.5-0.6 eV above

valence maximum

C-V simulation results

Page 22: III-V MOSFETs for Next Generation · National Chiao Tung University CSD Lab. Tokyo Institute of Technology Iwai Lab. 17 TMA only (control) HCl + TMA treatment Sulfide + TMA treatment

National Chiao Tung University CSD Lab. Tokyo Institute of Technology Iwai Lab. 22

3. Surface treatment for La2O3/InGaAs

Page 23: III-V MOSFETs for Next Generation · National Chiao Tung University CSD Lab. Tokyo Institute of Technology Iwai Lab. 17 TMA only (control) HCl + TMA treatment Sulfide + TMA treatment

National Chiao Tung University CSD Lab. Tokyo Institute of Technology Iwai Lab. 23

Gate Voltage ( V )

Cap

acita

nce

( µF/

cm2

)

CV characteristics of La2O3/InGaAs MOS capacitor

EB deposited La2O3Sputter deposited W gate

Large frequency dispersion at accumulation

Page 24: III-V MOSFETs for Next Generation · National Chiao Tung University CSD Lab. Tokyo Institute of Technology Iwai Lab. 17 TMA only (control) HCl + TMA treatment Sulfide + TMA treatment

National Chiao Tung University CSD Lab. Tokyo Institute of Technology Iwai Lab. 24

Novel interface engineering process

The impact to the CV curves are characterized

CH3

CH3-Si-CH3

O

CH3

CH3-Si-CH3

O

CH3

CH3-Si-CH3

O

In0.53Ga0.47AsInP

HMDS coating

Surface Si passivation using a self-assembled monolayerHMDS (Hexamethyldisilazane )

Page 25: III-V MOSFETs for Next Generation · National Chiao Tung University CSD Lab. Tokyo Institute of Technology Iwai Lab. 17 TMA only (control) HCl + TMA treatment Sulfide + TMA treatment

National Chiao Tung University CSD Lab. Tokyo Institute of Technology Iwai Lab. 25

HF treatment(control)

(NH4)2S treatment HMDS vapor coating

111411151116111711181119112011141115111611171118111911201114111511161117111811191120

500oC-5min@ F.G.

500oC-5min@ F.G.

500oC-5min@ F.G.

Ga-OGa-La

HF treatment S- passivated Si- passivated

Ga-OGa-O

Gate Voltage ( V ) Gate Voltage ( V ) Gate Voltage ( V )

Cap

acita

nce

( µF/

cm2 )

Impact of Si monolayer insertion to the CV curves

Less GaOx foramtion with less frequency disperssion

Page 26: III-V MOSFETs for Next Generation · National Chiao Tung University CSD Lab. Tokyo Institute of Technology Iwai Lab. 17 TMA only (control) HCl + TMA treatment Sulfide + TMA treatment

National Chiao Tung University CSD Lab. Tokyo Institute of Technology Iwai Lab. 26

E - Ev ( eV )

Dit

( eV

-1cm

-2)

1013

1012

4HF

HF+(NH4)2S

HF+HMDS

5 min, in F.G.PMA 500 oC

Impact on the interface state density (Dit)

HMDS treatment→Lower Dit especially at Ec edge

Page 27: III-V MOSFETs for Next Generation · National Chiao Tung University CSD Lab. Tokyo Institute of Technology Iwai Lab. 17 TMA only (control) HCl + TMA treatment Sulfide + TMA treatment

National Chiao Tung University CSD Lab. Tokyo Institute of Technology Iwai Lab. 27

4. Enhanced deposition for HfO2/InGaAs

Page 28: III-V MOSFETs for Next Generation · National Chiao Tung University CSD Lab. Tokyo Institute of Technology Iwai Lab. 17 TMA only (control) HCl + TMA treatment Sulfide + TMA treatment

National Chiao Tung University CSD Lab. Tokyo Institute of Technology Iwai Lab. 28

The effect of HfO2 deposition temperature

(Preparation: HF cleaning → Vacuum anneal 450oC for 30min)

Deposition at 100 oC

Deposition at 300 oC

Frequency disspersion + Large Dit

High leakage current, (hard to measure)but seems less Dit

Combination of 100 and 300 oC deposition

1nm deposition at 300 oC and the rest at 100 oC

Page 29: III-V MOSFETs for Next Generation · National Chiao Tung University CSD Lab. Tokyo Institute of Technology Iwai Lab. 17 TMA only (control) HCl + TMA treatment Sulfide + TMA treatment

National Chiao Tung University CSD Lab. Tokyo Institute of Technology Iwai Lab. 29

F.G. anneal, 420 oC

(a)

Gate Voltage ( V )

Cap

acita

nce

( µF/

cm2 )

F.G. anneal, 420 oC

(b)

Gate Voltage ( V )

Cap

acita

nce

( µF/

cm2 )

CV curves measured at RT and 100K with enhanced HfO2 deposition

Large frequency disperssionstill observed at 100K

Almost ideal CV curve obtainedAt 100K with enhanced deposition

1nm @300oC+ 9nm @100oC10nm @100oC

Page 30: III-V MOSFETs for Next Generation · National Chiao Tung University CSD Lab. Tokyo Institute of Technology Iwai Lab. 17 TMA only (control) HCl + TMA treatment Sulfide + TMA treatment

National Chiao Tung University CSD Lab. Tokyo Institute of Technology Iwai Lab. 30

1013

1014

1012

Interface HfO2depo at 300 oC

HfO2 depoat 100 oC

HfO2: 20 nmHfO2: 10 nm

E - Ei ( eV )

Dit

( eV

-1 cm

-2 )

0.30.20.1

F.G. anneal 420 oC

Dit distribution with enhanced HfO2 deposition

Smaller Dit with interface HfO2 deposited at 300 oC

Page 31: III-V MOSFETs for Next Generation · National Chiao Tung University CSD Lab. Tokyo Institute of Technology Iwai Lab. 17 TMA only (control) HCl + TMA treatment Sulfide + TMA treatment

National Chiao Tung University CSD Lab. Tokyo Institute of Technology Iwai Lab. 31

Conclusions

Surface treatment of InAs and InGaAs substrate with TMA is effective in removing the native oxide at the interface

With H2 annealing, a Dit below 2x1011 cm-2/eV can be achieved

Si insertion at La2O3/InGaAs by self-assembled monolayer can reduce the frequency disperssion at accumulation

Controling the temperature during the deposition is effective to change the interface properties to reduce the Dit